cannam@89
|
1 /* zran.c -- example of zlib/gzip stream indexing and random access
|
cannam@89
|
2 * Copyright (C) 2005 Mark Adler
|
cannam@89
|
3 * For conditions of distribution and use, see copyright notice in zlib.h
|
cannam@89
|
4 Version 1.0 29 May 2005 Mark Adler */
|
cannam@89
|
5
|
cannam@89
|
6 /* Illustrate the use of Z_BLOCK, inflatePrime(), and inflateSetDictionary()
|
cannam@89
|
7 for random access of a compressed file. A file containing a zlib or gzip
|
cannam@89
|
8 stream is provided on the command line. The compressed stream is decoded in
|
cannam@89
|
9 its entirety, and an index built with access points about every SPAN bytes
|
cannam@89
|
10 in the uncompressed output. The compressed file is left open, and can then
|
cannam@89
|
11 be read randomly, having to decompress on the average SPAN/2 uncompressed
|
cannam@89
|
12 bytes before getting to the desired block of data.
|
cannam@89
|
13
|
cannam@89
|
14 An access point can be created at the start of any deflate block, by saving
|
cannam@89
|
15 the starting file offset and bit of that block, and the 32K bytes of
|
cannam@89
|
16 uncompressed data that precede that block. Also the uncompressed offset of
|
cannam@89
|
17 that block is saved to provide a referece for locating a desired starting
|
cannam@89
|
18 point in the uncompressed stream. build_index() works by decompressing the
|
cannam@89
|
19 input zlib or gzip stream a block at a time, and at the end of each block
|
cannam@89
|
20 deciding if enough uncompressed data has gone by to justify the creation of
|
cannam@89
|
21 a new access point. If so, that point is saved in a data structure that
|
cannam@89
|
22 grows as needed to accommodate the points.
|
cannam@89
|
23
|
cannam@89
|
24 To use the index, an offset in the uncompressed data is provided, for which
|
cannam@89
|
25 the latest accees point at or preceding that offset is located in the index.
|
cannam@89
|
26 The input file is positioned to the specified location in the index, and if
|
cannam@89
|
27 necessary the first few bits of the compressed data is read from the file.
|
cannam@89
|
28 inflate is initialized with those bits and the 32K of uncompressed data, and
|
cannam@89
|
29 the decompression then proceeds until the desired offset in the file is
|
cannam@89
|
30 reached. Then the decompression continues to read the desired uncompressed
|
cannam@89
|
31 data from the file.
|
cannam@89
|
32
|
cannam@89
|
33 Another approach would be to generate the index on demand. In that case,
|
cannam@89
|
34 requests for random access reads from the compressed data would try to use
|
cannam@89
|
35 the index, but if a read far enough past the end of the index is required,
|
cannam@89
|
36 then further index entries would be generated and added.
|
cannam@89
|
37
|
cannam@89
|
38 There is some fair bit of overhead to starting inflation for the random
|
cannam@89
|
39 access, mainly copying the 32K byte dictionary. So if small pieces of the
|
cannam@89
|
40 file are being accessed, it would make sense to implement a cache to hold
|
cannam@89
|
41 some lookahead and avoid many calls to extract() for small lengths.
|
cannam@89
|
42
|
cannam@89
|
43 Another way to build an index would be to use inflateCopy(). That would
|
cannam@89
|
44 not be constrained to have access points at block boundaries, but requires
|
cannam@89
|
45 more memory per access point, and also cannot be saved to file due to the
|
cannam@89
|
46 use of pointers in the state. The approach here allows for storage of the
|
cannam@89
|
47 index in a file.
