annotate src/opus-1.3/silk/VAD.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 4664ac0c1032
children
rev   line source
cannam@154 1 /***********************************************************************
cannam@154 2 Copyright (c) 2006-2011, Skype Limited. All rights reserved.
cannam@154 3 Redistribution and use in source and binary forms, with or without
cannam@154 4 modification, are permitted provided that the following conditions
cannam@154 5 are met:
cannam@154 6 - Redistributions of source code must retain the above copyright notice,
cannam@154 7 this list of conditions and the following disclaimer.
cannam@154 8 - Redistributions in binary form must reproduce the above copyright
cannam@154 9 notice, this list of conditions and the following disclaimer in the
cannam@154 10 documentation and/or other materials provided with the distribution.
cannam@154 11 - Neither the name of Internet Society, IETF or IETF Trust, nor the
cannam@154 12 names of specific contributors, may be used to endorse or promote
cannam@154 13 products derived from this software without specific prior written
cannam@154 14 permission.
cannam@154 15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
cannam@154 16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
cannam@154 17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
cannam@154 18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
cannam@154 19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
cannam@154 20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
cannam@154 21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
cannam@154 22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
cannam@154 23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
cannam@154 24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
cannam@154 25 POSSIBILITY OF SUCH DAMAGE.
cannam@154 26 ***********************************************************************/
cannam@154 27
cannam@154 28 #ifdef HAVE_CONFIG_H
cannam@154 29 #include "config.h"
cannam@154 30 #endif
cannam@154 31
cannam@154 32 #include "main.h"
cannam@154 33 #include "stack_alloc.h"
cannam@154 34
cannam@154 35 /* Silk VAD noise level estimation */
cannam@154 36 # if !defined(OPUS_X86_MAY_HAVE_SSE4_1)
cannam@154 37 static OPUS_INLINE void silk_VAD_GetNoiseLevels(
cannam@154 38 const opus_int32 pX[ VAD_N_BANDS ], /* I subband energies */
cannam@154 39 silk_VAD_state *psSilk_VAD /* I/O Pointer to Silk VAD state */
cannam@154 40 );
cannam@154 41 #endif
cannam@154 42
cannam@154 43 /**********************************/
cannam@154 44 /* Initialization of the Silk VAD */
cannam@154 45 /**********************************/
cannam@154 46 opus_int silk_VAD_Init( /* O Return value, 0 if success */
cannam@154 47 silk_VAD_state *psSilk_VAD /* I/O Pointer to Silk VAD state */
cannam@154 48 )
cannam@154 49 {
cannam@154 50 opus_int b, ret = 0;
cannam@154 51
cannam@154 52 /* reset state memory */
