cannam@154
|
1 /***********************************************************************
|
cannam@154
|
2 Copyright (c) 2006-2011, Skype Limited. All rights reserved.
|
cannam@154
|
3 Redistribution and use in source and binary forms, with or without
|
cannam@154
|
4 modification, are permitted provided that the following conditions
|
cannam@154
|
5 are met:
|
cannam@154
|
6 - Redistributions of source code must retain the above copyright notice,
|
cannam@154
|
7 this list of conditions and the following disclaimer.
|
cannam@154
|
8 - Redistributions in binary form must reproduce the above copyright
|
cannam@154
|
9 notice, this list of conditions and the following disclaimer in the
|
cannam@154
|
10 documentation and/or other materials provided with the distribution.
|
cannam@154
|
11 - Neither the name of Internet Society, IETF or IETF Trust, nor the
|
cannam@154
|
12 names of specific contributors, may be used to endorse or promote
|
cannam@154
|
13 products derived from this software without specific prior written
|
cannam@154
|
14 permission.
|
cannam@154
|
15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
cannam@154
|
16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
cannam@154
|
17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
cannam@154
|
18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
cannam@154
|
19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
cannam@154
|
20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
cannam@154
|
21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
cannam@154
|
22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
cannam@154
|
23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
cannam@154
|
24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
cannam@154
|
25 POSSIBILITY OF SUCH DAMAGE.
|
cannam@154
|
26 ***********************************************************************/
|
cannam@154
|
27
|
cannam@154
|
28 #ifdef HAVE_CONFIG_H
|
cannam@154
|
29 #include "config.h"
|
cannam@154
|
30 #endif
|
cannam@154
|
31
|
cannam@154
|
32 #include "main.h"
|
cannam@154
|
33 #include "stack_alloc.h"
|
cannam@154
|
34 #include "NSQ.h"
|
cannam@154
|
35
|
cannam@154
|
36
|
cannam@154
|
37 static OPUS_INLINE void silk_nsq_scale_states(
|
cannam@154
|
38 const silk_encoder_state *psEncC, /* I Encoder State */
|
cannam@154
|
39 silk_nsq_state *NSQ, /* I/O NSQ state */
|
cannam@154
|
40 const opus_int16 x16[], /* I input */
|
cannam@154
|
41 opus_int32 x_sc_Q10[], /* O input scaled with 1/Gain */
|
cannam@154
|
42 const opus_int16 sLTP[], /* I re-whitened LTP state in Q0 */
|
cannam@154
|
43 opus_int32 sLTP_Q15[], /* O LTP state matching scaled input */
|
cannam@154
|
44 opus_int subfr, /* I subframe number */
|
cannam@154
|
45 const opus_int LTP_scale_Q14, /* I */
|
cannam@154
|
46 const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I */
|
cannam@154
|
47 const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lag */