|
cannam@89
|
48 */
|
cannam@89
|
49
|
cannam@89
|
50 #include <stdio.h>
|
cannam@89
|
51 #include <stdlib.h>
|
cannam@89
|
52 #include <string.h>
|
cannam@89
|
53 #include "zlib.h"
|
cannam@89
|
54
|
cannam@89
|
55 #define local static
|
cannam@89
|
56
|
cannam@89
|
57 #define SPAN 1048576L /* desired distance between access points */
|
cannam@89
|
58 #define WINSIZE 32768U /* sliding window size */
|
cannam@89
|
59 #define CHUNK 16384 /* file input buffer size */
|
cannam@89
|
60
|
cannam@89
|
61 /* access point entry */
|
cannam@89
|
62 struct point {
|
cannam@89
|
63 off_t out; /* corresponding offset in uncompressed data */
|
cannam@89
|
64 off_t in; /* offset in input file of first full byte */
|
cannam@89
|
65 int bits; /* number of bits (1-7) from byte at in - 1, or 0 */
|
cannam@89
|
66 unsigned char window[WINSIZE]; /* preceding 32K of uncompressed data */
|
cannam@89
|
67 };
|
cannam@89
|
68
|
cannam@89
|
69 /* access point list */
|
cannam@89
|
70 struct access {
|
cannam@89
|
71 int have; /* number of list entries filled in */
|
cannam@89
|
72 int size; /* number of list entries allocated */
|
cannam@89
|
73 struct point *list; /* allocated list */
|
cannam@89
|
74 };
|
cannam@89
|
75
|
cannam@89
|
76 /* Deallocate an index built by build_index() */
|
cannam@89
|
77 local void free_index(struct access *index)
|
cannam@89
|
78 {
|
cannam@89
|
79 if (index != NULL) {
|
cannam@89
|
80 free(index->list);
|
cannam@89
|
81 free(index);
|
cannam@89
|
82 }
|
cannam@89
|
83 }
|
cannam@89
|
84
|
cannam@89
|
85 /* Add an entry to the access point list. If out of memory, deallocate the
|
cannam@89
|
86 existing list and return NULL. */
|
cannam@89
|
87 local struct access *addpoint(struct access *index, int bits,
|
cannam@89
|
88 off_t in, off_t out, unsigned left, unsigned char *window)
|
cannam@89
|
89 {
|
cannam@89
|
90 struct point *next;
|
cannam@89
|
91
|
cannam@89
|
92 /* if list is empty, create it (start with eight points) */
|
cannam@89
|
93 if (index == NULL) {
|
cannam@89
|
94 index = malloc(sizeof(struct access));
|
cannam@89
|
95 if (index == NULL) return NULL;
|
cannam@89
|
96 index->list = malloc(sizeof(struct point) << 3);
|
cannam@89
|
97 if (index->list == NULL) {
|
cannam@89
|
98 free(index);
|
cannam@89
|
99 return NULL;
|
cannam@89
|
100 }
|
cannam@89
|
101 index->size = 8;
|
cannam@89
|
102 index->have = 0;
|
cannam@89
|
103 }
|
cannam@89
|
104
|
cannam@89
|
105 /* if list is full, make it bigger */
|
cannam@89
|
106 else if (index->have == index->size) {
|
cannam@89
|
107 index->size <<= 1;
|
cannam@89
|
108 next = realloc(index->list, sizeof(struct point) * index->size);
|
cannam@89
|
109 if (next == NULL) {
|
cannam@89
|
110 free_index(index);
|
cannam@89
|
111 return NULL;
|
cannam@89
|
112 }
|
cannam@89
|
113 index->list = next;
|
cannam@89
|
114 }
|
cannam@89
|
115
|
cannam@89
|
116 /* fill in entry and increment how many we have */
|
cannam@89
|
117 next = index->list + index->have;
|
cannam@89
|
118 next->bits = bits;
|
cannam@89
|
119 next->in = in;
|
cannam@89
|
120 next->out = out;
|
cannam@89
|
121 if (left)
|
cannam@89
|
122 memcpy(next->window, window + WINSIZE - left, left);
|
cannam@89
|
123 if (left < WINSIZE)
|
cannam@89
|
124 memcpy(next->window + left, window, WINSIZE - left);
