annotate src/zlib-1.2.7/examples/zran.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 8a15ff55d9af
children
rev   line source
cannam@89 1 /* zran.c -- example of zlib/gzip stream indexing and random access
cannam@89 2 * Copyright (C) 2005 Mark Adler
cannam@89 3 * For conditions of distribution and use, see copyright notice in zlib.h
cannam@89 4 Version 1.0 29 May 2005 Mark Adler */
cannam@89 5
cannam@89 6 /* Illustrate the use of Z_BLOCK, inflatePrime(), and inflateSetDictionary()
cannam@89 7 for random access of a compressed file. A file containing a zlib or gzip
cannam@89 8 stream is provided on the command line. The compressed stream is decoded in
cannam@89 9 its entirety, and an index built with access points about every SPAN bytes
cannam@89 10 in the uncompressed output. The compressed file is left open, and can then
cannam@89 11 be read randomly, having to decompress on the average SPAN/2 uncompressed
cannam@89 12 bytes before getting to the desired block of data.
cannam@89 13
cannam@89 14 An access point can be created at the start of any deflate block, by saving
cannam@89 15 the starting file offset and bit of that block, and the 32K bytes of
cannam@89 16 uncompressed data that precede that block. Also the uncompressed offset of
cannam@89 17 that block is saved to provide a referece for locating a desired starting
cannam@89 18 point in the uncompressed stream. build_index() works by decompressing the
cannam@89 19 input zlib or gzip stream a block at a time, and at the end of each block
cannam@89 20 deciding if enough uncompressed data has gone by to justify the creation of
cannam@89 21 a new access point. If so, that point is saved in a data structure that
cannam@89 22 grows as needed to accommodate the points.
cannam@89 23
cannam@89 24 To use the index, an offset in the uncompressed data is provided, for which
cannam@89 25 the latest accees point at or preceding that offset is located in the index.
cannam@89 26 The input file is positioned to the specified location in the index, and if
cannam@89 27 necessary the first few bits of the compressed data is read from the file.
cannam@89 28 inflate is initialized with those bits and the 32K of uncompressed data, and
cannam@89 29 the decompression then proceeds until the desired offset in the file is
cannam@89 30 reached. Then the decompression continues to read the desired uncompressed
cannam@89 31 data from the file.
cannam@89 32
cannam@89 33 Another approach would be to generate the index on demand. In that case,
cannam@89 34 requests for random access reads from the compressed data would try to use
cannam@89 35 the index, but if a read far enough past the end of the index is required,
cannam@89 36 then further index entries would be generated and added.
cannam@89 37
cannam@89 38 There is some fair bit of overhead to starting inflation for the random
cannam@89 39 access, mainly copying the 32K byte dictionary. So if small pieces of the
cannam@89 40 file are being accessed, it would make sense to implement a cache to hold
cannam@89 41 some lookahead and avoid many calls to extract() for small lengths.
cannam@89 42
cannam@89 43 Another way to build an index would be to use inflateCopy(). That would
cannam@89 44 not be constrained to have access points at block boundaries, but requires
cannam@89 45 more memory per access point, and also cannot be saved to file due to the
cannam@89 46 use of pointers in the state. The approach here allows for storage of the
cannam@89 47 index in a file.