|
cannam@154
|
48 const opus_int signal_type /* I Signal type */
|
cannam@154
|
49 );
|
cannam@154
|
50
|
cannam@154
|
51 #if !defined(OPUS_X86_MAY_HAVE_SSE4_1)
|
cannam@154
|
52 static OPUS_INLINE void silk_noise_shape_quantizer(
|
cannam@154
|
53 silk_nsq_state *NSQ, /* I/O NSQ state */
|
cannam@154
|
54 opus_int signalType, /* I Signal type */
|
cannam@154
|
55 const opus_int32 x_sc_Q10[], /* I */
|
cannam@154
|
56 opus_int8 pulses[], /* O */
|
cannam@154
|
57 opus_int16 xq[], /* O */
|
cannam@154
|
58 opus_int32 sLTP_Q15[], /* I/O LTP state */
|
cannam@154
|
59 const opus_int16 a_Q12[], /* I Short term prediction coefs */
|
cannam@154
|
60 const opus_int16 b_Q14[], /* I Long term prediction coefs */
|
cannam@154
|
61 const opus_int16 AR_shp_Q13[], /* I Noise shaping AR coefs */
|
cannam@154
|
62 opus_int lag, /* I Pitch lag */
|
cannam@154
|
63 opus_int32 HarmShapeFIRPacked_Q14, /* I */
|
cannam@154
|
64 opus_int Tilt_Q14, /* I Spectral tilt */
|
cannam@154
|
65 opus_int32 LF_shp_Q14, /* I */
|
cannam@154
|
66 opus_int32 Gain_Q16, /* I */
|
cannam@154
|
67 opus_int Lambda_Q10, /* I */
|
cannam@154
|
68 opus_int offset_Q10, /* I */
|
cannam@154
|
69 opus_int length, /* I Input length */
|
cannam@154
|
70 opus_int shapingLPCOrder, /* I Noise shaping AR filter order */
|
cannam@154
|
71 opus_int predictLPCOrder, /* I Prediction filter order */
|
cannam@154
|
72 int arch /* I Architecture */
|
cannam@154
|
73 );
|
cannam@154
|
74 #endif
|
cannam@154
|
75
|
cannam@154
|
76 void silk_NSQ_c
|
cannam@154
|
77 (
|
cannam@154
|
78 const silk_encoder_state *psEncC, /* I Encoder State */
|
cannam@154
|
79 silk_nsq_state *NSQ, /* I/O NSQ state */
|
cannam@154
|
80 SideInfoIndices *psIndices, /* I/O Quantization Indices */
|
cannam@154
|
81 const opus_int16 x16[], /* I Input */
|
cannam@154
|
82 opus_int8 pulses[], /* O Quantized pulse signal */
|
cannam@154
|
83 const opus_int16 PredCoef_Q12[ 2 * MAX_LPC_ORDER ], /* I Short term prediction coefs */
|
cannam@154
|
84 const opus_int16 LTPCoef_Q14[ LTP_ORDER * MAX_NB_SUBFR ], /* I Long term prediction coefs */
|
cannam@154
|
85 const opus_int16 AR_Q13[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ], /* I Noise shaping coefs */
|
cannam@154
|
86 const opus_int HarmShapeGain_Q14[ MAX_NB_SUBFR ], /* I Long term shaping coefs */
|
cannam@154
|
87 const opus_int Tilt_Q14[ MAX_NB_SUBFR ], /* I Spectral tilt */
|
cannam@154
|
88 const opus_int32 LF_shp_Q14[ MAX_NB_SUBFR ], /* I Low frequency shaping coefs */
|
cannam@154
|
89 const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I Quantization step sizes */
|
cannam@154
|
90 const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lags */
|
cannam@154
|
91 const opus_int Lambda_Q10, /* I Rate/distortion tradeoff */
|
cannam@154
|
92 const opus_int LTP_scale_Q14 /* I LTP state scaling */
|
cannam@154
|
93 )
|
cannam@154
|
94 {
|
cannam@154
|