cannam@154 53 silk_memset( psSilk_VAD, 0, sizeof( silk_VAD_state ) );
cannam@154 54
cannam@154 55 /* init noise levels */
cannam@154 56 /* Initialize array with approx pink noise levels (psd proportional to inverse of frequency) */
cannam@154 57 for( b = 0; b < VAD_N_BANDS; b++ ) {
cannam@154 58 psSilk_VAD->NoiseLevelBias[ b ] = silk_max_32( silk_DIV32_16( VAD_NOISE_LEVELS_BIAS, b + 1 ), 1 );
cannam@154 59 }
cannam@154 60
cannam@154 61 /* Initialize state */
cannam@154 62 for( b = 0; b < VAD_N_BANDS; b++ ) {
cannam@154 63 psSilk_VAD->NL[ b ] = silk_MUL( 100, psSilk_VAD->NoiseLevelBias[ b ] );
cannam@154 64 psSilk_VAD->inv_NL[ b ] = silk_DIV32( silk_int32_MAX, psSilk_VAD->NL[ b ] );
cannam@154 65 }
cannam@154 66 psSilk_VAD->counter = 15;
cannam@154 67
cannam@154 68 /* init smoothed energy-to-noise ratio*/
cannam@154 69 for( b = 0; b < VAD_N_BANDS; b++ ) {
cannam@154 70 psSilk_VAD->NrgRatioSmth_Q8[ b ] = 100 * 256; /* 100 * 256 --> 20 dB SNR */
cannam@154 71 }
cannam@154 72
cannam@154 73 return( ret );
cannam@154 74 }
cannam@154 75
cannam@154 76 /* Weighting factors for tilt measure */
cannam@154 77 static const opus_int32 tiltWeights[ VAD_N_BANDS ] = { 30000, 6000, -12000, -12000 };
cannam@154 78
cannam@154 79 /***************************************/
cannam@154 80 /* Get the speech activity level in Q8 */
cannam@154 81 /***************************************/
cannam@154 82 opus_int silk_VAD_GetSA_Q8_c( /* O Return value, 0 if success */
cannam@154 83 silk_encoder_state *psEncC, /* I/O Encoder state */
cannam@154 84 const opus_int16 pIn[] /* I PCM input */
cannam@154 85 )
cannam@154 86 {
cannam@154 87 opus_int SA_Q15, pSNR_dB_Q7, input_tilt;
cannam@154 88 opus_int decimated_framelength1, decimated_framelength2;
cannam@154 89 opus_int decimated_framelength;
cannam@154 90 opus_int dec_subframe_length, dec_subframe_offset, SNR_Q7, i, b, s;
cannam@154 91 opus_int32 sumSquared, smooth_coef_Q16;
cannam@154 92 opus_int16 HPstateTmp;
cannam@154 93 VARDECL( opus_int16, X );
cannam@154 94 opus_int32 Xnrg[ VAD_N_BANDS ];
cannam@154 95 opus_int32 NrgToNoiseRatio_Q8[ VAD_N_BANDS ];
cannam@154 96 opus_int32 speech_nrg, x_tmp;
cannam@154 97 opus_int X_offset[ VAD_N_BANDS ];
cannam@154 98 opus_int ret = 0;
cannam@154 99 silk_VAD_state *psSilk_VAD = &psEncC->sVAD;
cannam@154 100 SAVE_STACK;
cannam@154 101
cannam@154 102 /* Safety checks */
cannam@154 103 silk_assert( VAD_N_BANDS == 4 );
cannam@154 104 celt_assert( MAX_FRAME_LENGTH >= psEncC->frame_length );
cannam@154 105 celt_assert( psEncC->frame_length <= 512 );
cannam@154 106 celt_assert( psEncC->frame_length == 8 * silk_RSHIFT( psEncC->frame_length, 3 ) );
cannam@154 107
cannam@154 108 /***********************/
cannam@154 109 /* Filter and Decimate */
cannam@154 110 /***********************/
cannam@154 111 decimated_framelength1 = silk_RSHIFT( psEncC->frame_length, 1 );
cannam@154 112 decimated_framelength2 = silk_RSHIFT( psEncC->frame_length, 2 );
cannam@154 113 decimated_framelength = silk_RSHIFT( psEncC->frame_length, 3 );
