annotate src/opus-1.3/silk/fixed/mips/noise_shape_analysis_FIX_mipsr1.h @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 4664ac0c1032
children
rev   line source
cannam@154 1 /***********************************************************************
cannam@154 2 Copyright (c) 2006-2011, Skype Limited. All rights reserved.
cannam@154 3 Redistribution and use in source and binary forms, with or without
cannam@154 4 modification, are permitted provided that the following conditions
cannam@154 5 are met:
cannam@154 6 - Redistributions of source code must retain the above copyright notice,
cannam@154 7 this list of conditions and the following disclaimer.
cannam@154 8 - Redistributions in binary form must reproduce the above copyright
cannam@154 9 notice, this list of conditions and the following disclaimer in the
cannam@154 10 documentation and/or other materials provided with the distribution.
cannam@154 11 - Neither the name of Internet Society, IETF or IETF Trust, nor the
cannam@154 12 names of specific contributors, may be used to endorse or promote
cannam@154 13 products derived from this software without specific prior written
cannam@154 14 permission.
cannam@154 15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
cannam@154 16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
cannam@154 17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
cannam@154 18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
cannam@154 19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
cannam@154 20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
cannam@154 21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
cannam@154 22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
cannam@154 23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
cannam@154 24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
cannam@154 25 POSSIBILITY OF SUCH DAMAGE.
cannam@154 26 ***********************************************************************/
cannam@154 27
cannam@154 28
cannam@154 29 /**************************************************************/
cannam@154 30 /* Compute noise shaping coefficients and initial gain values */
cannam@154 31 /**************************************************************/
cannam@154 32 #define OVERRIDE_silk_noise_shape_analysis_FIX
cannam@154 33
cannam@154 34 void silk_noise_shape_analysis_FIX(
cannam@154 35 silk_encoder_state_FIX *psEnc, /* I/O Encoder state FIX */
cannam@154 36 silk_encoder_control_FIX *psEncCtrl, /* I/O Encoder control FIX */
cannam@154 37 const opus_int16 *pitch_res, /* I LPC residual from pitch analysis */
cannam@154 38 const opus_int16 *x, /* I Input signal [ frame_length + la_shape ] */
cannam@154 39 int arch /* I Run-time architecture */
cannam@154 40 )
cannam@154 41 {
cannam@154 42 silk_shape_state_FIX *psShapeSt = &psEnc->sShape;
cannam@154 43 opus_int k, i, nSamples, Qnrg, b_Q14, warping_Q16, scale = 0;
cannam@154 44 opus_int32 SNR_adj_dB_Q7, HarmBoost_Q16, HarmShapeGain_Q16, Tilt_Q16, tmp32;
cannam@154 45 opus_int32 nrg, pre_nrg_Q30, log_energy_Q7, log_energy_prev_Q7, energy_variation_Q7;