95 opus_int k, lag, start_idx, LSF_interpolation_flag;
|
cannam@154
|
96 const opus_int16 *A_Q12, *B_Q14, *AR_shp_Q13;
|
cannam@154
|
97 opus_int16 *pxq;
|
cannam@154
|
98 VARDECL( opus_int32, sLTP_Q15 );
|
cannam@154
|
99 VARDECL( opus_int16, sLTP );
|
cannam@154
|
100 opus_int32 HarmShapeFIRPacked_Q14;
|
cannam@154
|
101 opus_int offset_Q10;
|
cannam@154
|
102 VARDECL( opus_int32, x_sc_Q10 );
|
cannam@154
|
103 SAVE_STACK;
|
cannam@154
|
104
|
cannam@154
|
105 NSQ->rand_seed = psIndices->Seed;
|
cannam@154
|
106
|
cannam@154
|
107 /* Set unvoiced lag to the previous one, overwrite later for voiced */
|
cannam@154
|
108 lag = NSQ->lagPrev;
|
cannam@154
|
109
|
cannam@154
|
110 silk_assert( NSQ->prev_gain_Q16 != 0 );
|
cannam@154
|
111
|
cannam@154
|
112 offset_Q10 = silk_Quantization_Offsets_Q10[ psIndices->signalType >> 1 ][ psIndices->quantOffsetType ];
|
cannam@154
|
113
|
cannam@154
|
114 if( psIndices->NLSFInterpCoef_Q2 == 4 ) {
|
cannam@154
|
115 LSF_interpolation_flag = 0;
|
cannam@154
|
116 } else {
|
cannam@154
|
117 LSF_interpolation_flag = 1;
|
cannam@154
|
118 }
|
cannam@154
|
119
|
cannam@154
|
120 ALLOC( sLTP_Q15, psEncC->ltp_mem_length + psEncC->frame_length, opus_int32 );
|
cannam@154
|
121 ALLOC( sLTP, psEncC->ltp_mem_length + psEncC->frame_length, opus_int16 );
|
cannam@154
|
122 ALLOC( x_sc_Q10, psEncC->subfr_length, opus_int32 );
|
cannam@154
|
123 /* Set up pointers to start of sub frame */
|
cannam@154
|
124 NSQ->sLTP_shp_buf_idx = psEncC->ltp_mem_length;
|
cannam@154
|
125 NSQ->sLTP_buf_idx = psEncC->ltp_mem_length;
|
cannam@154
|
126 pxq = &NSQ->xq[ psEncC->ltp_mem_length ];
|
cannam@154
|
127 for( k = 0; k < psEncC->nb_subfr; k++ ) {
|
cannam@154
|
128 A_Q12 = &PredCoef_Q12[ (( k >> 1 ) | ( 1 - LSF_interpolation_flag )) * MAX_LPC_ORDER ];
|
cannam@154
|
129 B_Q14 = <PCoef_Q14[ k * LTP_ORDER ];
|
cannam@154
|
130 AR_shp_Q13 = &AR_Q13[ k * MAX_SHAPE_LPC_ORDER ];
|
cannam@154
|
131
|
cannam@154
|
132 /* Noise shape parameters */
|
cannam@154
|
133 silk_assert( HarmShapeGain_Q14[ k ] >= 0 );
|
cannam@154
|
134 HarmShapeFIRPacked_Q14 = silk_RSHIFT( HarmShapeGain_Q14[ k ], 2 );
|
cannam@154
|
135 HarmShapeFIRPacked_Q14 |= silk_LSHIFT( (opus_int32)silk_RSHIFT( HarmShapeGain_Q14[ k ], 1 ), 16 );
|
cannam@154
|
136
|
cannam@154
|
137 NSQ->rewhite_flag = 0;
|
cannam@154
|
138 if( psIndices->signalType == TYPE_VOICED ) {
|
cannam@154
|
139 /* Voiced */
|
cannam@154
|
140 lag = pitchL[ k ];
|
cannam@154
|
141
|
cannam@154
|
142 /* Re-whitening */
|
cannam@154
|
143 if( ( k & ( 3 - silk_LSHIFT( LSF_interpolation_flag, 1 ) ) ) == 0 ) {
|
cannam@154
|
144 /* Rewhiten with new A coefs */
|
cannam@154
|
145 start_idx = psEncC->ltp_mem_length - lag - psEncC->predictLPCOrder - LTP_ORDER / 2;
|
cannam@154
|
146 celt_assert( start_idx > 0 );
|
cannam@154
|
147
|
cannam@154
|
148 silk_LPC_analysis_filter( &sLTP[ start_idx ], &NSQ->xq[ start_idx + k * psEncC->subfr_length ],
|
cannam@154
|
