cannam@154
|
1 /***********************************************************************
|
cannam@154
|
2 Copyright (c) 2006-2011, Skype Limited. All rights reserved.
|
cannam@154
|
3 Redistribution and use in source and binary forms, with or without
|
cannam@154
|
4 modification, are permitted provided that the following conditions
|
cannam@154
|
5 are met:
|
cannam@154
|
6 - Redistributions of source code must retain the above copyright notice,
|
cannam@154
|
7 this list of conditions and the following disclaimer.
|
cannam@154
|
8 - Redistributions in binary form must reproduce the above copyright
|
cannam@154
|
9 notice, this list of conditions and the following disclaimer in the
|
cannam@154
|
10 documentation and/or other materials provided with the distribution.
|
cannam@154
|
11 - Neither the name of Internet Society, IETF or IETF Trust, nor the
|
cannam@154
|
12 names of specific contributors, may be used to endorse or promote
|
cannam@154
|
13 products derived from this software without specific prior written
|
cannam@154
|
14 permission.
|
cannam@154
|
15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
cannam@154
|
16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
cannam@154
|
17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
cannam@154
|
18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
cannam@154
|
19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
cannam@154
|
20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
cannam@154
|
21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
cannam@154
|
22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
cannam@154
|
23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
cannam@154
|
24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
cannam@154
|
25 POSSIBILITY OF SUCH DAMAGE.
|
cannam@154
|
26 ***********************************************************************/
|
cannam@154
|
27
|
cannam@154
|
28 #ifdef HAVE_CONFIG_H
|
cannam@154
|
29 #include "config.h"
|
cannam@154
|
30 #endif
|
cannam@154
|
31
|
cannam@154
|
32 #include "main.h"
|
cannam@154
|
33 #include "stack_alloc.h"
|
cannam@154
|
34
|
cannam@154
|
35 /* Silk VAD noise level estimation */
|
cannam@154
|
36 # if !defined(OPUS_X86_MAY_HAVE_SSE4_1)
|
cannam@154
|
37 static OPUS_INLINE void silk_VAD_GetNoiseLevels(
|
cannam@154
|
38 const opus_int32 pX[ VAD_N_BANDS ], /* I subband energies */
|
cannam@154
|
39 silk_VAD_state *psSilk_VAD /* I/O Pointer to Silk VAD state */
|
cannam@154
|
40 );
|
cannam@154
|
41 #endif
|
cannam@154
|
42
|
cannam@154
|
43 /**********************************/
|
cannam@154
|
44 /* Initialization of the Silk VAD */
|
cannam@154
|
45 /**********************************/
|
cannam@154
|