|
cannam@89
|
125 index->have++;
|
cannam@89
|
126
|
cannam@89
|
127 /* return list, possibly reallocated */
|
cannam@89
|
128 return index;
|
cannam@89
|
129 }
|
cannam@89
|
130
|
cannam@89
|
131 /* Make one entire pass through the compressed stream and build an index, with
|
cannam@89
|
132 access points about every span bytes of uncompressed output -- span is
|
cannam@89
|
133 chosen to balance the speed of random access against the memory requirements
|
cannam@89
|
134 of the list, about 32K bytes per access point. Note that data after the end
|
cannam@89
|
135 of the first zlib or gzip stream in the file is ignored. build_index()
|
cannam@89
|
136 returns the number of access points on success (>= 1), Z_MEM_ERROR for out
|
cannam@89
|
137 of memory, Z_DATA_ERROR for an error in the input file, or Z_ERRNO for a
|
cannam@89
|
138 file read error. On success, *built points to the resulting index. */
|
cannam@89
|
139 local int build_index(FILE *in, off_t span, struct access **built)
|
cannam@89
|
140 {
|
cannam@89
|
141 int ret;
|
cannam@89
|
142 off_t totin, totout; /* our own total counters to avoid 4GB limit */
|
cannam@89
|
143 off_t last; /* totout value of last access point */
|
cannam@89
|
144 struct access *index; /* access points being generated */
|
cannam@89
|
145 z_stream strm;
|
cannam@89
|
146 unsigned char input[CHUNK];
|
cannam@89
|
147 unsigned char window[WINSIZE];
|
cannam@89
|
148
|
cannam@89
|
149 /* initialize inflate */
|
cannam@89
|
150 strm.zalloc = Z_NULL;
|
cannam@89
|
151 strm.zfree = Z_NULL;
|
cannam@89
|
152 strm.opaque = Z_NULL;
|
cannam@89
|
153 strm.avail_in = 0;
|
cannam@89
|
154 strm.next_in = Z_NULL;
|
cannam@89
|
155 ret = inflateInit2(&strm, 47); /* automatic zlib or gzip decoding */
|
cannam@89
|
156 if (ret != Z_OK)
|
cannam@89
|
157 return ret;
|
cannam@89
|
158
|
cannam@89
|
159 /* inflate the input, maintain a sliding window, and build an index -- this
|
cannam@89
|
160 also validates the integrity of the compressed data using the check
|
cannam@89
|
161 information at the end of the gzip or zlib stream */
|
cannam@89
|
162 totin = totout = last = 0;
|
cannam@89
|
163 index = NULL; /* will be allocated by first addpoint() */
|
cannam@89
|
164 strm.avail_out = 0;
|
cannam@89
|
165 do {
|
cannam@89
|
166 /* get some compressed data from input file */
|
cannam@89
|
167 strm.avail_in = fread(input, 1, CHUNK, in);
|
cannam@89
|
168 if (ferror(in)) {
|
cannam@89
|
169 ret = Z_ERRNO;
|
cannam@89
|
170 goto build_index_error;
|
cannam@89
|
171 }
|
cannam@89
|
172 if (strm.avail_in == 0) {
|
cannam@89
|
173 ret = Z_DATA_ERROR;
|
cannam@89
|
174 goto build_index_error;
|
cannam@89
|
175 }
|
cannam@89
|
176 strm.next_in = input;
|
cannam@89
|
177
|
cannam@89
|
178 /* process all of that, or until end of stream */
|
cannam@89
|
179 do {
|
cannam@89
|
180 /* reset sliding window if necessary */
|
cannam@89
|
181 if (strm.avail_out == 0) {
|
cannam@89
|
182 strm.avail_out = WINSIZE;
|
cannam@89
|
183 strm.next_out = window;
|
cannam@89
|
184 }
|
cannam@89
|
185
|
cannam@89
|
186 /* inflate until out of input, output, or at end of block --
|
cannam@89
|
187 update the total input and output counters */
|
cannam@89
|
188 totin += strm.avail_in;