cannam@154 114 /* Decimate into 4 bands:
cannam@154 115 0 L 3L L 3L 5L
cannam@154 116 - -- - -- --
cannam@154 117 8 8 2 4 4
cannam@154 118
cannam@154 119 [0-1 kHz| temp. |1-2 kHz| 2-4 kHz | 4-8 kHz |
cannam@154 120
cannam@154 121 They're arranged to allow the minimal ( frame_length / 4 ) extra
cannam@154 122 scratch space during the downsampling process */
cannam@154 123 X_offset[ 0 ] = 0;
cannam@154 124 X_offset[ 1 ] = decimated_framelength + decimated_framelength2;
cannam@154 125 X_offset[ 2 ] = X_offset[ 1 ] + decimated_framelength;
cannam@154 126 X_offset[ 3 ] = X_offset[ 2 ] + decimated_framelength2;
cannam@154 127 ALLOC( X, X_offset[ 3 ] + decimated_framelength1, opus_int16 );
cannam@154 128
cannam@154 129 /* 0-8 kHz to 0-4 kHz and 4-8 kHz */
cannam@154 130 silk_ana_filt_bank_1( pIn, &psSilk_VAD->AnaState[ 0 ],
cannam@154 131 X, &X[ X_offset[ 3 ] ], psEncC->frame_length );
cannam@154 132
cannam@154 133 /* 0-4 kHz to 0-2 kHz and 2-4 kHz */
cannam@154 134 silk_ana_filt_bank_1( X, &psSilk_VAD->AnaState1[ 0 ],
cannam@154 135 X, &X[ X_offset[ 2 ] ], decimated_framelength1 );
cannam@154 136
cannam@154 137 /* 0-2 kHz to 0-1 kHz and 1-2 kHz */
cannam@154 138 silk_ana_filt_bank_1( X, &psSilk_VAD->AnaState2[ 0 ],
cannam@154 139 X, &X[ X_offset[ 1 ] ], decimated_framelength2 );
cannam@154 140
cannam@154 141 /*********************************************/
cannam@154 142 /* HP filter on lowest band (differentiator) */
cannam@154 143 /*********************************************/
cannam@154 144 X[ decimated_framelength - 1 ] = silk_RSHIFT( X[ decimated_framelength - 1 ], 1 );
cannam@154 145 HPstateTmp = X[ decimated_framelength - 1 ];
cannam@154 146 for( i = decimated_framelength - 1; i > 0; i-- ) {
cannam@154 147 X[ i - 1 ] = silk_RSHIFT( X[ i - 1 ], 1 );
cannam@154 148 X[ i ] -= X[ i - 1 ];
cannam@154 149 }
cannam@154 150 X[ 0 ] -= psSilk_VAD->HPstate;
cannam@154 151 psSilk_VAD->HPstate = HPstateTmp;
cannam@154 152
cannam@154 153 /*************************************/
cannam@154 154 /* Calculate the energy in each band */
cannam@154 155 /*************************************/
cannam@154 156 for( b = 0; b < VAD_N_BANDS; b++ ) {
cannam@154 157 /* Find the decimated framelength in the non-uniformly divided bands */
cannam@154 158 decimated_framelength = silk_RSHIFT( psEncC->frame_length, silk_min_int( VAD_N_BANDS - b, VAD_N_BANDS - 1 ) );
cannam@154 159
cannam@154 160 /* Split length into subframe lengths */
cannam@154 161 dec_subframe_length = silk_RSHIFT( decimated_framelength, VAD_INTERNAL_SUBFRAMES_LOG2 );
cannam@154 162 dec_subframe_offset = 0;
cannam@154 163
cannam@154 164 /* Compute energy per sub-frame */
cannam@154 165 /* initialize with summed energy of last subframe */
cannam@154 166 Xnrg[ b ] = psSilk_VAD->XnrgSubfr[ b ];
cannam@154 167 for( s = 0; s < VAD_INTERNAL_SUBFRAMES; s++ ) {
cannam@154 168 sumSquared = 0;
cannam@154 169 for( i = 0; i < dec_subframe_length; i++ ) {