46 opus_int silk_VAD_Init( /* O Return value, 0 if success */
|
cannam@154
|
47 silk_VAD_state *psSilk_VAD /* I/O Pointer to Silk VAD state */
|
cannam@154
|
48 )
|
cannam@154
|
49 {
|
cannam@154
|
50 opus_int b, ret = 0;
|
cannam@154
|
51
|
cannam@154
|
52 /* reset state memory */
|
cannam@154
|
53 silk_memset( psSilk_VAD, 0, sizeof( silk_VAD_state ) );
|
cannam@154
|
54
|
cannam@154
|
55 /* init noise levels */
|
cannam@154
|
56 /* Initialize array with approx pink noise levels (psd proportional to inverse of frequency) */
|
cannam@154
|
57 for( b = 0; b < VAD_N_BANDS; b++ ) {
|
cannam@154
|
58 psSilk_VAD->NoiseLevelBias[ b ] = silk_max_32( silk_DIV32_16( VAD_NOISE_LEVELS_BIAS, b + 1 ), 1 );
|
cannam@154
|
59 }
|
cannam@154
|
60
|
cannam@154
|
61 /* Initialize state */
|
cannam@154
|
62 for( b = 0; b < VAD_N_BANDS; b++ ) {
|
cannam@154
|
63 psSilk_VAD->NL[ b ] = silk_MUL( 100, psSilk_VAD->NoiseLevelBias[ b ] );
|
cannam@154
|
64 psSilk_VAD->inv_NL[ b ] = silk_DIV32( silk_int32_MAX, psSilk_VAD->NL[ b ] );
|
cannam@154
|
65 }
|
cannam@154
|
66 psSilk_VAD->counter = 15;
|
cannam@154
|
67
|
cannam@154
|
68 /* init smoothed energy-to-noise ratio*/
|
cannam@154
|
69 for( b = 0; b < VAD_N_BANDS; b++ ) {
|
cannam@154
|
70 psSilk_VAD->NrgRatioSmth_Q8[ b ] = 100 * 256; /* 100 * 256 --> 20 dB SNR */
|
cannam@154
|
71 }
|
cannam@154
|
72
|
cannam@154
|
73 return( ret );
|
cannam@154
|
74 }
|
cannam@154
|
75
|
cannam@154
|
76 /* Weighting factors for tilt measure */
|
cannam@154
|
77 static const opus_int32 tiltWeights[ VAD_N_BANDS ] = { 30000, 6000, -12000, -12000 };
|
cannam@154
|
78
|
cannam@154
|
79 /***************************************/
|
cannam@154
|
80 /* Get the speech activity level in Q8 */
|
cannam@154
|
81 /***************************************/
|
cannam@154
|
82 opus_int silk_VAD_GetSA_Q8_c( /* O Return value, 0 if success */
|
cannam@154
|
83 silk_encoder_state *psEncC, /* I/O Encoder state */
|
cannam@154
|
84 const opus_int16 pIn[] /* I PCM input */
|
cannam@154
|
85 )
|
cannam@154
|
86 {
|
cannam@154
|
87 opus_int SA_Q15, pSNR_dB_Q7, input_tilt;
|
cannam@154
|
88 opus_int decimated_framelength1, decimated_framelength2;
|
cannam@154
|
89 opus_int decimated_framelength;
|
cannam@154
|
90 opus_int dec_subframe_length, dec_subframe_offset, SNR_Q7, i, b, s;
|
cannam@154
|
91 opus_int32 sumSquared, smooth_coef_Q16;
|
cannam@154
|
92 opus_int16 HPstateTmp;
|
cannam@154
|
93 VARDECL( opus_int16, X );
|
cannam@154
|
94 opus_int32 Xnrg[ VAD_N_BANDS ];
|
cannam@154
|
95 opus_int32 NrgToNoiseRatio_Q8[ VAD_N_BANDS ];
|
cannam@154
|
96 opus_int32 speech_nrg, x_tmp;
|
cannam@154
|
97 opus_int X_offset[ VAD_N_BANDS ];
|
cannam@154
|
98 opus_int ret = 0;
|
cannam@154
|
99 silk_VAD_state *psSilk_VAD = &psEncC->sVAD;