cannam@89 48 */
cannam@89 49
cannam@89 50 #include <stdio.h>
cannam@89 51 #include <stdlib.h>
cannam@89 52 #include <string.h>
cannam@89 53 #include "zlib.h"
cannam@89 54
cannam@89 55 #define local static
cannam@89 56
cannam@89 57 #define SPAN 1048576L /* desired distance between access points */
cannam@89 58 #define WINSIZE 32768U /* sliding window size */
cannam@89 59 #define CHUNK 16384 /* file input buffer size */
cannam@89 60
cannam@89 61 /* access point entry */
cannam@89 62 struct point {
cannam@89 63 off_t out; /* corresponding offset in uncompressed data */
cannam@89 64 off_t in; /* offset in input file of first full byte */
cannam@89 65 int bits; /* number of bits (1-7) from byte at in - 1, or 0 */
cannam@89 66 unsigned char window[WINSIZE]; /* preceding 32K of uncompressed data */
cannam@89 67 };
cannam@89 68
cannam@89 69 /* access point list */
cannam@89 70 struct access {
cannam@89 71 int have; /* number of list entries filled in */
cannam@89 72 int size; /* number of list entries allocated */
cannam@89 73 struct point *list; /* allocated list */
cannam@89 74 };
cannam@89 75
cannam@89 76 /* Deallocate an index built by build_index() */
cannam@89 77 local void free_index(struct access *index)
cannam@89 78 {
cannam@89 79 if (index != NULL) {
cannam@89 80 free(index->list);
cannam@89 81 free(index);
cannam@89 82 }
cannam@89 83 }
cannam@89 84
cannam@89 85 /* Add an entry to the access point list. If out of memory, deallocate the
cannam@89 86 existing list and return NULL. */
cannam@89 87 local struct access *addpoint(struct access *index, int bits,
cannam@89 88 off_t in, off_t out, unsigned left, unsigned char *window)
cannam@89 89 {
cannam@89 90 struct point *next;
cannam@89 91
cannam@89 92 /* if list is empty, create it (start with eight points) */
cannam@89 93 if (index == NULL) {
cannam@89 94 index = malloc(sizeof(struct access));
cannam@89 95 if (index == NULL) return NULL;
cannam@89 96 index->list = malloc(sizeof(struct point) << 3);
cannam@89 97 if (index->list == NULL) {
cannam@89 98 free(index);
cannam@89 99 return NULL;
cannam@89 100 }
cannam@89 101 index->size = 8;
cannam@89 102 index->have = 0;
cannam@89 103 }
cannam@89 104
cannam@89 105 /* if list is full, make it bigger */
cannam@89 106 else if (index->have == index->size) {
cannam@89 107 index->size <<= 1;
cannam@89 108 next = realloc(index->list, sizeof(struct point) * index->size);
cannam@89 109 if (next == NULL) {
cannam@89 110 free_index(index);
cannam@89 111 return NULL;
cannam@89 112 }
cannam@89 113 index->list = next;
cannam@89 114 }
cannam@89 115
cannam@89 116 /* fill in entry and increment how many we have */
cannam@89 117 next = index->list + index->have;
cannam@89 118 next->bits = bits;
cannam@89 119 next->in = in;
cannam@89 120 next->out = out;
cannam@89 121 if (left)
cannam@89 122 memcpy(next->window, window + WINSIZE - left, left);
cannam@89 123 if (left < WINSIZE)
cannam@89 124 memcpy(next->window + left, window, WINSIZE - left);
cannam@89 125 index->have++;
cannam@89 126
cannam@89 127 /* return list, possibly reallocated */
cannam@89 128 return index;
cannam@89 129 }
cannam@89 130
cannam@89 131 /* Make one entire pass through the compressed stream and build an index, with
cannam@89 132 access points about every span bytes of uncompressed output -- span is
cannam@89 133 chosen to balance the speed of random access against the memory requirements
cannam@89 134 of the list, about 32K bytes per access point. Note that data after the end
cannam@89 135 of the first zlib or gzip stream in the file is ignored. build_index()
cannam@89 136 returns the number of access points on success (>= 1), Z_MEM_ERROR for out
cannam@89 137 of memory, Z_DATA_ERROR for an error in the input file, or Z_ERRNO for a
