cannam@154
|
1 /***********************************************************************
|
cannam@154
|
2 Copyright (c) 2006-2011, Skype Limited. All rights reserved.
|
cannam@154
|
3 Redistribution and use in source and binary forms, with or without
|
cannam@154
|
4 modification, are permitted provided that the following conditions
|
cannam@154
|
5 are met:
|
cannam@154
|
6 - Redistributions of source code must retain the above copyright notice,
|
cannam@154
|
7 this list of conditions and the following disclaimer.
|
cannam@154
|
8 - Redistributions in binary form must reproduce the above copyright
|
cannam@154
|
9 notice, this list of conditions and the following disclaimer in the
|
cannam@154
|
10 documentation and/or other materials provided with the distribution.
|
cannam@154
|
11 - Neither the name of Internet Society, IETF or IETF Trust, nor the
|
cannam@154
|
12 names of specific contributors, may be used to endorse or promote
|
cannam@154
|
13 products derived from this software without specific prior written
|
cannam@154
|
14 permission.
|
cannam@154
|
15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
cannam@154
|
16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
cannam@154
|
17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
cannam@154
|
18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
cannam@154
|
19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
cannam@154
|
20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
cannam@154
|
21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
cannam@154
|
22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
cannam@154
|
23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
cannam@154
|
24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
cannam@154
|
25 POSSIBILITY OF SUCH DAMAGE.
|
cannam@154
|
26 ***********************************************************************/
|
cannam@154
|
27
|
cannam@154
|
28 #ifdef HAVE_CONFIG_H
|
cannam@154
|
29 #include "config.h"
|
cannam@154
|
30 #endif
|
cannam@154
|
31
|
cannam@154
|
32 #include "main.h"
|
cannam@154
|
33 #include "stack_alloc.h"
|
cannam@154
|
34
|
cannam@154
|
35 /* Convert Left/Right stereo signal to adaptive Mid/Side representation */
|
cannam@154
|
36 void silk_stereo_LR_to_MS(
|
cannam@154
|
37 stereo_enc_state *state, /* I/O State */
|
cannam@154
|
38 opus_int16 x1[], /* I/O Left input signal, becomes mid signal */
|
cannam@154
|
39 opus_int16 x2[], /* I/O Right input signal, becomes side signal */
|
cannam@154
|
40 opus_int8 ix[ 2 ][ 3 ], /* O Quantization indices */
|
cannam@154
|
41 opus_int8 *mid_only_flag, /* O Flag: only mid signal coded */
|
cannam@154
|
42 opus_int32 mid_side_rates_bps[], /* O Bitrates for mid and side signals */
|
cannam@154
|
43 opus_int32 total_rate_bps, /* I Total bitrate */
|
cannam@154
|
44 opus_int prev_speech_act_Q8, /* I Speech activity level in previous frame */
|
cannam@154
|