|
cannam@154
|
100 SAVE_STACK;
|
cannam@154
|
101
|
cannam@154
|
102 /* Safety checks */
|
cannam@154
|
103 silk_assert( VAD_N_BANDS == 4 );
|
cannam@154
|
104 celt_assert( MAX_FRAME_LENGTH >= psEncC->frame_length );
|
cannam@154
|
105 celt_assert( psEncC->frame_length <= 512 );
|
cannam@154
|
106 celt_assert( psEncC->frame_length == 8 * silk_RSHIFT( psEncC->frame_length, 3 ) );
|
cannam@154
|
107
|
cannam@154
|
108 /***********************/
|
cannam@154
|
109 /* Filter and Decimate */
|
cannam@154
|
110 /***********************/
|
cannam@154
|
111 decimated_framelength1 = silk_RSHIFT( psEncC->frame_length, 1 );
|
cannam@154
|
112 decimated_framelength2 = silk_RSHIFT( psEncC->frame_length, 2 );
|
cannam@154
|
113 decimated_framelength = silk_RSHIFT( psEncC->frame_length, 3 );
|
cannam@154
|
114 /* Decimate into 4 bands:
|
cannam@154
|
115 0 L 3L L 3L 5L
|
cannam@154
|
116 - -- - -- --
|
cannam@154
|
117 8 8 2 4 4
|
cannam@154
|
118
|
cannam@154
|
119 [0-1 kHz| temp. |1-2 kHz| 2-4 kHz | 4-8 kHz |
|
cannam@154
|
120
|
cannam@154
|
121 They're arranged to allow the minimal ( frame_length / 4 ) extra
|
cannam@154
|
122 scratch space during the downsampling process */
|
cannam@154
|
123 X_offset[ 0 ] = 0;
|
cannam@154
|
124 X_offset[ 1 ] = decimated_framelength + decimated_framelength2;
|
cannam@154
|
125 X_offset[ 2 ] = X_offset[ 1 ] + decimated_framelength;
|
cannam@154
|
126 X_offset[ 3 ] = X_offset[ 2 ] + decimated_framelength2;
|
cannam@154
|
127 ALLOC( X, X_offset[ 3 ] + decimated_framelength1, opus_int16 );
|
cannam@154
|
128
|
cannam@154
|
129 /* 0-8 kHz to 0-4 kHz and 4-8 kHz */
|
cannam@154
|
130 silk_ana_filt_bank_1( pIn, &psSilk_VAD->AnaState[ 0 ],
|
cannam@154
|
131 X, &X[ X_offset[ 3 ] ], psEncC->frame_length );
|
cannam@154
|
132
|
cannam@154
|
133 /* 0-4 kHz to 0-2 kHz and 2-4 kHz */
|
cannam@154
|
134 silk_ana_filt_bank_1( X, &psSilk_VAD->AnaState1[ 0 ],
|
cannam@154
|
135 X, &X[ X_offset[ 2 ] ], decimated_framelength1 );
|
cannam@154
|
136
|
cannam@154
|
137 /* 0-2 kHz to 0-1 kHz and 1-2 kHz */
|
cannam@154
|
138 silk_ana_filt_bank_1( X, &psSilk_VAD->AnaState2[ 0 ],
|
cannam@154
|
139 X, &X[ X_offset[ 1 ] ], decimated_framelength2 );
|
cannam@154
|
140
|
cannam@154
|
141 /*********************************************/
|
cannam@154
|
142 /* HP filter on lowest band (differentiator) */
|
cannam@154
|
143 /*********************************************/
|
cannam@154
|
144 X[ decimated_framelength - 1 ] = silk_RSHIFT( X[ decimated_framelength - 1 ], 1 );
|
cannam@154
|
145 HPstateTmp = X[ decimated_framelength - 1 ];
|
cannam@154
|
146 for( i = decimated_framelength - 1; i > 0; i-- ) {
|
cannam@154
|
147 X[ i - 1 ] = silk_RSHIFT( X[ i - 1 ], 1 );
|
cannam@154