cannam@154 46 opus_int32 delta_Q16, BWExp1_Q16, BWExp2_Q16, gain_mult_Q16, gain_add_Q16, strength_Q16, b_Q8;
cannam@154 47 opus_int32 auto_corr[ MAX_SHAPE_LPC_ORDER + 1 ];
cannam@154 48 opus_int32 refl_coef_Q16[ MAX_SHAPE_LPC_ORDER ];
cannam@154 49 opus_int32 AR1_Q24[ MAX_SHAPE_LPC_ORDER ];
cannam@154 50 opus_int32 AR2_Q24[ MAX_SHAPE_LPC_ORDER ];
cannam@154 51 VARDECL( opus_int16, x_windowed );
cannam@154 52 const opus_int16 *x_ptr, *pitch_res_ptr;
cannam@154 53 SAVE_STACK;
cannam@154 54
cannam@154 55 /* Point to start of first LPC analysis block */
cannam@154 56 x_ptr = x - psEnc->sCmn.la_shape;
cannam@154 57
cannam@154 58 /****************/
cannam@154 59 /* GAIN CONTROL */
cannam@154 60 /****************/
cannam@154 61 SNR_adj_dB_Q7 = psEnc->sCmn.SNR_dB_Q7;
cannam@154 62
cannam@154 63 /* Input quality is the average of the quality in the lowest two VAD bands */
cannam@154 64 psEncCtrl->input_quality_Q14 = ( opus_int )silk_RSHIFT( (opus_int32)psEnc->sCmn.input_quality_bands_Q15[ 0 ]
cannam@154 65 + psEnc->sCmn.input_quality_bands_Q15[ 1 ], 2 );
cannam@154 66
cannam@154 67 /* Coding quality level, between 0.0_Q0 and 1.0_Q0, but in Q14 */
cannam@154 68 psEncCtrl->coding_quality_Q14 = silk_RSHIFT( silk_sigm_Q15( silk_RSHIFT_ROUND( SNR_adj_dB_Q7 -
cannam@154 69 SILK_FIX_CONST( 20.0, 7 ), 4 ) ), 1 );
cannam@154 70
cannam@154 71 /* Reduce coding SNR during low speech activity */
cannam@154 72 if( psEnc->sCmn.useCBR == 0 ) {
cannam@154 73 b_Q8 = SILK_FIX_CONST( 1.0, 8 ) - psEnc->sCmn.speech_activity_Q8;
cannam@154 74 b_Q8 = silk_SMULWB( silk_LSHIFT( b_Q8, 8 ), b_Q8 );
cannam@154 75 SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7,
cannam@154 76 silk_SMULBB( SILK_FIX_CONST( -BG_SNR_DECR_dB, 7 ) >> ( 4 + 1 ), b_Q8 ), /* Q11*/
cannam@154 77 silk_SMULWB( SILK_FIX_CONST( 1.0, 14 ) + psEncCtrl->input_quality_Q14, psEncCtrl->coding_quality_Q14 ) ); /* Q12*/
cannam@154 78 }
cannam@154 79
cannam@154 80 if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
cannam@154 81 /* Reduce gains for periodic signals */
cannam@154 82 SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, SILK_FIX_CONST( HARM_SNR_INCR_dB, 8 ), psEnc->LTPCorr_Q15 );
cannam@154 83 } else {
cannam@154 84 /* For unvoiced signals and low-quality input, adjust the quality slower than SNR_dB setting */
cannam@154 85 SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7,
cannam@154 86 silk_SMLAWB( SILK_FIX_CONST( 6.0, 9 ), -SILK_FIX_CONST( 0.4, 18 ), psEnc->sCmn.SNR_dB_Q7 ),
cannam@154 87 SILK_FIX_CONST( 1.0, 14 ) - psEncCtrl->input_quality_Q14 );
cannam@154 88 }
cannam@154 89
cannam@154 90 /*************************/
cannam@154 91 /* SPARSENESS PROCESSING */
cannam@154 92 /*************************/
cannam@154 93 /* Set quantizer offset */
cannam@154 94 if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
cannam@154 95 /* Initially set to 0; may be overruled in process_gains(..) */
cannam@154 96 psEnc->sCmn.indices.quantOffsetType = 0;
cannam@154 97 psEncCtrl->sparseness_Q8 = 0;
cannam@154 98 } else {
cannam@154 99 /* Sparseness measure, based on relative fluctuations of energy per 2 milliseconds */