149 A_Q12, psEncC->ltp_mem_length - start_idx, psEncC->predictLPCOrder, psEncC->arch );
|
cannam@154
|
150
|
cannam@154
|
151 NSQ->rewhite_flag = 1;
|
cannam@154
|
152 NSQ->sLTP_buf_idx = psEncC->ltp_mem_length;
|
cannam@154
|
153 }
|
cannam@154
|
154 }
|
cannam@154
|
155
|
cannam@154
|
156 silk_nsq_scale_states( psEncC, NSQ, x16, x_sc_Q10, sLTP, sLTP_Q15, k, LTP_scale_Q14, Gains_Q16, pitchL, psIndices->signalType );
|
cannam@154
|
157
|
cannam@154
|
158 silk_noise_shape_quantizer( NSQ, psIndices->signalType, x_sc_Q10, pulses, pxq, sLTP_Q15, A_Q12, B_Q14,
|
cannam@154
|
159 AR_shp_Q13, lag, HarmShapeFIRPacked_Q14, Tilt_Q14[ k ], LF_shp_Q14[ k ], Gains_Q16[ k ], Lambda_Q10,
|
cannam@154
|
160 offset_Q10, psEncC->subfr_length, psEncC->shapingLPCOrder, psEncC->predictLPCOrder, psEncC->arch );
|
cannam@154
|
161
|
cannam@154
|
162 x16 += psEncC->subfr_length;
|
cannam@154
|
163 pulses += psEncC->subfr_length;
|
cannam@154
|
164 pxq += psEncC->subfr_length;
|
cannam@154
|
165 }
|
cannam@154
|
166
|
cannam@154
|
167 /* Update lagPrev for next frame */
|
cannam@154
|
168 NSQ->lagPrev = pitchL[ psEncC->nb_subfr - 1 ];
|
cannam@154
|
169
|
cannam@154
|
170 /* Save quantized speech and noise shaping signals */
|
cannam@154
|
171 silk_memmove( NSQ->xq, &NSQ->xq[ psEncC->frame_length ], psEncC->ltp_mem_length * sizeof( opus_int16 ) );
|
cannam@154
|
172 silk_memmove( NSQ->sLTP_shp_Q14, &NSQ->sLTP_shp_Q14[ psEncC->frame_length ], psEncC->ltp_mem_length * sizeof( opus_int32 ) );
|
cannam@154
|
173 RESTORE_STACK;
|
cannam@154
|
174 }
|
cannam@154
|
175
|
cannam@154
|
176 /***********************************/
|
cannam@154
|
177 /* silk_noise_shape_quantizer */
|
cannam@154
|
178 /***********************************/
|
cannam@154
|
179
|
cannam@154
|
180 #if !defined(OPUS_X86_MAY_HAVE_SSE4_1)
|
cannam@154
|
181 static OPUS_INLINE
|
cannam@154
|
182 #endif
|
cannam@154
|
183 void silk_noise_shape_quantizer(
|
cannam@154
|
184 silk_nsq_state *NSQ, /* I/O NSQ state */
|
cannam@154
|
185 opus_int signalType, /* I Signal type */
|
cannam@154
|
186 const opus_int32 x_sc_Q10[], /* I */
|
cannam@154
|
187 opus_int8 pulses[], /* O */
|
cannam@154
|
188 opus_int16 xq[], /* O */
|
cannam@154
|
189 opus_int32 sLTP_Q15[], /* I/O LTP state */
|
cannam@154
|
190 const opus_int16 a_Q12[], /* I Short term prediction coefs */
|
cannam@154
|
191 const opus_int16 b_Q14[], /* I Long term prediction coefs */
|
cannam@154
|
192 const opus_int16 AR_shp_Q13[], /* I Noise shaping AR coefs */
|
cannam@154
|
193 opus_int lag, /* I Pitch lag */
|
cannam@154
|
194 opus_int32 HarmShapeFIRPacked_Q14, /* I */
|
cannam@154
|
195 opus_int Tilt_Q14, /* I Spectral tilt */
|
cannam@154
|
196 opus_int32 LF_shp_Q14, /* I */
|
cannam@154
|
197 opus_int32 Gain_Q16, /* I */
|
cannam@154
|
198 opus_int Lambda_Q10, /* I */
|
cannam@154
|
199 opus_int offset_Q10, /* I */
|
cannam@154
|
200 opus_int length, /* I Input length */
|
cannam@154