|
148 X[ i ] -= X[ i - 1 ];
|
cannam@154
|
149 }
|
cannam@154
|
150 X[ 0 ] -= psSilk_VAD->HPstate;
|
cannam@154
|
151 psSilk_VAD->HPstate = HPstateTmp;
|
cannam@154
|
152
|
cannam@154
|
153 /*************************************/
|
cannam@154
|
154 /* Calculate the energy in each band */
|
cannam@154
|
155 /*************************************/
|
cannam@154
|
156 for( b = 0; b < VAD_N_BANDS; b++ ) {
|
cannam@154
|
157 /* Find the decimated framelength in the non-uniformly divided bands */
|
cannam@154
|
158 decimated_framelength = silk_RSHIFT( psEncC->frame_length, silk_min_int( VAD_N_BANDS - b, VAD_N_BANDS - 1 ) );
|
cannam@154
|
159
|
cannam@154
|
160 /* Split length into subframe lengths */
|
cannam@154
|
161 dec_subframe_length = silk_RSHIFT( decimated_framelength, VAD_INTERNAL_SUBFRAMES_LOG2 );
|
cannam@154
|
162 dec_subframe_offset = 0;
|
cannam@154
|
163
|
cannam@154
|
164 /* Compute energy per sub-frame */
|
cannam@154
|
165 /* initialize with summed energy of last subframe */
|
cannam@154
|
166 Xnrg[ b ] = psSilk_VAD->XnrgSubfr[ b ];
|
cannam@154
|
167 for( s = 0; s < VAD_INTERNAL_SUBFRAMES; s++ ) {
|
cannam@154
|
168 sumSquared = 0;
|
cannam@154
|
169 for( i = 0; i < dec_subframe_length; i++ ) {
|
cannam@154
|
170 /* The energy will be less than dec_subframe_length * ( silk_int16_MIN / 8 ) ^ 2. */
|
cannam@154
|
171 /* Therefore we can accumulate with no risk of overflow (unless dec_subframe_length > 128) */
|
cannam@154
|
172 x_tmp = silk_RSHIFT(
|
cannam@154
|
173 X[ X_offset[ b ] + i + dec_subframe_offset ], 3 );
|
cannam@154
|
174 sumSquared = silk_SMLABB( sumSquared, x_tmp, x_tmp );
|
cannam@154
|
175
|
cannam@154
|
176 /* Safety check */
|
cannam@154
|
177 silk_assert( sumSquared >= 0 );
|
cannam@154
|
178 }
|
cannam@154
|
179
|
cannam@154
|
180 /* Add/saturate summed energy of current subframe */
|
cannam@154
|
181 if( s < VAD_INTERNAL_SUBFRAMES - 1 ) {
|
cannam@154
|
182 Xnrg[ b ] = silk_ADD_POS_SAT32( Xnrg[ b ], sumSquared );
|
cannam@154
|
183 } else {
|
cannam@154
|
184 /* Look-ahead subframe */
|
cannam@154
|
185 Xnrg[ b ] = silk_ADD_POS_SAT32( Xnrg[ b ], silk_RSHIFT( sumSquared, 1 ) );
|
cannam@154
|
186 }
|
cannam@154
|
187
|
cannam@154
|
188 dec_subframe_offset += dec_subframe_length;
|
cannam@154
|
189 }
|
cannam@154
|
190 psSilk_VAD->XnrgSubfr[ b ] = sumSquared;
|
cannam@154
|
191 }
|
cannam@154
|
192
|
cannam@154
|
193 /********************/
|
cannam@154
|
194 /* Noise estimation */
|
cannam@154
|
195 /********************/
|
cannam@154
|
196 silk_VAD_GetNoiseLevels( &Xnrg[ 0 ], psSilk_VAD );
|
cannam@154
|
197
|
cannam@154
|
198 /***********************************************/
|
cannam@154
|
199 /* Signal-plus-noise to noise ratio estimation */
|