|
cannam@89
|
189 totout += strm.avail_out;
|
cannam@89
|
190 ret = inflate(&strm, Z_BLOCK); /* return at end of block */
|
cannam@89
|
191 totin -= strm.avail_in;
|
cannam@89
|
192 totout -= strm.avail_out;
|
cannam@89
|
193 if (ret == Z_NEED_DICT)
|
cannam@89
|
194 ret = Z_DATA_ERROR;
|
cannam@89
|
195 if (ret == Z_MEM_ERROR || ret == Z_DATA_ERROR)
|
cannam@89
|
196 goto build_index_error;
|
cannam@89
|
197 if (ret == Z_STREAM_END)
|
cannam@89
|
198 break;
|
cannam@89
|
199
|
cannam@89
|
200 /* if at end of block, consider adding an index entry (note that if
|
cannam@89
|
201 data_type indicates an end-of-block, then all of the
|
cannam@89
|
202 uncompressed data from that block has been delivered, and none
|
cannam@89
|
203 of the compressed data after that block has been consumed,
|
cannam@89
|
204 except for up to seven bits) -- the totout == 0 provides an
|
cannam@89
|
205 entry point after the zlib or gzip header, and assures that the
|
cannam@89
|
206 index always has at least one access point; we avoid creating an
|
cannam@89
|
207 access point after the last block by checking bit 6 of data_type
|
cannam@89
|
208 */
|
cannam@89
|
209 if ((strm.data_type & 128) && !(strm.data_type & 64) &&
|
cannam@89
|
210 (totout == 0 || totout - last > span)) {
|
cannam@89
|
211 index = addpoint(index, strm.data_type & 7, totin,
|
cannam@89
|
212 totout, strm.avail_out, window);
|
cannam@89
|
213 if (index == NULL) {
|
cannam@89
|
214 ret = Z_MEM_ERROR;
|
cannam@89
|
215 goto build_index_error;
|
cannam@89
|
216 }
|
cannam@89
|
217 last = totout;
|
cannam@89
|
218 }
|
cannam@89
|
219 } while (strm.avail_in != 0);
|
cannam@89
|
220 } while (ret != Z_STREAM_END);
|
cannam@89
|
221
|
cannam@89
|
222 /* clean up and return index (release unused entries in list) */
|
cannam@89
|
223 (void)inflateEnd(&strm);
|
cannam@89
|
224 index = realloc(index, sizeof(struct point) * index->have);
|
cannam@89
|
225 index->size = index->have;
|
cannam@89
|
226 *built = index;
|
cannam@89
|
227 return index->size;
|
cannam@89
|
228
|
cannam@89
|
229 /* return error */
|
cannam@89
|
230 build_index_error:
|
cannam@89
|
231 (void)inflateEnd(&strm);
|
cannam@89
|
232 if (index != NULL)
|
cannam@89
|
233 free_index(index);
|
cannam@89
|
234 return ret;
|
cannam@89
|
235 }
|
cannam@89
|
236
|
cannam@89
|
237 /* Use the index to read len bytes from offset into buf, return bytes read or
|
cannam@89
|
238 negative for error (Z_DATA_ERROR or Z_MEM_ERROR). If data is requested past
|
cannam@89
|
239 the end of the uncompressed data, then extract() will return a value less
|
cannam@89
|
240 than len, indicating how much as actually read into buf. This function
|
cannam@89
|
241 should not return a data error unless the file was modified since the index
|
cannam@89
|
242 was generated. extract() may also return Z_ERRNO if there is an error on
|
cannam@89
|
243 reading or seeking the input file. */
|
cannam@89
|
244 local int extract(FILE *in, struct access *index, off_t offset,
|
cannam@89
|
245 unsigned char *buf, int len)
|
cannam@89
|
246 {
|
cannam@89
|
247 int ret, skip;
|
cannam@89
|
248 z_stream strm;
|
cannam@89
|
249 struct point *here;
|
cannam@89
|
250 unsigned char input[CHUNK];
|
cannam@89
|
251 unsigned char discard[WINSIZE];