cannam@154 100 nSamples = silk_LSHIFT( psEnc->sCmn.fs_kHz, 1 );
cannam@154 101 energy_variation_Q7 = 0;
cannam@154 102 log_energy_prev_Q7 = 0;
cannam@154 103 pitch_res_ptr = pitch_res;
cannam@154 104 for( k = 0; k < silk_SMULBB( SUB_FRAME_LENGTH_MS, psEnc->sCmn.nb_subfr ) / 2; k++ ) {
cannam@154 105 silk_sum_sqr_shift( &nrg, &scale, pitch_res_ptr, nSamples );
cannam@154 106 nrg += silk_RSHIFT( nSamples, scale ); /* Q(-scale)*/
cannam@154 107
cannam@154 108 log_energy_Q7 = silk_lin2log( nrg );
cannam@154 109 if( k > 0 ) {
cannam@154 110 energy_variation_Q7 += silk_abs( log_energy_Q7 - log_energy_prev_Q7 );
cannam@154 111 }
cannam@154 112 log_energy_prev_Q7 = log_energy_Q7;
cannam@154 113 pitch_res_ptr += nSamples;
cannam@154 114 }
cannam@154 115
cannam@154 116 psEncCtrl->sparseness_Q8 = silk_RSHIFT( silk_sigm_Q15( silk_SMULWB( energy_variation_Q7 -
cannam@154 117 SILK_FIX_CONST( 5.0, 7 ), SILK_FIX_CONST( 0.1, 16 ) ) ), 7 );
cannam@154 118
cannam@154 119 /* Set quantization offset depending on sparseness measure */
cannam@154 120 if( psEncCtrl->sparseness_Q8 > SILK_FIX_CONST( SPARSENESS_THRESHOLD_QNT_OFFSET, 8 ) ) {
cannam@154 121 psEnc->sCmn.indices.quantOffsetType = 0;
cannam@154 122 } else {
cannam@154 123 psEnc->sCmn.indices.quantOffsetType = 1;
cannam@154 124 }
cannam@154 125
cannam@154 126 /* Increase coding SNR for sparse signals */
cannam@154 127 SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, SILK_FIX_CONST( SPARSE_SNR_INCR_dB, 15 ), psEncCtrl->sparseness_Q8 - SILK_FIX_CONST( 0.5, 8 ) );
cannam@154 128 }
cannam@154 129
cannam@154 130 /*******************************/
cannam@154 131 /* Control bandwidth expansion */
cannam@154 132 /*******************************/
cannam@154 133 /* More BWE for signals with high prediction gain */
cannam@154 134 strength_Q16 = silk_SMULWB( psEncCtrl->predGain_Q16, SILK_FIX_CONST( FIND_PITCH_WHITE_NOISE_FRACTION, 16 ) );
cannam@154 135 BWExp1_Q16 = BWExp2_Q16 = silk_DIV32_varQ( SILK_FIX_CONST( BANDWIDTH_EXPANSION, 16 ),
cannam@154 136 silk_SMLAWW( SILK_FIX_CONST( 1.0, 16 ), strength_Q16, strength_Q16 ), 16 );
cannam@154 137 delta_Q16 = silk_SMULWB( SILK_FIX_CONST( 1.0, 16 ) - silk_SMULBB( 3, psEncCtrl->coding_quality_Q14 ),
cannam@154 138 SILK_FIX_CONST( LOW_RATE_BANDWIDTH_EXPANSION_DELTA, 16 ) );
cannam@154 139 BWExp1_Q16 = silk_SUB32( BWExp1_Q16, delta_Q16 );
cannam@154 140 BWExp2_Q16 = silk_ADD32( BWExp2_Q16, delta_Q16 );
cannam@154 141 /* BWExp1 will be applied after BWExp2, so make it relative */
cannam@154 142 BWExp1_Q16 = silk_DIV32_16( silk_LSHIFT( BWExp1_Q16, 14 ), silk_RSHIFT( BWExp2_Q16, 2 ) );
cannam@154 143
cannam@154 144 if( psEnc->sCmn.warping_Q16 > 0 ) {
cannam@154 145 /* Slightly more warping in analysis will move quantization noise up in frequency, where it's better masked */
cannam@154 146 warping_Q16 = silk_SMLAWB( psEnc->sCmn.warping_Q16, (opus_int32)psEncCtrl->coding_quality_Q14, SILK_FIX_CONST( 0.01, 18 ) );
cannam@154 147 } else {
cannam@154 148 warping_Q16 = 0;
cannam@154 149 }
cannam@154 150