cannam@154
|
200 /***********************************************/
|
cannam@154
|
201 sumSquared = 0;
|
cannam@154
|
202 input_tilt = 0;
|
cannam@154
|
203 for( b = 0; b < VAD_N_BANDS; b++ ) {
|
cannam@154
|
204 speech_nrg = Xnrg[ b ] - psSilk_VAD->NL[ b ];
|
cannam@154
|
205 if( speech_nrg > 0 ) {
|
cannam@154
|
206 /* Divide, with sufficient resolution */
|
cannam@154
|
207 if( ( Xnrg[ b ] & 0xFF800000 ) == 0 ) {
|
cannam@154
|
208 NrgToNoiseRatio_Q8[ b ] = silk_DIV32( silk_LSHIFT( Xnrg[ b ], 8 ), psSilk_VAD->NL[ b ] + 1 );
|
cannam@154
|
209 } else {
|
cannam@154
|
210 NrgToNoiseRatio_Q8[ b ] = silk_DIV32( Xnrg[ b ], silk_RSHIFT( psSilk_VAD->NL[ b ], 8 ) + 1 );
|
cannam@154
|
211 }
|
cannam@154
|
212
|
cannam@154
|
213 /* Convert to log domain */
|
cannam@154
|
214 SNR_Q7 = silk_lin2log( NrgToNoiseRatio_Q8[ b ] ) - 8 * 128;
|
cannam@154
|
215
|
cannam@154
|
216 /* Sum-of-squares */
|
cannam@154
|
217 sumSquared = silk_SMLABB( sumSquared, SNR_Q7, SNR_Q7 ); /* Q14 */
|
cannam@154
|
218
|
cannam@154
|
219 /* Tilt measure */
|
cannam@154
|
220 if( speech_nrg < ( (opus_int32)1 << 20 ) ) {
|
cannam@154
|
221 /* Scale down SNR value for small subband speech energies */
|
cannam@154
|
222 SNR_Q7 = silk_SMULWB( silk_LSHIFT( silk_SQRT_APPROX( speech_nrg ), 6 ), SNR_Q7 );
|
cannam@154
|
223 }
|
cannam@154
|
224 input_tilt = silk_SMLAWB( input_tilt, tiltWeights[ b ], SNR_Q7 );
|
cannam@154
|
225 } else {
|
cannam@154
|
226 NrgToNoiseRatio_Q8[ b ] = 256;
|
cannam@154
|
227 }
|
cannam@154
|
228 }
|
cannam@154
|
229
|
cannam@154
|
230 /* Mean-of-squares */
|
cannam@154
|
231 sumSquared = silk_DIV32_16( sumSquared, VAD_N_BANDS ); /* Q14 */
|
cannam@154
|
232
|
cannam@154
|
233 /* Root-mean-square approximation, scale to dBs, and write to output pointer */
|
cannam@154
|
234 pSNR_dB_Q7 = (opus_int16)( 3 * silk_SQRT_APPROX( sumSquared ) ); /* Q7 */
|
cannam@154
|
235
|
cannam@154
|
236 /*********************************/
|
cannam@154
|
237 /* Speech Probability Estimation */
|
cannam@154
|
238 /*********************************/
|
cannam@154
|
239 SA_Q15 = silk_sigm_Q15( silk_SMULWB( VAD_SNR_FACTOR_Q16, pSNR_dB_Q7 ) - VAD_NEGATIVE_OFFSET_Q5 );
|
cannam@154
|
240
|
cannam@154
|
241 /**************************/
|
cannam@154
|
242 /* Frequency Tilt Measure */
|
cannam@154
|
243 /**************************/
|
cannam@154
|
244 psEncC->input_tilt_Q15 = silk_LSHIFT( silk_sigm_Q15( input_tilt ) - 16384, 1 );
|
cannam@154
|
245
|
cannam@154
|
246 /**************************************************/
|
cannam@154
|
247 /* Scale the sigmoid output based on power levels */
|
cannam@154
|
248 /**************************************************/
|
cannam@154
|
249 speech_nrg = 0;
|
cannam@154
|