45 opus_int toMono, /* I Last frame before a stereo->mono transition */
|
cannam@154
|
46 opus_int fs_kHz, /* I Sample rate (kHz) */
|
cannam@154
|
47 opus_int frame_length /* I Number of samples */
|
cannam@154
|
48 )
|
cannam@154
|
49 {
|
cannam@154
|
50 opus_int n, is10msFrame, denom_Q16, delta0_Q13, delta1_Q13;
|
cannam@154
|
51 opus_int32 sum, diff, smooth_coef_Q16, pred_Q13[ 2 ], pred0_Q13, pred1_Q13;
|
cannam@154
|
52 opus_int32 LP_ratio_Q14, HP_ratio_Q14, frac_Q16, frac_3_Q16, min_mid_rate_bps, width_Q14, w_Q24, deltaw_Q24;
|
cannam@154
|
53 VARDECL( opus_int16, side );
|
cannam@154
|
54 VARDECL( opus_int16, LP_mid );
|
cannam@154
|
55 VARDECL( opus_int16, HP_mid );
|
cannam@154
|
56 VARDECL( opus_int16, LP_side );
|
cannam@154
|
57 VARDECL( opus_int16, HP_side );
|
cannam@154
|
58 opus_int16 *mid = &x1[ -2 ];
|
cannam@154
|
59 SAVE_STACK;
|
cannam@154
|
60
|
cannam@154
|
61 ALLOC( side, frame_length + 2, opus_int16 );
|
cannam@154
|
62 /* Convert to basic mid/side signals */
|
cannam@154
|
63 for( n = 0; n < frame_length + 2; n++ ) {
|
cannam@154
|
64 sum = x1[ n - 2 ] + (opus_int32)x2[ n - 2 ];
|
cannam@154
|
65 diff = x1[ n - 2 ] - (opus_int32)x2[ n - 2 ];
|
cannam@154
|
66 mid[ n ] = (opus_int16)silk_RSHIFT_ROUND( sum, 1 );
|
cannam@154
|
67 side[ n ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( diff, 1 ) );
|
cannam@154
|
68 }
|
cannam@154
|
69
|
cannam@154
|
70 /* Buffering */
|
cannam@154
|
71 silk_memcpy( mid, state->sMid, 2 * sizeof( opus_int16 ) );
|
cannam@154
|
72 silk_memcpy( side, state->sSide, 2 * sizeof( opus_int16 ) );
|
cannam@154
|
73 silk_memcpy( state->sMid, &mid[ frame_length ], 2 * sizeof( opus_int16 ) );
|
cannam@154
|
74 silk_memcpy( state->sSide, &side[ frame_length ], 2 * sizeof( opus_int16 ) );
|
cannam@154
|
75
|
cannam@154
|
76 /* LP and HP filter mid signal */
|
cannam@154
|
77 ALLOC( LP_mid, frame_length, opus_int16 );
|
cannam@154
|
78 ALLOC( HP_mid, frame_length, opus_int16 );
|
cannam@154
|
79 for( n = 0; n < frame_length; n++ ) {
|
cannam@154
|
80 sum = silk_RSHIFT_ROUND( silk_ADD_LSHIFT( mid[ n ] + (opus_int32)mid[ n + 2 ], mid[ n + 1 ], 1 ), 2 );
|
cannam@154
|
81 LP_mid[ n ] = sum;
|
cannam@154
|
82 HP_mid[ n ] = mid[ n + 1 ] - sum;
|
cannam@154
|
83 }
|
cannam@154
|
84
|
cannam@154
|
85 /* LP and HP filter side signal */
|
cannam@154
|
86 ALLOC( LP_side, frame_length, opus_int16 );
|
cannam@154
|
87 ALLOC( HP_side, frame_length, opus_int16 );
|
cannam@154
|
88 for( n = 0; n < frame_length; n++ ) {
|
cannam@154
|
89 sum = silk_RSHIFT_ROUND( silk_ADD_LSHIFT( side[ n ] + (opus_int32)side[ n + 2 ], side[ n + 1 ], 1 ), 2 );
|
cannam@154
|
90 LP_side[ n ] = sum;
|
cannam@154
|
91 HP_side[ n ] = side[ n + 1 ] - sum;
|
cannam@154
|
92 }
|
cannam@154
|
93
|
cannam@154
|
94 /* Find energies and predictors */
|
cannam@154
|
95 is10msFrame = frame_length == 10 * fs_kHz;
|
cannam@154
|
96 smooth_coef_Q16 = is10msFrame ?