cannam@154 151 /********************************************/
cannam@154 152 /* Compute noise shaping AR coefs and gains */
cannam@154 153 /********************************************/
cannam@154 154 ALLOC( x_windowed, psEnc->sCmn.shapeWinLength, opus_int16 );
cannam@154 155 for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
cannam@154 156 /* Apply window: sine slope followed by flat part followed by cosine slope */
cannam@154 157 opus_int shift, slope_part, flat_part;
cannam@154 158 flat_part = psEnc->sCmn.fs_kHz * 3;
cannam@154 159 slope_part = silk_RSHIFT( psEnc->sCmn.shapeWinLength - flat_part, 1 );
cannam@154 160
cannam@154 161 silk_apply_sine_window( x_windowed, x_ptr, 1, slope_part );
cannam@154 162 shift = slope_part;
cannam@154 163 silk_memcpy( x_windowed + shift, x_ptr + shift, flat_part * sizeof(opus_int16) );
cannam@154 164 shift += flat_part;
cannam@154 165 silk_apply_sine_window( x_windowed + shift, x_ptr + shift, 2, slope_part );
cannam@154 166
cannam@154 167 /* Update pointer: next LPC analysis block */
cannam@154 168 x_ptr += psEnc->sCmn.subfr_length;
cannam@154 169
cannam@154 170 if( psEnc->sCmn.warping_Q16 > 0 ) {
cannam@154 171 /* Calculate warped auto correlation */
cannam@154 172 silk_warped_autocorrelation_FIX( auto_corr, &scale, x_windowed, warping_Q16, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder, arch );
cannam@154 173 } else {
cannam@154 174 /* Calculate regular auto correlation */
cannam@154 175 silk_autocorr( auto_corr, &scale, x_windowed, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder + 1, arch );
cannam@154 176 }
cannam@154 177
cannam@154 178 /* Add white noise, as a fraction of energy */
cannam@154 179 auto_corr[0] = silk_ADD32( auto_corr[0], silk_max_32( silk_SMULWB( silk_RSHIFT( auto_corr[ 0 ], 4 ),
cannam@154 180 SILK_FIX_CONST( SHAPE_WHITE_NOISE_FRACTION, 20 ) ), 1 ) );
cannam@154 181
cannam@154 182 /* Calculate the reflection coefficients using schur */
cannam@154 183 nrg = silk_schur64( refl_coef_Q16, auto_corr, psEnc->sCmn.shapingLPCOrder );
cannam@154 184 silk_assert( nrg >= 0 );
cannam@154 185
cannam@154 186 /* Convert reflection coefficients to prediction coefficients */
cannam@154 187 silk_k2a_Q16( AR2_Q24, refl_coef_Q16, psEnc->sCmn.shapingLPCOrder );
cannam@154 188
cannam@154 189 Qnrg = -scale; /* range: -12...30*/
cannam@154 190 silk_assert( Qnrg >= -12 );
cannam@154 191 silk_assert( Qnrg <= 30 );
cannam@154 192
cannam@154 193 /* Make sure that Qnrg is an even number */
cannam@154 194 if( Qnrg & 1 ) {
cannam@154 195 Qnrg -= 1;
cannam@154 196 nrg >>= 1;
cannam@154 197 }
cannam@154 198
cannam@154 199 tmp32 = silk_SQRT_APPROX( nrg );
cannam@154 200 Qnrg >>= 1; /* range: -6...15*/
cannam@154 201
cannam@154 202 psEncCtrl->Gains_Q16[ k ] = (silk_LSHIFT32( silk_LIMIT( (tmp32), silk_RSHIFT32( silk_int32_MIN, (16 - Qnrg) ), \
cannam@154 203 silk_RSHIFT32( silk_int32_MAX, (16 - Qnrg) ) ), (16 - Qnrg) ));
cannam@154 204
cannam@154 205 if( psEnc->sCmn.warping_Q16 > 0 ) {
cannam@154 206 /* Adjust gain for warping */
cannam@154 207 gain_mult_Q16 = warped_gain( AR2_Q24, warping_Q16, psEnc->sCmn.shapingLPCOrder );