|
201 opus_int shapingLPCOrder, /* I Noise shaping AR filter order */
|
cannam@154
|
202 opus_int predictLPCOrder, /* I Prediction filter order */
|
cannam@154
|
203 int arch /* I Architecture */
|
cannam@154
|
204 )
|
cannam@154
|
205 {
|
cannam@154
|
206 opus_int i;
|
cannam@154
|
207 opus_int32 LTP_pred_Q13, LPC_pred_Q10, n_AR_Q12, n_LTP_Q13;
|
cannam@154
|
208 opus_int32 n_LF_Q12, r_Q10, rr_Q10, q1_Q0, q1_Q10, q2_Q10, rd1_Q20, rd2_Q20;
|
cannam@154
|
209 opus_int32 exc_Q14, LPC_exc_Q14, xq_Q14, Gain_Q10;
|
cannam@154
|
210 opus_int32 tmp1, tmp2, sLF_AR_shp_Q14;
|
cannam@154
|
211 opus_int32 *psLPC_Q14, *shp_lag_ptr, *pred_lag_ptr;
|
cannam@154
|
212 #ifdef silk_short_prediction_create_arch_coef
|
cannam@154
|
213 opus_int32 a_Q12_arch[MAX_LPC_ORDER];
|
cannam@154
|
214 #endif
|
cannam@154
|
215
|
cannam@154
|
216 shp_lag_ptr = &NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - lag + HARM_SHAPE_FIR_TAPS / 2 ];
|
cannam@154
|
217 pred_lag_ptr = &sLTP_Q15[ NSQ->sLTP_buf_idx - lag + LTP_ORDER / 2 ];
|
cannam@154
|
218 Gain_Q10 = silk_RSHIFT( Gain_Q16, 6 );
|
cannam@154
|
219
|
cannam@154
|
220 /* Set up short term AR state */
|
cannam@154
|
221 psLPC_Q14 = &NSQ->sLPC_Q14[ NSQ_LPC_BUF_LENGTH - 1 ];
|
cannam@154
|
222
|
cannam@154
|
223 #ifdef silk_short_prediction_create_arch_coef
|
cannam@154
|
224 silk_short_prediction_create_arch_coef(a_Q12_arch, a_Q12, predictLPCOrder);
|
cannam@154
|
225 #endif
|
cannam@154
|
226
|
cannam@154
|
227 for( i = 0; i < length; i++ ) {
|
cannam@154
|
228 /* Generate dither */
|
cannam@154
|
229 NSQ->rand_seed = silk_RAND( NSQ->rand_seed );
|
cannam@154
|
230
|
cannam@154
|
231 /* Short-term prediction */
|
cannam@154
|
232 LPC_pred_Q10 = silk_noise_shape_quantizer_short_prediction(psLPC_Q14, a_Q12, a_Q12_arch, predictLPCOrder, arch);
|
cannam@154
|
233
|
cannam@154
|
234 /* Long-term prediction */
|
cannam@154
|
235 if( signalType == TYPE_VOICED ) {
|
cannam@154
|
236 /* Unrolled loop */
|
cannam@154
|
237 /* Avoids introducing a bias because silk_SMLAWB() always rounds to -inf */
|
cannam@154
|
238 LTP_pred_Q13 = 2;
|
cannam@154
|
239 LTP_pred_Q13 = silk_SMLAWB( LTP_pred_Q13, pred_lag_ptr[ 0 ], b_Q14[ 0 ] );
|
cannam@154
|
240 LTP_pred_Q13 = silk_SMLAWB( LTP_pred_Q13, pred_lag_ptr[ -1 ], b_Q14[ 1 ] );
|
cannam@154
|
241 LTP_pred_Q13 = silk_SMLAWB( LTP_pred_Q13, pred_lag_ptr[ -2 ], b_Q14[ 2 ] );
|
cannam@154
|
242 LTP_pred_Q13 = silk_SMLAWB( LTP_pred_Q13, pred_lag_ptr[ -3 ], b_Q14[ 3 ] );
|
cannam@154
|
243 LTP_pred_Q13 = silk_SMLAWB( LTP_pred_Q13, pred_lag_ptr[ -4 ], b_Q14[ 4 ] );
|
cannam@154
|
244 pred_lag_ptr++;
|
cannam@154
|
245 } else {
|
cannam@154
|
246 LTP_pred_Q13 = 0;
|
cannam@154
|
247 }
|
cannam@154
|
248
|
cannam@154
|
249 /* Noise shape feedback */
|
cannam@154
|
250 celt_assert( ( shapingLPCOrder & 1 ) == 0 ); /* check that order is even */
|
cannam@154
|
251 n_AR_Q12 = silk_NSQ_noise_shape_feedback_loop(&NSQ->sDiff_shp_Q14, NSQ->sAR2_Q14, AR_shp_Q13, shapingLPCOrder, arch);