|
cannam@154
|
97 SILK_FIX_CONST( STEREO_RATIO_SMOOTH_COEF / 2, 16 ) :
|
cannam@154
|
98 SILK_FIX_CONST( STEREO_RATIO_SMOOTH_COEF, 16 );
|
cannam@154
|
99 smooth_coef_Q16 = silk_SMULWB( silk_SMULBB( prev_speech_act_Q8, prev_speech_act_Q8 ), smooth_coef_Q16 );
|
cannam@154
|
100
|
cannam@154
|
101 pred_Q13[ 0 ] = silk_stereo_find_predictor( &LP_ratio_Q14, LP_mid, LP_side, &state->mid_side_amp_Q0[ 0 ], frame_length, smooth_coef_Q16 );
|
cannam@154
|
102 pred_Q13[ 1 ] = silk_stereo_find_predictor( &HP_ratio_Q14, HP_mid, HP_side, &state->mid_side_amp_Q0[ 2 ], frame_length, smooth_coef_Q16 );
|
cannam@154
|
103 /* Ratio of the norms of residual and mid signals */
|
cannam@154
|
104 frac_Q16 = silk_SMLABB( HP_ratio_Q14, LP_ratio_Q14, 3 );
|
cannam@154
|
105 frac_Q16 = silk_min( frac_Q16, SILK_FIX_CONST( 1, 16 ) );
|
cannam@154
|
106
|
cannam@154
|
107 /* Determine bitrate distribution between mid and side, and possibly reduce stereo width */
|
cannam@154
|
108 total_rate_bps -= is10msFrame ? 1200 : 600; /* Subtract approximate bitrate for coding stereo parameters */
|
cannam@154
|
109 if( total_rate_bps < 1 ) {
|
cannam@154
|
110 total_rate_bps = 1;
|
cannam@154
|
111 }
|
cannam@154
|
112 min_mid_rate_bps = silk_SMLABB( 2000, fs_kHz, 600 );
|
cannam@154
|
113 silk_assert( min_mid_rate_bps < 32767 );
|
cannam@154
|
114 /* Default bitrate distribution: 8 parts for Mid and (5+3*frac) parts for Side. so: mid_rate = ( 8 / ( 13 + 3 * frac ) ) * total_ rate */
|
cannam@154
|
115 frac_3_Q16 = silk_MUL( 3, frac_Q16 );
|
cannam@154
|
116 mid_side_rates_bps[ 0 ] = silk_DIV32_varQ( total_rate_bps, SILK_FIX_CONST( 8 + 5, 16 ) + frac_3_Q16, 16+3 );
|
cannam@154
|
117 /* If Mid bitrate below minimum, reduce stereo width */
|
cannam@154
|
118 if( mid_side_rates_bps[ 0 ] < min_mid_rate_bps ) {
|
cannam@154
|
119 mid_side_rates_bps[ 0 ] = min_mid_rate_bps;
|
cannam@154
|
120 mid_side_rates_bps[ 1 ] = total_rate_bps - mid_side_rates_bps[ 0 ];
|
cannam@154
|
121 /* width = 4 * ( 2 * side_rate - min_rate ) / ( ( 1 + 3 * frac ) * min_rate ) */
|
cannam@154
|
122 width_Q14 = silk_DIV32_varQ( silk_LSHIFT( mid_side_rates_bps[ 1 ], 1 ) - min_mid_rate_bps,
|
cannam@154
|
123 silk_SMULWB( SILK_FIX_CONST( 1, 16 ) + frac_3_Q16, min_mid_rate_bps ), 14+2 );
|
cannam@154
|
124 width_Q14 = silk_LIMIT( width_Q14, 0, SILK_FIX_CONST( 1, 14 ) );
|
cannam@154
|
125 } else {
|
cannam@154
|
126 mid_side_rates_bps[ 1 ] = total_rate_bps - mid_side_rates_bps[ 0 ];
|
cannam@154
|
127 width_Q14 = SILK_FIX_CONST( 1, 14 );
|
cannam@154
|
128 }
|
cannam@154
|
129
|
cannam@154
|
130 /* Smoother */
|
cannam@154
|
131 state->smth_width_Q14 = (opus_int16)silk_SMLAWB( state->smth_width_Q14, width_Q14 - state->smth_width_Q14, smooth_coef_Q16 );
|
cannam@154
|
132
|
cannam@154
|
133 /* At very low bitrates or for inputs that are nearly amplitude panned, switch to panned-mono coding */
|
cannam@154
|
134 *mid_only_flag = 0;
|
cannam@154
|
135 if( toMono ) {
|
cannam@154
|