cannam@154 208 silk_assert( psEncCtrl->Gains_Q16[ k ] >= 0 );
cannam@154 209 if ( silk_SMULWW( silk_RSHIFT_ROUND( psEncCtrl->Gains_Q16[ k ], 1 ), gain_mult_Q16 ) >= ( silk_int32_MAX >> 1 ) ) {
cannam@154 210 psEncCtrl->Gains_Q16[ k ] = silk_int32_MAX;
cannam@154 211 } else {
cannam@154 212 psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( psEncCtrl->Gains_Q16[ k ], gain_mult_Q16 );
cannam@154 213 }
cannam@154 214 }
cannam@154 215
cannam@154 216 /* Bandwidth expansion for synthesis filter shaping */
cannam@154 217 silk_bwexpander_32( AR2_Q24, psEnc->sCmn.shapingLPCOrder, BWExp2_Q16 );
cannam@154 218
cannam@154 219 /* Compute noise shaping filter coefficients */
cannam@154 220 silk_memcpy( AR1_Q24, AR2_Q24, psEnc->sCmn.shapingLPCOrder * sizeof( opus_int32 ) );
cannam@154 221
cannam@154 222 /* Bandwidth expansion for analysis filter shaping */
cannam@154 223 silk_assert( BWExp1_Q16 <= SILK_FIX_CONST( 1.0, 16 ) );
cannam@154 224 silk_bwexpander_32( AR1_Q24, psEnc->sCmn.shapingLPCOrder, BWExp1_Q16 );
cannam@154 225
cannam@154 226 /* Ratio of prediction gains, in energy domain */
cannam@154 227 pre_nrg_Q30 = silk_LPC_inverse_pred_gain_Q24( AR2_Q24, psEnc->sCmn.shapingLPCOrder, arch );
cannam@154 228 nrg = silk_LPC_inverse_pred_gain_Q24( AR1_Q24, psEnc->sCmn.shapingLPCOrder, arch );
cannam@154 229
cannam@154 230 /*psEncCtrl->GainsPre[ k ] = 1.0f - 0.7f * ( 1.0f - pre_nrg / nrg ) = 0.3f + 0.7f * pre_nrg / nrg;*/
cannam@154 231 pre_nrg_Q30 = silk_LSHIFT32( silk_SMULWB( pre_nrg_Q30, SILK_FIX_CONST( 0.7, 15 ) ), 1 );
cannam@154 232 psEncCtrl->GainsPre_Q14[ k ] = ( opus_int ) SILK_FIX_CONST( 0.3, 14 ) + silk_DIV32_varQ( pre_nrg_Q30, nrg, 14 );
cannam@154 233
cannam@154 234 /* Convert to monic warped prediction coefficients and limit absolute values */
cannam@154 235 limit_warped_coefs( AR2_Q24, AR1_Q24, warping_Q16, SILK_FIX_CONST( 3.999, 24 ), psEnc->sCmn.shapingLPCOrder );
cannam@154 236
cannam@154 237 /* Convert from Q24 to Q13 and store in int16 */
cannam@154 238 for( i = 0; i < psEnc->sCmn.shapingLPCOrder; i++ ) {
cannam@154 239 psEncCtrl->AR1_Q13[ k * MAX_SHAPE_LPC_ORDER + i ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( AR1_Q24[ i ], 11 ) );
cannam@154 240 psEncCtrl->AR2_Q13[ k * MAX_SHAPE_LPC_ORDER + i ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( AR2_Q24[ i ], 11 ) );
cannam@154 241 }
cannam@154 242 }
cannam@154 243
cannam@154 244 /*****************/
cannam@154 245 /* Gain tweaking */
cannam@154 246 /*****************/
cannam@154 247 /* Increase gains during low speech activity and put lower limit on gains */
cannam@154 248 gain_mult_Q16 = silk_log2lin( -silk_SMLAWB( -SILK_FIX_CONST( 16.0, 7 ), SNR_adj_dB_Q7, SILK_FIX_CONST( 0.16, 16 ) ) );
cannam@154 249 gain_add_Q16 = silk_log2lin( silk_SMLAWB( SILK_FIX_CONST( 16.0, 7 ), SILK_FIX_CONST( MIN_QGAIN_DB, 7 ), SILK_FIX_CONST( 0.16, 16 ) ) );
cannam@154 250 silk_assert( gain_mult_Q16 > 0 );
cannam@154 251 for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
cannam@154 252 psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( psEncCtrl->Gains_Q16[ k ], gain_mult_Q16 );