|
cannam@89
|
252
|
cannam@89
|
253 /* proceed only if something reasonable to do */
|
cannam@89
|
254 if (len < 0)
|
cannam@89
|
255 return 0;
|
cannam@89
|
256
|
cannam@89
|
257 /* find where in stream to start */
|
cannam@89
|
258 here = index->list;
|
cannam@89
|
259 ret = index->have;
|
cannam@89
|
260 while (--ret && here[1].out <= offset)
|
cannam@89
|
261 here++;
|
cannam@89
|
262
|
cannam@89
|
263 /* initialize file and inflate state to start there */
|
cannam@89
|
264 strm.zalloc = Z_NULL;
|
cannam@89
|
265 strm.zfree = Z_NULL;
|
cannam@89
|
266 strm.opaque = Z_NULL;
|
cannam@89
|
267 strm.avail_in = 0;
|
cannam@89
|
268 strm.next_in = Z_NULL;
|
cannam@89
|
269 ret = inflateInit2(&strm, -15); /* raw inflate */
|
cannam@89
|
270 if (ret != Z_OK)
|
cannam@89
|
271 return ret;
|
cannam@89
|
272 ret = fseeko(in, here->in - (here->bits ? 1 : 0), SEEK_SET);
|
cannam@89
|
273 if (ret == -1)
|
cannam@89
|
274 goto extract_ret;
|
cannam@89
|
275 if (here->bits) {
|
cannam@89
|
276 ret = getc(in);
|
cannam@89
|
277 if (ret == -1) {
|
cannam@89
|
278 ret = ferror(in) ? Z_ERRNO : Z_DATA_ERROR;
|
cannam@89
|
279 goto extract_ret;
|
cannam@89
|
280 }
|
cannam@89
|
281 (void)inflatePrime(&strm, here->bits, ret >> (8 - here->bits));
|
cannam@89
|
282 }
|
cannam@89
|
283 (void)inflateSetDictionary(&strm, here->window, WINSIZE);
|
cannam@89
|
284
|
cannam@89
|
285 /* skip uncompressed bytes until offset reached, then satisfy request */
|
cannam@89
|
286 offset -= here->out;
|
cannam@89
|
287 strm.avail_in = 0;
|
cannam@89
|
288 skip = 1; /* while skipping to offset */
|
cannam@89
|
289 do {
|
cannam@89
|
290 /* define where to put uncompressed data, and how much */
|
cannam@89
|
291 if (offset == 0 && skip) { /* at offset now */
|
cannam@89
|
292 strm.avail_out = len;
|
cannam@89
|
293 strm.next_out = buf;
|
cannam@89
|
294 skip = 0; /* only do this once */
|
cannam@89
|
295 }
|
cannam@89
|
296 if (offset > WINSIZE) { /* skip WINSIZE bytes */
|
cannam@89
|
297 strm.avail_out = WINSIZE;
|
cannam@89
|
298 strm.next_out = discard;
|
cannam@89
|
299 offset -= WINSIZE;
|
cannam@89
|
300 }
|
cannam@89
|
301 else if (offset != 0) { /* last skip */
|
cannam@89
|
302 strm.avail_out = (unsigned)offset;
|
cannam@89
|
303 strm.next_out = discard;
|
cannam@89
|
304 offset = 0;
|
cannam@89
|
305 }
|
cannam@89
|
306
|
cannam@89
|
307 /* uncompress until avail_out filled, or end of stream */
|
cannam@89
|
308 do {
|
cannam@89
|
309 if (strm.avail_in == 0) {
|
cannam@89
|
310 strm.avail_in = fread(input, 1, CHUNK, in);
|
cannam@89
|
311 if (ferror(in)) {
|
cannam@89
|
312 ret = Z_ERRNO;
|
cannam@89
|
313 goto extract_ret;
|
cannam@89
|
314 }
|
cannam@89
|
315 if (strm.avail_in == 0) {
|
cannam@89
|
316 ret = Z_DATA_ERROR;
|
cannam@89
|
317 goto extract_ret;
|
cannam@89
|
318 }
|
cannam@89
|
319 strm.next_in = input;
|
cannam@89
|
320 }
|
cannam@89
|
321 ret = inflate(&strm, Z_NO_FLUSH); /* normal inflate */
|
cannam@89
|
322 if (ret == Z_NEED_DICT)
|
cannam@89
|
323 ret = Z_DATA_ERROR;
|
cannam@89
|
324 if (ret == Z_MEM_ERROR || ret == Z_DATA_ERROR)
|
cannam@89
|
325 goto extract_ret;
|
cannam@89
|
326 if (ret == Z_STREAM_END)
|
cannam@89
|
327 break;
|
cannam@89
|
328 } while (strm.avail_out != 0);
|