cannam@89 138 file read error. On success, *built points to the resulting index. */
cannam@89 139 local int build_index(FILE *in, off_t span, struct access **built)
cannam@89 140 {
cannam@89 141 int ret;
cannam@89 142 off_t totin, totout; /* our own total counters to avoid 4GB limit */
cannam@89 143 off_t last; /* totout value of last access point */
cannam@89 144 struct access *index; /* access points being generated */
cannam@89 145 z_stream strm;
cannam@89 146 unsigned char input[CHUNK];
cannam@89 147 unsigned char window[WINSIZE];
cannam@89 148
cannam@89 149 /* initialize inflate */
cannam@89 150 strm.zalloc = Z_NULL;
cannam@89 151 strm.zfree = Z_NULL;
cannam@89 152 strm.opaque = Z_NULL;
cannam@89 153 strm.avail_in = 0;
cannam@89 154 strm.next_in = Z_NULL;
cannam@89 155 ret = inflateInit2(&strm, 47); /* automatic zlib or gzip decoding */
cannam@89 156 if (ret != Z_OK)
cannam@89 157 return ret;
cannam@89 158
cannam@89 159 /* inflate the input, maintain a sliding window, and build an index -- this
cannam@89 160 also validates the integrity of the compressed data using the check
cannam@89 161 information at the end of the gzip or zlib stream */
cannam@89 162 totin = totout = last = 0;
cannam@89 163 index = NULL; /* will be allocated by first addpoint() */
cannam@89 164 strm.avail_out = 0;
cannam@89 165 do {
cannam@89 166 /* get some compressed data from input file */
cannam@89 167 strm.avail_in = fread(input, 1, CHUNK, in);
cannam@89 168 if (ferror(in)) {
cannam@89 169 ret = Z_ERRNO;
cannam@89 170 goto build_index_error;
cannam@89 171 }
cannam@89 172 if (strm.avail_in == 0) {
cannam@89 173 ret = Z_DATA_ERROR;
cannam@89 174 goto build_index_error;
cannam@89 175 }
cannam@89 176 strm.next_in = input;
cannam@89 177
cannam@89 178 /* process all of that, or until end of stream */
cannam@89 179 do {
cannam@89 180 /* reset sliding window if necessary */
cannam@89 181 if (strm.avail_out == 0) {
cannam@89 182 strm.avail_out = WINSIZE;
cannam@89 183 strm.next_out = window;
cannam@89 184 }
cannam@89 185
cannam@89 186 /* inflate until out of input, output, or at end of block --
cannam@89 187 update the total input and output counters */
cannam@89 188 totin += strm.avail_in;
cannam@89 189 totout += strm.avail_out;
cannam@89 190 ret = inflate(&strm, Z_BLOCK); /* return at end of block */
cannam@89 191 totin -= strm.avail_in;
cannam@89 192 totout -= strm.avail_out;
cannam@89 193 if (ret == Z_NEED_DICT)
cannam@89 194 ret = Z_DATA_ERROR;
cannam@89 195 if (ret == Z_MEM_ERROR || ret == Z_DATA_ERROR)
cannam@89 196 goto build_index_error;
cannam@89 197 if (ret == Z_STREAM_END)
cannam@89 198 break;
cannam@89 199
cannam@89 200 /* if at end of block, consider adding an index entry (note that if
cannam@89 201 data_type indicates an end-of-block, then all of the
cannam@89 202 uncompressed data from that block has been delivered, and none
cannam@89 203 of the compressed data after that block has been consumed,
cannam@89 204 except for up to seven bits) -- the totout == 0 provides an
cannam@89 205 entry point after the zlib or gzip header, and assures that the
cannam@89 206 index always has at least one access point; we avoid creating an
cannam@89 207 access point after the last block by checking bit 6 of data_type
cannam@89 208 */
cannam@89 209 if ((strm.data_type & 128) && !(strm.data_type & 64) &&
cannam@89 210 (totout == 0 || totout - last > span)) {
cannam@89 211 index = addpoint(index, strm.data_type & 7, totin,
cannam@89 212 totout, strm.avail_out, window);
cannam@89 213 if (index == NULL) {
cannam@89 214 ret = Z_MEM_ERROR;
cannam@89 215 goto build_index_error;
cannam@89 216 }
cannam@89 217 last = totout;
cannam@89 218 }