136 /* Last frame before stereo->mono transition; collapse stereo width */
|
cannam@154
|
137 width_Q14 = 0;
|
cannam@154
|
138 pred_Q13[ 0 ] = 0;
|
cannam@154
|
139 pred_Q13[ 1 ] = 0;
|
cannam@154
|
140 silk_stereo_quant_pred( pred_Q13, ix );
|
cannam@154
|
141 } else if( state->width_prev_Q14 == 0 &&
|
cannam@154
|
142 ( 8 * total_rate_bps < 13 * min_mid_rate_bps || silk_SMULWB( frac_Q16, state->smth_width_Q14 ) < SILK_FIX_CONST( 0.05, 14 ) ) )
|
cannam@154
|
143 {
|
cannam@154
|
144 /* Code as panned-mono; previous frame already had zero width */
|
cannam@154
|
145 /* Scale down and quantize predictors */
|
cannam@154
|
146 pred_Q13[ 0 ] = silk_RSHIFT( silk_SMULBB( state->smth_width_Q14, pred_Q13[ 0 ] ), 14 );
|
cannam@154
|
147 pred_Q13[ 1 ] = silk_RSHIFT( silk_SMULBB( state->smth_width_Q14, pred_Q13[ 1 ] ), 14 );
|
cannam@154
|
148 silk_stereo_quant_pred( pred_Q13, ix );
|
cannam@154
|
149 /* Collapse stereo width */
|
cannam@154
|
150 width_Q14 = 0;
|
cannam@154
|
151 pred_Q13[ 0 ] = 0;
|
cannam@154
|
152 pred_Q13[ 1 ] = 0;
|
cannam@154
|
153 mid_side_rates_bps[ 0 ] = total_rate_bps;
|
cannam@154
|
154 mid_side_rates_bps[ 1 ] = 0;
|
cannam@154
|
155 *mid_only_flag = 1;
|
cannam@154
|
156 } else if( state->width_prev_Q14 != 0 &&
|
cannam@154
|
157 ( 8 * total_rate_bps < 11 * min_mid_rate_bps || silk_SMULWB( frac_Q16, state->smth_width_Q14 ) < SILK_FIX_CONST( 0.02, 14 ) ) )
|
cannam@154
|
158 {
|
cannam@154
|
159 /* Transition to zero-width stereo */
|
cannam@154
|
160 /* Scale down and quantize predictors */
|
cannam@154
|
161 pred_Q13[ 0 ] = silk_RSHIFT( silk_SMULBB( state->smth_width_Q14, pred_Q13[ 0 ] ), 14 );
|
cannam@154
|
162 pred_Q13[ 1 ] = silk_RSHIFT( silk_SMULBB( state->smth_width_Q14, pred_Q13[ 1 ] ), 14 );
|
cannam@154
|
163 silk_stereo_quant_pred( pred_Q13, ix );
|
cannam@154
|
164 /* Collapse stereo width */
|
cannam@154
|
165 width_Q14 = 0;
|
cannam@154
|
166 pred_Q13[ 0 ] = 0;
|
cannam@154
|
167 pred_Q13[ 1 ] = 0;
|
cannam@154
|
168 } else if( state->smth_width_Q14 > SILK_FIX_CONST( 0.95, 14 ) ) {
|
cannam@154
|
169 /* Full-width stereo coding */
|
cannam@154
|
170 silk_stereo_quant_pred( pred_Q13, ix );
|
cannam@154
|
171 width_Q14 = SILK_FIX_CONST( 1, 14 );
|
cannam@154
|
172 } else {
|
cannam@154
|
173 /* Reduced-width stereo coding; scale down and quantize predictors */
|
cannam@154
|
174 pred_Q13[ 0 ] = silk_RSHIFT( silk_SMULBB( state->smth_width_Q14, pred_Q13[ 0 ] ), 14 );
|
cannam@154
|
175 pred_Q13[ 1 ] = silk_RSHIFT( silk_SMULBB( state->smth_width_Q14, pred_Q13[ 1 ] ), 14 );
|
cannam@154
|
176 silk_stereo_quant_pred( pred_Q13, ix );
|
cannam@154
|
177 width_Q14 = state->smth_width_Q14;
|
cannam@154
|
178 }
|
cannam@154
|
179
|
cannam@154
|
180 /* Make sure to keep on encoding until the tapered output has been transmitted */
|
cannam@154
|
181 if( *mid_only_flag == 1 ) {
|
cannam@154
|
182 state->silent_side_len += frame_length - STEREO_INTERP_LEN_MS * fs_kHz;
|
cannam@154
|
183 if( state->silent_side_len < LA_SHAPE_MS * fs_kHz ) {