cannam@89
|
329
|
cannam@89
|
330 /* if reach end of stream, then don't keep trying to get more */
|
cannam@89
|
331 if (ret == Z_STREAM_END)
|
cannam@89
|
332 break;
|
cannam@89
|
333
|
cannam@89
|
334 /* do until offset reached and requested data read, or stream ends */
|
cannam@89
|
335 } while (skip);
|
cannam@89
|
336
|
cannam@89
|
337 /* compute number of uncompressed bytes read after offset */
|
cannam@89
|
338 ret = skip ? 0 : len - strm.avail_out;
|
cannam@89
|
339
|
cannam@89
|
340 /* clean up and return bytes read or error */
|
cannam@89
|
341 extract_ret:
|
cannam@89
|
342 (void)inflateEnd(&strm);
|
cannam@89
|
343 return ret;
|
cannam@89
|
344 }
|
cannam@89
|
345
|
cannam@89
|
346 /* Demonstrate the use of build_index() and extract() by processing the file
|
cannam@89
|
347 provided on the command line, and the extracting 16K from about 2/3rds of
|
cannam@89
|
348 the way through the uncompressed output, and writing that to stdout. */
|
cannam@89
|
349 int main(int argc, char **argv)
|
cannam@89
|
350 {
|
cannam@89
|
351 int len;
|
cannam@89
|
352 off_t offset;
|
cannam@89
|
353 FILE *in;
|
cannam@89
|
354 struct access *index = NULL;
|
cannam@89
|
355 unsigned char buf[CHUNK];
|
cannam@89
|
356
|
cannam@89
|
357 /* open input file */
|
cannam@89
|
358 if (argc != 2) {
|
cannam@89
|
359 fprintf(stderr, "usage: zran file.gz\n");
|
cannam@89
|
360 return 1;
|
cannam@89
|
361 }
|
cannam@89
|
362 in = fopen(argv[1], "rb");
|
cannam@89
|
363 if (in == NULL) {
|
cannam@89
|
364 fprintf(stderr, "zran: could not open %s for reading\n", argv[1]);
|
cannam@89
|
365 return 1;
|
cannam@89
|
366 }
|
cannam@89
|
367
|
cannam@89
|
368 /* build index */
|
cannam@89
|
369 len = build_index(in, SPAN, &index);
|
cannam@89
|
370 if (len < 0) {
|
cannam@89
|
371 fclose(in);
|
cannam@89
|
372 switch (len) {
|
cannam@89
|
373 case Z_MEM_ERROR:
|
cannam@89
|
374 fprintf(stderr, "zran: out of memory\n");
|
cannam@89
|
375 break;
|
cannam@89
|
376 case Z_DATA_ERROR:
|
cannam@89
|
377 fprintf(stderr, "zran: compressed data error in %s\n", argv[1]);
|
cannam@89
|
378 break;
|
cannam@89
|
379 case Z_ERRNO:
|
cannam@89
|
380 fprintf(stderr, "zran: read error on %s\n", argv[1]);
|
cannam@89
|
381 break;
|
cannam@89
|
382 default:
|
cannam@89
|
383 fprintf(stderr, "zran: error %d while building index\n", len);
|
cannam@89
|
384 }
|
cannam@89
|
385 return 1;
|
cannam@89
|
386 }
|
cannam@89
|
387 fprintf(stderr, "zran: built index with %d access points\n", len);
|
cannam@89
|
388
|
cannam@89
|
389 /* use index by reading some bytes from an arbitrary offset */
|
cannam@89
|
390 offset = (index->list[index->have - 1].out << 1) / 3;
|
cannam@89
|
391 len = extract(in, index, offset, buf, CHUNK);
|
cannam@89
|
392 if (len < 0)
|
cannam@89
|
393 fprintf(stderr, "zran: extraction failed: %s error\n",
|
cannam@89
|
394 len == Z_MEM_ERROR ? "out of memory" : "input corrupted");
|
cannam@89
|
395 else {
|
cannam@89
|
396 fwrite(buf, 1, len, stdout);
|
cannam@89
|
397 fprintf(stderr, "zran: extracted %d bytes at %llu\n", len, offset);
|
cannam@89
|
398 }
|
cannam@89
|
399
|
cannam@89
|
400 /* clean up and exit */
|
cannam@89
|
401 free_index(index);
|
cannam@89
|
402 fclose(in);
|
cannam@89
|
403 return 0;
|
cannam@89
|
404 }
|