cannam@154 170 /* The energy will be less than dec_subframe_length * ( silk_int16_MIN / 8 ) ^ 2. */
cannam@154 171 /* Therefore we can accumulate with no risk of overflow (unless dec_subframe_length > 128) */
cannam@154 172 x_tmp = silk_RSHIFT(
cannam@154 173 X[ X_offset[ b ] + i + dec_subframe_offset ], 3 );
cannam@154 174 sumSquared = silk_SMLABB( sumSquared, x_tmp, x_tmp );
cannam@154 175
cannam@154 176 /* Safety check */
cannam@154 177 silk_assert( sumSquared >= 0 );
cannam@154 178 }
cannam@154 179
cannam@154 180 /* Add/saturate summed energy of current subframe */
cannam@154 181 if( s < VAD_INTERNAL_SUBFRAMES - 1 ) {
cannam@154 182 Xnrg[ b ] = silk_ADD_POS_SAT32( Xnrg[ b ], sumSquared );
cannam@154 183 } else {
cannam@154 184 /* Look-ahead subframe */
cannam@154 185 Xnrg[ b ] = silk_ADD_POS_SAT32( Xnrg[ b ], silk_RSHIFT( sumSquared, 1 ) );
cannam@154 186 }
cannam@154 187
cannam@154 188 dec_subframe_offset += dec_subframe_length;
cannam@154 189 }
cannam@154 190 psSilk_VAD->XnrgSubfr[ b ] = sumSquared;
cannam@154 191 }
cannam@154 192
cannam@154 193 /********************/
cannam@154 194 /* Noise estimation */
cannam@154 195 /********************/
cannam@154 196 silk_VAD_GetNoiseLevels( &Xnrg[ 0 ], psSilk_VAD );
cannam@154 197
cannam@154 198 /***********************************************/
cannam@154 199 /* Signal-plus-noise to noise ratio estimation */
cannam@154 200 /***********************************************/
cannam@154 201 sumSquared = 0;
cannam@154 202 input_tilt = 0;
cannam@154 203 for( b = 0; b < VAD_N_BANDS; b++ ) {
cannam@154 204 speech_nrg = Xnrg[ b ] - psSilk_VAD->NL[ b ];
cannam@154 205 if( speech_nrg > 0 ) {
cannam@154 206 /* Divide, with sufficient resolution */
cannam@154 207 if( ( Xnrg[ b ] & 0xFF800000 ) == 0 ) {
cannam@154 208 NrgToNoiseRatio_Q8[ b ] = silk_DIV32( silk_LSHIFT( Xnrg[ b ], 8 ), psSilk_VAD->NL[ b ] + 1 );
cannam@154 209 } else {
cannam@154 210 NrgToNoiseRatio_Q8[ b ] = silk_DIV32( Xnrg[ b ], silk_RSHIFT( psSilk_VAD->NL[ b ], 8 ) + 1 );
cannam@154 211 }
cannam@154 212
cannam@154 213 /* Convert to log domain */
cannam@154 214 SNR_Q7 = silk_lin2log( NrgToNoiseRatio_Q8[ b ] ) - 8 * 128;
cannam@154 215
cannam@154 216 /* Sum-of-squares */
cannam@154 217 sumSquared = silk_SMLABB( sumSquared, SNR_Q7, SNR_Q7 ); /* Q14 */
cannam@154 218
cannam@154 219 /* Tilt measure */
cannam@154 220 if( speech_nrg < ( (opus_int32)1 << 20 ) ) {
cannam@154 221 /* Scale down SNR value for small subband speech energies */
cannam@154 222 SNR_Q7 = silk_SMULWB( silk_LSHIFT( silk_SQRT_APPROX( speech_nrg ), 6 ), SNR_Q7 );
cannam@154 223 }
cannam@154 224 input_tilt = silk_SMLAWB( input_tilt, tiltWeights[ b ], SNR_Q7 );
cannam@154 225 } else {
cannam@154 226 NrgToNoiseRatio_Q8[ b ] = 256;
cannam@154 227 }
cannam@154 228 }
cannam@154 229
cannam@154 230 /* Mean-of-squares */
cannam@154 231 sumSquared = silk_DIV32_16( sumSquared, VAD_N_BANDS ); /* Q14 */
cannam@154 232
cannam@154 233 /* Root-mean-square approximation, scale to dBs, and write to output pointer */