|
cannam@154
|
184 *mid_only_flag = 0;
|
cannam@154
|
185 } else {
|
cannam@154
|
186 /* Limit to avoid wrapping around */
|
cannam@154
|
187 state->silent_side_len = 10000;
|
cannam@154
|
188 }
|
cannam@154
|
189 } else {
|
cannam@154
|
190 state->silent_side_len = 0;
|
cannam@154
|
191 }
|
cannam@154
|
192
|
cannam@154
|
193 if( *mid_only_flag == 0 && mid_side_rates_bps[ 1 ] < 1 ) {
|
cannam@154
|
194 mid_side_rates_bps[ 1 ] = 1;
|
cannam@154
|
195 mid_side_rates_bps[ 0 ] = silk_max_int( 1, total_rate_bps - mid_side_rates_bps[ 1 ]);
|
cannam@154
|
196 }
|
cannam@154
|
197
|
cannam@154
|
198 /* Interpolate predictors and subtract prediction from side channel */
|
cannam@154
|
199 pred0_Q13 = -state->pred_prev_Q13[ 0 ];
|
cannam@154
|
200 pred1_Q13 = -state->pred_prev_Q13[ 1 ];
|
cannam@154
|
201 w_Q24 = silk_LSHIFT( state->width_prev_Q14, 10 );
|
cannam@154
|
202 denom_Q16 = silk_DIV32_16( (opus_int32)1 << 16, STEREO_INTERP_LEN_MS * fs_kHz );
|
cannam@154
|
203 delta0_Q13 = -silk_RSHIFT_ROUND( silk_SMULBB( pred_Q13[ 0 ] - state->pred_prev_Q13[ 0 ], denom_Q16 ), 16 );
|
cannam@154
|
204 delta1_Q13 = -silk_RSHIFT_ROUND( silk_SMULBB( pred_Q13[ 1 ] - state->pred_prev_Q13[ 1 ], denom_Q16 ), 16 );
|
cannam@154
|
205 deltaw_Q24 = silk_LSHIFT( silk_SMULWB( width_Q14 - state->width_prev_Q14, denom_Q16 ), 10 );
|
cannam@154
|
206 for( n = 0; n < STEREO_INTERP_LEN_MS * fs_kHz; n++ ) {
|
cannam@154
|
207 pred0_Q13 += delta0_Q13;
|
cannam@154
|
208 pred1_Q13 += delta1_Q13;
|
cannam@154
|
209 w_Q24 += deltaw_Q24;
|
cannam@154
|
210 sum = silk_LSHIFT( silk_ADD_LSHIFT( mid[ n ] + (opus_int32)mid[ n + 2 ], mid[ n + 1 ], 1 ), 9 ); /* Q11 */
|
cannam@154
|
211 sum = silk_SMLAWB( silk_SMULWB( w_Q24, side[ n + 1 ] ), sum, pred0_Q13 ); /* Q8 */
|
cannam@154
|
212 sum = silk_SMLAWB( sum, silk_LSHIFT( (opus_int32)mid[ n + 1 ], 11 ), pred1_Q13 ); /* Q8 */
|
cannam@154
|
213 x2[ n - 1 ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( sum, 8 ) );
|
cannam@154
|
214 }
|
cannam@154
|
215
|
cannam@154
|
216 pred0_Q13 = -pred_Q13[ 0 ];
|
cannam@154
|
217 pred1_Q13 = -pred_Q13[ 1 ];
|
cannam@154
|
218 w_Q24 = silk_LSHIFT( width_Q14, 10 );
|
cannam@154
|
219 for( n = STEREO_INTERP_LEN_MS * fs_kHz; n < frame_length; n++ ) {
|
cannam@154
|
220 sum = silk_LSHIFT( silk_ADD_LSHIFT( mid[ n ] + (opus_int32)mid[ n + 2 ], mid[ n + 1 ], 1 ), 9 ); /* Q11 */
|
cannam@154
|
221 sum = silk_SMLAWB( silk_SMULWB( w_Q24, side[ n + 1 ] ), sum, pred0_Q13 ); /* Q8 */
|
cannam@154
|
222 sum = silk_SMLAWB( sum, silk_LSHIFT( (opus_int32)mid[ n + 1 ], 11 ), pred1_Q13 ); /* Q8 */
|
cannam@154
|
223 x2[ n - 1 ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( sum, 8 ) );
|
cannam@154
|
224 }
|
cannam@154
|
225 state->pred_prev_Q13[ 0 ] = (opus_int16)pred_Q13[ 0 ];
|
cannam@154
|
226 state->pred_prev_Q13[ 1 ] = (opus_int16)pred_Q13[ 1 ];
|
cannam@154
|
227 state->width_prev_Q14 = (opus_int16)width_Q14;
|
cannam@154
|
228 RESTORE_STACK;
|
cannam@154
|
229 }
|