cannam@154 253 silk_assert( psEncCtrl->Gains_Q16[ k ] >= 0 );
cannam@154 254 psEncCtrl->Gains_Q16[ k ] = silk_ADD_POS_SAT32( psEncCtrl->Gains_Q16[ k ], gain_add_Q16 );
cannam@154 255 }
cannam@154 256
cannam@154 257 gain_mult_Q16 = SILK_FIX_CONST( 1.0, 16 ) + silk_RSHIFT_ROUND( silk_MLA( SILK_FIX_CONST( INPUT_TILT, 26 ),
cannam@154 258 psEncCtrl->coding_quality_Q14, SILK_FIX_CONST( HIGH_RATE_INPUT_TILT, 12 ) ), 10 );
cannam@154 259 for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
cannam@154 260 psEncCtrl->GainsPre_Q14[ k ] = silk_SMULWB( gain_mult_Q16, psEncCtrl->GainsPre_Q14[ k ] );
cannam@154 261 }
cannam@154 262
cannam@154 263 /************************************************/
cannam@154 264 /* Control low-frequency shaping and noise tilt */
cannam@154 265 /************************************************/
cannam@154 266 /* Less low frequency shaping for noisy inputs */
cannam@154 267 strength_Q16 = silk_MUL( SILK_FIX_CONST( LOW_FREQ_SHAPING, 4 ), silk_SMLAWB( SILK_FIX_CONST( 1.0, 12 ),
cannam@154 268 SILK_FIX_CONST( LOW_QUALITY_LOW_FREQ_SHAPING_DECR, 13 ), psEnc->sCmn.input_quality_bands_Q15[ 0 ] - SILK_FIX_CONST( 1.0, 15 ) ) );
cannam@154 269 strength_Q16 = silk_RSHIFT( silk_MUL( strength_Q16, psEnc->sCmn.speech_activity_Q8 ), 8 );
cannam@154 270 if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
cannam@154 271 /* Reduce low frequencies quantization noise for periodic signals, depending on pitch lag */
cannam@154 272 /*f = 400; freqz([1, -0.98 + 2e-4 * f], [1, -0.97 + 7e-4 * f], 2^12, Fs); axis([0, 1000, -10, 1])*/
cannam@154 273 opus_int fs_kHz_inv = silk_DIV32_16( SILK_FIX_CONST( 0.2, 14 ), psEnc->sCmn.fs_kHz );
cannam@154 274 for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
cannam@154 275 b_Q14 = fs_kHz_inv + silk_DIV32_16( SILK_FIX_CONST( 3.0, 14 ), psEncCtrl->pitchL[ k ] );
cannam@154 276 /* Pack two coefficients in one int32 */
cannam@154 277 psEncCtrl->LF_shp_Q14[ k ] = silk_LSHIFT( SILK_FIX_CONST( 1.0, 14 ) - b_Q14 - silk_SMULWB( strength_Q16, b_Q14 ), 16 );
cannam@154 278 psEncCtrl->LF_shp_Q14[ k ] |= (opus_uint16)( b_Q14 - SILK_FIX_CONST( 1.0, 14 ) );
cannam@154 279 }
cannam@154 280 silk_assert( SILK_FIX_CONST( HARM_HP_NOISE_COEF, 24 ) < SILK_FIX_CONST( 0.5, 24 ) ); /* Guarantees that second argument to SMULWB() is within range of an opus_int16*/
cannam@154 281 Tilt_Q16 = - SILK_FIX_CONST( HP_NOISE_COEF, 16 ) -
cannam@154 282 silk_SMULWB( SILK_FIX_CONST( 1.0, 16 ) - SILK_FIX_CONST( HP_NOISE_COEF, 16 ),
cannam@154 283 silk_SMULWB( SILK_FIX_CONST( HARM_HP_NOISE_COEF, 24 ), psEnc->sCmn.speech_activity_Q8 ) );
cannam@154 284 } else {
cannam@154 285 b_Q14 = silk_DIV32_16( 21299, psEnc->sCmn.fs_kHz ); /* 1.3_Q0 = 21299_Q14*/
cannam@154 286 /* Pack two coefficients in one int32 */
cannam@154 287 psEncCtrl->LF_shp_Q14[ 0 ] = silk_LSHIFT( SILK_FIX_CONST( 1.0, 14 ) - b_Q14 -
cannam@154 288 silk_SMULWB( strength_Q16, silk_SMULWB( SILK_FIX_CONST( 0.6, 16 ), b_Q14 ) ), 16 );
cannam@154 289 psEncCtrl->LF_shp_Q14[ 0 ] |= (opus_uint16)( b_Q14 - SILK_FIX_CONST( 1.0, 14 ) );