cannam@154 234 pSNR_dB_Q7 = (opus_int16)( 3 * silk_SQRT_APPROX( sumSquared ) ); /* Q7 */
cannam@154 235
cannam@154 236 /*********************************/
cannam@154 237 /* Speech Probability Estimation */
cannam@154 238 /*********************************/
cannam@154 239 SA_Q15 = silk_sigm_Q15( silk_SMULWB( VAD_SNR_FACTOR_Q16, pSNR_dB_Q7 ) - VAD_NEGATIVE_OFFSET_Q5 );
cannam@154 240
cannam@154 241 /**************************/
cannam@154 242 /* Frequency Tilt Measure */
cannam@154 243 /**************************/
cannam@154 244 psEncC->input_tilt_Q15 = silk_LSHIFT( silk_sigm_Q15( input_tilt ) - 16384, 1 );
cannam@154 245
cannam@154 246 /**************************************************/
cannam@154 247 /* Scale the sigmoid output based on power levels */
cannam@154 248 /**************************************************/
cannam@154 249 speech_nrg = 0;
cannam@154 250 for( b = 0; b < VAD_N_BANDS; b++ ) {
cannam@154 251 /* Accumulate signal-without-noise energies, higher frequency bands have more weight */
cannam@154 252 speech_nrg += ( b + 1 ) * silk_RSHIFT( Xnrg[ b ] - psSilk_VAD->NL[ b ], 4 );
cannam@154 253 }
cannam@154 254
cannam@154 255 if( psEncC->frame_length == 20 * psEncC->fs_kHz ) {
cannam@154 256 speech_nrg = silk_RSHIFT32( speech_nrg, 1 );
cannam@154 257 }
cannam@154 258 /* Power scaling */
cannam@154 259 if( speech_nrg <= 0 ) {
cannam@154 260 SA_Q15 = silk_RSHIFT( SA_Q15, 1 );
cannam@154 261 } else if( speech_nrg < 16384 ) {
cannam@154 262 speech_nrg = silk_LSHIFT32( speech_nrg, 16 );
cannam@154 263
cannam@154 264 /* square-root */
cannam@154 265 speech_nrg = silk_SQRT_APPROX( speech_nrg );
cannam@154 266 SA_Q15 = silk_SMULWB( 32768 + speech_nrg, SA_Q15 );
cannam@154 267 }
cannam@154 268
cannam@154 269 /* Copy the resulting speech activity in Q8 */
cannam@154 270 psEncC->speech_activity_Q8 = silk_min_int( silk_RSHIFT( SA_Q15, 7 ), silk_uint8_MAX );
cannam@154 271
cannam@154 272 /***********************************/
cannam@154 273 /* Energy Level and SNR estimation */
cannam@154 274 /***********************************/
cannam@154 275 /* Smoothing coefficient */
cannam@154 276 smooth_coef_Q16 = silk_SMULWB( VAD_SNR_SMOOTH_COEF_Q18, silk_SMULWB( (opus_int32)SA_Q15, SA_Q15 ) );
cannam@154 277
cannam@154 278 if( psEncC->frame_length == 10 * psEncC->fs_kHz ) {
cannam@154 279 smooth_coef_Q16 >>= 1;
cannam@154 280 }
cannam@154 281
cannam@154 282 for( b = 0; b < VAD_N_BANDS; b++ ) {
cannam@154 283 /* compute smoothed energy-to-noise ratio per band */
cannam@154 284 psSilk_VAD->NrgRatioSmth_Q8[ b ] = silk_SMLAWB( psSilk_VAD->NrgRatioSmth_Q8[ b ],
cannam@154 285 NrgToNoiseRatio_Q8[ b ] - psSilk_VAD->NrgRatioSmth_Q8[ b ], smooth_coef_Q16 );
cannam@154 286
cannam@154 287 /* signal to noise ratio in dB per band */
cannam@154 288 SNR_Q7 = 3 * ( silk_lin2log( psSilk_VAD->NrgRatioSmth_Q8[b] ) - 8 * 128 );
cannam@154 289 /* quality = sigmoid( 0.25 * ( SNR_dB - 16 ) ); */