250 for( b = 0; b < VAD_N_BANDS; b++ ) {
|
cannam@154
|
251 /* Accumulate signal-without-noise energies, higher frequency bands have more weight */
|
cannam@154
|
252 speech_nrg += ( b + 1 ) * silk_RSHIFT( Xnrg[ b ] - psSilk_VAD->NL[ b ], 4 );
|
cannam@154
|
253 }
|
cannam@154
|
254
|
cannam@154
|
255 if( psEncC->frame_length == 20 * psEncC->fs_kHz ) {
|
cannam@154
|
256 speech_nrg = silk_RSHIFT32( speech_nrg, 1 );
|
cannam@154
|
257 }
|
cannam@154
|
258 /* Power scaling */
|
cannam@154
|
259 if( speech_nrg <= 0 ) {
|
cannam@154
|
260 SA_Q15 = silk_RSHIFT( SA_Q15, 1 );
|
cannam@154
|
261 } else if( speech_nrg < 16384 ) {
|
cannam@154
|
262 speech_nrg = silk_LSHIFT32( speech_nrg, 16 );
|
cannam@154
|
263
|
cannam@154
|
264 /* square-root */
|
cannam@154
|
265 speech_nrg = silk_SQRT_APPROX( speech_nrg );
|
cannam@154
|
266 SA_Q15 = silk_SMULWB( 32768 + speech_nrg, SA_Q15 );
|
cannam@154
|
267 }
|
cannam@154
|
268
|
cannam@154
|
269 /* Copy the resulting speech activity in Q8 */
|
cannam@154
|
270 psEncC->speech_activity_Q8 = silk_min_int( silk_RSHIFT( SA_Q15, 7 ), silk_uint8_MAX );
|
cannam@154
|
271
|
cannam@154
|
272 /***********************************/
|
cannam@154
|
273 /* Energy Level and SNR estimation */
|
cannam@154
|
274 /***********************************/
|
cannam@154
|
275 /* Smoothing coefficient */
|
cannam@154
|
276 smooth_coef_Q16 = silk_SMULWB( VAD_SNR_SMOOTH_COEF_Q18, silk_SMULWB( (opus_int32)SA_Q15, SA_Q15 ) );
|
cannam@154
|
277
|
cannam@154
|
278 if( psEncC->frame_length == 10 * psEncC->fs_kHz ) {
|
cannam@154
|
279 smooth_coef_Q16 >>= 1;
|
cannam@154
|
280 }
|
cannam@154
|
281
|
cannam@154
|
282 for( b = 0; b < VAD_N_BANDS; b++ ) {
|
cannam@154
|
283 /* compute smoothed energy-to-noise ratio per band */
|
cannam@154
|
284 psSilk_VAD->NrgRatioSmth_Q8[ b ] = silk_SMLAWB( psSilk_VAD->NrgRatioSmth_Q8[ b ],
|
cannam@154
|
285 NrgToNoiseRatio_Q8[ b ] - psSilk_VAD->NrgRatioSmth_Q8[ b ], smooth_coef_Q16 );
|
cannam@154
|
286
|
cannam@154
|
287 /* signal to noise ratio in dB per band */
|
cannam@154
|
288 SNR_Q7 = 3 * ( silk_lin2log( psSilk_VAD->NrgRatioSmth_Q8[b] ) - 8 * 128 );
|
cannam@154
|
289 /* quality = sigmoid( 0.25 * ( SNR_dB - 16 ) ); */
|
cannam@154
|
290 psEncC->input_quality_bands_Q15[ b ] = silk_sigm_Q15( silk_RSHIFT( SNR_Q7 - 16 * 128, 4 ) );
|
cannam@154
|
291 }
|
cannam@154
|
292
|
cannam@154
|
293 RESTORE_STACK;
|
cannam@154
|
294 return( ret );
|
cannam@154
|
295 }
|
cannam@154
|
296
|
cannam@154
|
297 /**************************/
|
cannam@154
|
298 /* Noise level estimation */
|
cannam@154
|
299 /**************************/
|
cannam@154
|
300 # if !defined(OPUS_X86_MAY_HAVE_SSE4_1)
|
cannam@154
|
301 static OPUS_INLINE
|
cannam@154
|
302 #endif
|
cannam@154
|