cannam@89 219 } while (strm.avail_in != 0);
cannam@89 220 } while (ret != Z_STREAM_END);
cannam@89 221
cannam@89 222 /* clean up and return index (release unused entries in list) */
cannam@89 223 (void)inflateEnd(&strm);
cannam@89 224 index = realloc(index, sizeof(struct point) * index->have);
cannam@89 225 index->size = index->have;
cannam@89 226 *built = index;
cannam@89 227 return index->size;
cannam@89 228
cannam@89 229 /* return error */
cannam@89 230 build_index_error:
cannam@89 231 (void)inflateEnd(&strm);
cannam@89 232 if (index != NULL)
cannam@89 233 free_index(index);
cannam@89 234 return ret;
cannam@89 235 }
cannam@89 236
cannam@89 237 /* Use the index to read len bytes from offset into buf, return bytes read or
cannam@89 238 negative for error (Z_DATA_ERROR or Z_MEM_ERROR). If data is requested past
cannam@89 239 the end of the uncompressed data, then extract() will return a value less
cannam@89 240 than len, indicating how much as actually read into buf. This function
cannam@89 241 should not return a data error unless the file was modified since the index
cannam@89 242 was generated. extract() may also return Z_ERRNO if there is an error on
cannam@89 243 reading or seeking the input file. */
cannam@89 244 local int extract(FILE *in, struct access *index, off_t offset,
cannam@89 245 unsigned char *buf, int len)
cannam@89 246 {
cannam@89 247 int ret, skip;
cannam@89 248 z_stream strm;
cannam@89 249 struct point *here;
cannam@89 250 unsigned char input[CHUNK];
cannam@89 251 unsigned char discard[WINSIZE];
cannam@89 252
cannam@89 253 /* proceed only if something reasonable to do */
cannam@89 254 if (len < 0)
cannam@89 255 return 0;
cannam@89 256
cannam@89 257 /* find where in stream to start */
cannam@89 258 here = index->list;
cannam@89 259 ret = index->have;
cannam@89 260 while (--ret && here[1].out <= offset)
cannam@89 261 here++;
cannam@89 262
cannam@89 263 /* initialize file and inflate state to start there */
cannam@89 264 strm.zalloc = Z_NULL;
cannam@89 265 strm.zfree = Z_NULL;
cannam@89 266 strm.opaque = Z_NULL;
cannam@89 267 strm.avail_in = 0;
cannam@89 268 strm.next_in = Z_NULL;
cannam@89 269 ret = inflateInit2(&strm, -15); /* raw inflate */
cannam@89 270 if (ret != Z_OK)
cannam@89 271 return ret;
cannam@89 272 ret = fseeko(in, here->in - (here->bits ? 1 : 0), SEEK_SET);
cannam@89 273 if (ret == -1)
cannam@89 274 goto extract_ret;
cannam@89 275 if (here->bits) {
cannam@89 276 ret = getc(in);
cannam@89 277 if (ret == -1) {
cannam@89 278 ret = ferror(in) ? Z_ERRNO : Z_DATA_ERROR;
cannam@89 279 goto extract_ret;
cannam@89 280 }
cannam@89 281 (void)inflatePrime(&strm, here->bits, ret >> (8 - here->bits));
cannam@89 282 }
cannam@89 283 (void)inflateSetDictionary(&strm, here->window, WINSIZE);
cannam@89 284
cannam@89 285 /* skip uncompressed bytes until offset reached, then satisfy request */
cannam@89 286 offset -= here->out;
cannam@89 287 strm.avail_in = 0;
cannam@89 288 skip = 1; /* while skipping to offset */
cannam@89 289 do {
cannam@89 290 /* define where to put uncompressed data, and how much */
cannam@89 291 if (offset == 0 && skip) { /* at offset now */
cannam@89 292 strm.avail_out = len;
cannam@89 293 strm.next_out = buf;
cannam@89 294 skip = 0; /* only do this once */
cannam@89 295 }
cannam@89 296 if (offset > WINSIZE) { /* skip WINSIZE bytes */
cannam@89 297 strm.avail_out = WINSIZE;
cannam@89 298 strm.next_out = discard;
cannam@89 299 offset -= WINSIZE;
cannam@89 300 }
cannam@89 301 else if (offset != 0) { /* last skip */
cannam@89 302 strm.avail_out = (unsigned)offset;
cannam@89 303 strm.next_out = discard;
cannam@89 304 offset = 0;
cannam@89 305 }
cannam@89 306
cannam@89 307 /* uncompress until avail_out filled, or end of stream */