cannam@154 290 for( k = 1; k < psEnc->sCmn.nb_subfr; k++ ) {
cannam@154 291 psEncCtrl->LF_shp_Q14[ k ] = psEncCtrl->LF_shp_Q14[ 0 ];
cannam@154 292 }
cannam@154 293 Tilt_Q16 = -SILK_FIX_CONST( HP_NOISE_COEF, 16 );
cannam@154 294 }
cannam@154 295
cannam@154 296 /****************************/
cannam@154 297 /* HARMONIC SHAPING CONTROL */
cannam@154 298 /****************************/
cannam@154 299 /* Control boosting of harmonic frequencies */
cannam@154 300 HarmBoost_Q16 = silk_SMULWB( silk_SMULWB( SILK_FIX_CONST( 1.0, 17 ) - silk_LSHIFT( psEncCtrl->coding_quality_Q14, 3 ),
cannam@154 301 psEnc->LTPCorr_Q15 ), SILK_FIX_CONST( LOW_RATE_HARMONIC_BOOST, 16 ) );
cannam@154 302
cannam@154 303 /* More harmonic boost for noisy input signals */
cannam@154 304 HarmBoost_Q16 = silk_SMLAWB( HarmBoost_Q16,
cannam@154 305 SILK_FIX_CONST( 1.0, 16 ) - silk_LSHIFT( psEncCtrl->input_quality_Q14, 2 ), SILK_FIX_CONST( LOW_INPUT_QUALITY_HARMONIC_BOOST, 16 ) );
cannam@154 306
cannam@154 307 if( USE_HARM_SHAPING && psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
cannam@154 308 /* More harmonic noise shaping for high bitrates or noisy input */
cannam@154 309 HarmShapeGain_Q16 = silk_SMLAWB( SILK_FIX_CONST( HARMONIC_SHAPING, 16 ),
cannam@154 310 SILK_FIX_CONST( 1.0, 16 ) - silk_SMULWB( SILK_FIX_CONST( 1.0, 18 ) - silk_LSHIFT( psEncCtrl->coding_quality_Q14, 4 ),
cannam@154 311 psEncCtrl->input_quality_Q14 ), SILK_FIX_CONST( HIGH_RATE_OR_LOW_QUALITY_HARMONIC_SHAPING, 16 ) );
cannam@154 312
cannam@154 313 /* Less harmonic noise shaping for less periodic signals */
cannam@154 314 HarmShapeGain_Q16 = silk_SMULWB( silk_LSHIFT( HarmShapeGain_Q16, 1 ),
cannam@154 315 silk_SQRT_APPROX( silk_LSHIFT( psEnc->LTPCorr_Q15, 15 ) ) );
cannam@154 316 } else {
cannam@154 317 HarmShapeGain_Q16 = 0;
cannam@154 318 }
cannam@154 319
cannam@154 320 /*************************/
cannam@154 321 /* Smooth over subframes */
cannam@154 322 /*************************/
cannam@154 323 for( k = 0; k < MAX_NB_SUBFR; k++ ) {
cannam@154 324 psShapeSt->HarmBoost_smth_Q16 =
cannam@154 325 silk_SMLAWB( psShapeSt->HarmBoost_smth_Q16, HarmBoost_Q16 - psShapeSt->HarmBoost_smth_Q16, SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) );
cannam@154 326 psShapeSt->HarmShapeGain_smth_Q16 =
cannam@154 327 silk_SMLAWB( psShapeSt->HarmShapeGain_smth_Q16, HarmShapeGain_Q16 - psShapeSt->HarmShapeGain_smth_Q16, SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) );
cannam@154 328 psShapeSt->Tilt_smth_Q16 =
cannam@154 329 silk_SMLAWB( psShapeSt->Tilt_smth_Q16, Tilt_Q16 - psShapeSt->Tilt_smth_Q16, SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) );
cannam@154 330
cannam@154 331 psEncCtrl->HarmBoost_Q14[ k ] = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->HarmBoost_smth_Q16, 2 );
cannam@154 332 psEncCtrl->HarmShapeGain_Q14[ k ] = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->HarmShapeGain_smth_Q16, 2 );
cannam@154 333 psEncCtrl->Tilt_Q14[ k ] = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->Tilt_smth_Q16, 2 );
cannam@154 334 }
cannam@154 335 RESTORE_STACK;
cannam@154 336 }