303 void silk_VAD_GetNoiseLevels(
|
cannam@154
|
304 const opus_int32 pX[ VAD_N_BANDS ], /* I subband energies */
|
cannam@154
|
305 silk_VAD_state *psSilk_VAD /* I/O Pointer to Silk VAD state */
|
cannam@154
|
306 )
|
cannam@154
|
307 {
|
cannam@154
|
308 opus_int k;
|
cannam@154
|
309 opus_int32 nl, nrg, inv_nrg;
|
cannam@154
|
310 opus_int coef, min_coef;
|
cannam@154
|
311
|
cannam@154
|
312 /* Initially faster smoothing */
|
cannam@154
|
313 if( psSilk_VAD->counter < 1000 ) { /* 1000 = 20 sec */
|
cannam@154
|
314 min_coef = silk_DIV32_16( silk_int16_MAX, silk_RSHIFT( psSilk_VAD->counter, 4 ) + 1 );
|
cannam@154
|
315 /* Increment frame counter */
|
cannam@154
|
316 psSilk_VAD->counter++;
|
cannam@154
|
317 } else {
|
cannam@154
|
318 min_coef = 0;
|
cannam@154
|
319 }
|
cannam@154
|
320
|
cannam@154
|
321 for( k = 0; k < VAD_N_BANDS; k++ ) {
|
cannam@154
|
322 /* Get old noise level estimate for current band */
|
cannam@154
|
323 nl = psSilk_VAD->NL[ k ];
|
cannam@154
|
324 silk_assert( nl >= 0 );
|
cannam@154
|
325
|
cannam@154
|
326 /* Add bias */
|
cannam@154
|
327 nrg = silk_ADD_POS_SAT32( pX[ k ], psSilk_VAD->NoiseLevelBias[ k ] );
|
cannam@154
|
328 silk_assert( nrg > 0 );
|
cannam@154
|
329
|
cannam@154
|
330 /* Invert energies */
|
cannam@154
|
331 inv_nrg = silk_DIV32( silk_int32_MAX, nrg );
|
cannam@154
|
332 silk_assert( inv_nrg >= 0 );
|
cannam@154
|
333
|
cannam@154
|
334 /* Less update when subband energy is high */
|
cannam@154
|
335 if( nrg > silk_LSHIFT( nl, 3 ) ) {
|
cannam@154
|
336 coef = VAD_NOISE_LEVEL_SMOOTH_COEF_Q16 >> 3;
|
cannam@154
|
337 } else if( nrg < nl ) {
|
cannam@154
|
338 coef = VAD_NOISE_LEVEL_SMOOTH_COEF_Q16;
|
cannam@154
|
339 } else {
|
cannam@154
|
340 coef = silk_SMULWB( silk_SMULWW( inv_nrg, nl ), VAD_NOISE_LEVEL_SMOOTH_COEF_Q16 << 1 );
|
cannam@154
|
341 }
|
cannam@154
|
342
|
cannam@154
|
343 /* Initially faster smoothing */
|
cannam@154
|
344 coef = silk_max_int( coef, min_coef );
|
cannam@154
|
345
|
cannam@154
|
346 /* Smooth inverse energies */
|
cannam@154
|
347 psSilk_VAD->inv_NL[ k ] = silk_SMLAWB( psSilk_VAD->inv_NL[ k ], inv_nrg - psSilk_VAD->inv_NL[ k ], coef );
|
cannam@154
|
348 silk_assert( psSilk_VAD->inv_NL[ k ] >= 0 );
|
cannam@154
|
349
|
cannam@154
|
350 /* Compute noise level by inverting again */
|
cannam@154
|
351 nl = silk_DIV32( silk_int32_MAX, psSilk_VAD->inv_NL[ k ] );
|
cannam@154
|
352 silk_assert( nl >= 0 );
|
cannam@154
|
353
|
cannam@154
|
354 /* Limit noise levels (guarantee 7 bits of head room) */
|
cannam@154
|
355 nl = silk_min( nl, 0x00FFFFFF );
|
cannam@154
|
356
|
cannam@154
|
357 /* Store as part of state */
|
cannam@154
|
358 psSilk_VAD->NL[ k ] = nl;
|
cannam@154
|
359 }
|
cannam@154
|
360 }
|