cannam@89 308 do {
cannam@89 309 if (strm.avail_in == 0) {
cannam@89 310 strm.avail_in = fread(input, 1, CHUNK, in);
cannam@89 311 if (ferror(in)) {
cannam@89 312 ret = Z_ERRNO;
cannam@89 313 goto extract_ret;
cannam@89 314 }
cannam@89 315 if (strm.avail_in == 0) {
cannam@89 316 ret = Z_DATA_ERROR;
cannam@89 317 goto extract_ret;
cannam@89 318 }
cannam@89 319 strm.next_in = input;
cannam@89 320 }
cannam@89 321 ret = inflate(&strm, Z_NO_FLUSH); /* normal inflate */
cannam@89 322 if (ret == Z_NEED_DICT)
cannam@89 323 ret = Z_DATA_ERROR;
cannam@89 324 if (ret == Z_MEM_ERROR || ret == Z_DATA_ERROR)
cannam@89 325 goto extract_ret;
cannam@89 326 if (ret == Z_STREAM_END)
cannam@89 327 break;
cannam@89 328 } while (strm.avail_out != 0);
cannam@89 329
cannam@89 330 /* if reach end of stream, then don't keep trying to get more */
cannam@89 331 if (ret == Z_STREAM_END)
cannam@89 332 break;
cannam@89 333
cannam@89 334 /* do until offset reached and requested data read, or stream ends */
cannam@89 335 } while (skip);
cannam@89 336
cannam@89 337 /* compute number of uncompressed bytes read after offset */
cannam@89 338 ret = skip ? 0 : len - strm.avail_out;
cannam@89 339
cannam@89 340 /* clean up and return bytes read or error */
cannam@89 341 extract_ret:
cannam@89 342 (void)inflateEnd(&strm);
cannam@89 343 return ret;
cannam@89 344 }
cannam@89 345
cannam@89 346 /* Demonstrate the use of build_index() and extract() by processing the file
cannam@89 347 provided on the command line, and the extracting 16K from about 2/3rds of
cannam@89 348 the way through the uncompressed output, and writing that to stdout. */
cannam@89 349 int main(int argc, char **argv)
cannam@89 350 {
cannam@89 351 int len;
cannam@89 352 off_t offset;
cannam@89 353 FILE *in;
cannam@89 354 struct access *index = NULL;
cannam@89 355 unsigned char buf[CHUNK];
cannam@89 356
cannam@89 357 /* open input file */
cannam@89 358 if (argc != 2) {
cannam@89 359 fprintf(stderr, "usage: zran file.gz\n");
cannam@89 360 return 1;
cannam@89 361 }
cannam@89 362 in = fopen(argv[1], "rb");
cannam@89 363 if (in == NULL) {
cannam@89 364 fprintf(stderr, "zran: could not open %s for reading\n", argv[1]);
cannam@89 365 return 1;
cannam@89 366 }
cannam@89 367
cannam@89 368 /* build index */
cannam@89 369 len = build_index(in, SPAN, &index);
cannam@89 370 if (len < 0) {
cannam@89 371 fclose(in);
cannam@89 372 switch (len) {
cannam@89 373 case Z_MEM_ERROR:
cannam@89 374 fprintf(stderr, "zran: out of memory\n");
cannam@89 375 break;
cannam@89 376 case Z_DATA_ERROR:
cannam@89 377 fprintf(stderr, "zran: compressed data error in %s\n", argv[1]);
cannam@89 378 break;
cannam@89 379 case Z_ERRNO:
cannam@89 380 fprintf(stderr, "zran: read error on %s\n", argv[1]);
cannam@89 381 break;
cannam@89 382 default:
cannam@89 383 fprintf(stderr, "zran: error %d while building index\n", len);
cannam@89 384 }
cannam@89 385 return 1;
cannam@89 386 }
cannam@89 387 fprintf(stderr, "zran: built index with %d access points\n", len);
cannam@89 388
cannam@89 389 /* use index by reading some bytes from an arbitrary offset */
cannam@89 390 offset = (index->list[index->have - 1].out << 1) / 3;
cannam@89 391 len = extract(in, index, offset, buf, CHUNK);
cannam@89 392 if (len < 0)
cannam@89 393 fprintf(stderr, "zran: extraction failed: %s error\n",
cannam@89 394 len == Z_MEM_ERROR ? "out of memory" : "input corrupted");
cannam@89 395 else {
cannam@89 396 fwrite(buf, 1, len, stdout);
cannam@89 397 fprintf(stderr, "zran: extracted %d bytes at %llu\n", len, offset);
cannam@89 398 }
cannam@89 399
cannam@89 400 /* clean up and exit */
cannam@89 401 free_index(index);
cannam@89 402 fclose(in);
cannam@89 403 return 0;
cannam@89 404 }