cannam@154 290 psEncC->input_quality_bands_Q15[ b ] = silk_sigm_Q15( silk_RSHIFT( SNR_Q7 - 16 * 128, 4 ) );
cannam@154 291 }
cannam@154 292
cannam@154 293 RESTORE_STACK;
cannam@154 294 return( ret );
cannam@154 295 }
cannam@154 296
cannam@154 297 /**************************/
cannam@154 298 /* Noise level estimation */
cannam@154 299 /**************************/
cannam@154 300 # if !defined(OPUS_X86_MAY_HAVE_SSE4_1)
cannam@154 301 static OPUS_INLINE
cannam@154 302 #endif
cannam@154 303 void silk_VAD_GetNoiseLevels(
cannam@154 304 const opus_int32 pX[ VAD_N_BANDS ], /* I subband energies */
cannam@154 305 silk_VAD_state *psSilk_VAD /* I/O Pointer to Silk VAD state */
cannam@154 306 )
cannam@154 307 {
cannam@154 308 opus_int k;
cannam@154 309 opus_int32 nl, nrg, inv_nrg;
cannam@154 310 opus_int coef, min_coef;
cannam@154 311
cannam@154 312 /* Initially faster smoothing */
cannam@154 313 if( psSilk_VAD->counter < 1000 ) { /* 1000 = 20 sec */
cannam@154 314 min_coef = silk_DIV32_16( silk_int16_MAX, silk_RSHIFT( psSilk_VAD->counter, 4 ) + 1 );
cannam@154 315 /* Increment frame counter */
cannam@154 316 psSilk_VAD->counter++;
cannam@154 317 } else {
cannam@154 318 min_coef = 0;
cannam@154 319 }
cannam@154 320
cannam@154 321 for( k = 0; k < VAD_N_BANDS; k++ ) {
cannam@154 322 /* Get old noise level estimate for current band */
cannam@154 323 nl = psSilk_VAD->NL[ k ];
cannam@154 324 silk_assert( nl >= 0 );
cannam@154 325
cannam@154 326 /* Add bias */
cannam@154 327 nrg = silk_ADD_POS_SAT32( pX[ k ], psSilk_VAD->NoiseLevelBias[ k ] );
cannam@154 328 silk_assert( nrg > 0 );
cannam@154 329
cannam@154 330 /* Invert energies */
cannam@154 331 inv_nrg = silk_DIV32( silk_int32_MAX, nrg );
cannam@154 332 silk_assert( inv_nrg >= 0 );
cannam@154 333
cannam@154 334 /* Less update when subband energy is high */
cannam@154 335 if( nrg > silk_LSHIFT( nl, 3 ) ) {
cannam@154 336 coef = VAD_NOISE_LEVEL_SMOOTH_COEF_Q16 >> 3;
cannam@154 337 } else if( nrg < nl ) {
cannam@154 338 coef = VAD_NOISE_LEVEL_SMOOTH_COEF_Q16;
cannam@154 339 } else {
cannam@154 340 coef = silk_SMULWB( silk_SMULWW( inv_nrg, nl ), VAD_NOISE_LEVEL_SMOOTH_COEF_Q16 << 1 );
cannam@154 341 }
cannam@154 342
cannam@154 343 /* Initially faster smoothing */
cannam@154 344 coef = silk_max_int( coef, min_coef );
cannam@154 345
cannam@154 346 /* Smooth inverse energies */
cannam@154 347 psSilk_VAD->inv_NL[ k ] = silk_SMLAWB( psSilk_VAD->inv_NL[ k ], inv_nrg - psSilk_VAD->inv_NL[ k ], coef );
cannam@154 348 silk_assert( psSilk_VAD->inv_NL[ k ] >= 0 );
cannam@154 349
cannam@154 350 /* Compute noise level by inverting again */
cannam@154 351 nl = silk_DIV32( silk_int32_MAX, psSilk_VAD->inv_NL[ k ] );
cannam@154 352 silk_assert( nl >= 0 );
cannam@154 353
cannam@154 354 /* Limit noise levels (guarantee 7 bits of head room) */
cannam@154 355 nl = silk_min( nl, 0x00FFFFFF );
cannam@154 356
cannam@154 357 /* Store as part of state */
cannam@154 358 psSilk_VAD->NL[ k ] = nl;
cannam@154 359 }
cannam@154 360 }