|
cannam@154
|
252
|
cannam@154
|
253 n_AR_Q12 = silk_SMLAWB( n_AR_Q12, NSQ->sLF_AR_shp_Q14, Tilt_Q14 );
|
cannam@154
|
254
|
cannam@154
|
255 n_LF_Q12 = silk_SMULWB( NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - 1 ], LF_shp_Q14 );
|
cannam@154
|
256 n_LF_Q12 = silk_SMLAWT( n_LF_Q12, NSQ->sLF_AR_shp_Q14, LF_shp_Q14 );
|
cannam@154
|
257
|
cannam@154
|
258 celt_assert( lag > 0 || signalType != TYPE_VOICED );
|
cannam@154
|
259
|
cannam@154
|
260 /* Combine prediction and noise shaping signals */
|
cannam@154
|
261 tmp1 = silk_SUB32( silk_LSHIFT32( LPC_pred_Q10, 2 ), n_AR_Q12 ); /* Q12 */
|
cannam@154
|
262 tmp1 = silk_SUB32( tmp1, n_LF_Q12 ); /* Q12 */
|
cannam@154
|
263 if( lag > 0 ) {
|
cannam@154
|
264 /* Symmetric, packed FIR coefficients */
|
cannam@154
|
265 n_LTP_Q13 = silk_SMULWB( silk_ADD32( shp_lag_ptr[ 0 ], shp_lag_ptr[ -2 ] ), HarmShapeFIRPacked_Q14 );
|
cannam@154
|
266 n_LTP_Q13 = silk_SMLAWT( n_LTP_Q13, shp_lag_ptr[ -1 ], HarmShapeFIRPacked_Q14 );
|
cannam@154
|
267 n_LTP_Q13 = silk_LSHIFT( n_LTP_Q13, 1 );
|
cannam@154
|
268 shp_lag_ptr++;
|
cannam@154
|
269
|
cannam@154
|
270 tmp2 = silk_SUB32( LTP_pred_Q13, n_LTP_Q13 ); /* Q13 */
|
cannam@154
|
271 tmp1 = silk_ADD_LSHIFT32( tmp2, tmp1, 1 ); /* Q13 */
|
cannam@154
|
272 tmp1 = silk_RSHIFT_ROUND( tmp1, 3 ); /* Q10 */
|
cannam@154
|
273 } else {
|
cannam@154
|
274 tmp1 = silk_RSHIFT_ROUND( tmp1, 2 ); /* Q10 */
|
cannam@154
|
275 }
|
cannam@154
|
276
|
cannam@154
|
277 r_Q10 = silk_SUB32( x_sc_Q10[ i ], tmp1 ); /* residual error Q10 */
|
cannam@154
|
278
|
cannam@154
|
279 /* Flip sign depending on dither */
|
cannam@154
|
280 if( NSQ->rand_seed < 0 ) {
|
cannam@154
|
281 r_Q10 = -r_Q10;
|
cannam@154
|
282 }
|
cannam@154
|
283 r_Q10 = silk_LIMIT_32( r_Q10, -(31 << 10), 30 << 10 );
|
cannam@154
|
284
|
cannam@154
|
285 /* Find two quantization level candidates and measure their rate-distortion */
|
cannam@154
|
286 q1_Q10 = silk_SUB32( r_Q10, offset_Q10 );
|
cannam@154
|
287 q1_Q0 = silk_RSHIFT( q1_Q10, 10 );
|
cannam@154
|
288 if (Lambda_Q10 > 2048) {
|
cannam@154
|
289 /* For aggressive RDO, the bias becomes more than one pulse. */
|
cannam@154
|
290 int rdo_offset = Lambda_Q10/2 - 512;
|
cannam@154
|
291 if (q1_Q10 > rdo_offset) {
|
cannam@154
|
292 q1_Q0 = silk_RSHIFT( q1_Q10 - rdo_offset, 10 );
|
cannam@154
|
293 } else if (q1_Q10 < -rdo_offset) {
|
cannam@154
|
294 q1_Q0 = silk_RSHIFT( q1_Q10 + rdo_offset, 10 );
|
cannam@154
|
295 } else if (q1_Q10 < 0) {
|
cannam@154
|
296 q1_Q0 = -1;
|
cannam@154
|
297 } else {
|
cannam@154
|
298 q1_Q0 = 0;
|
cannam@154
|
299 }
|
cannam@154
|
300 }
|
cannam@154
|
301 if( q1_Q0 > 0 ) {
|
cannam@154
|
302 q1_Q10 = silk_SUB32( silk_LSHIFT( q1_Q0, 10 ), QUANT_LEVEL_ADJUST_Q10 );
|
cannam@154
|
303 q1_Q10 = silk_ADD32( q1_Q10, offset_Q10 );
|
cannam@154
|
304 q2_Q10 = silk_ADD32( q1_Q10, 1024 );
|
cannam@154
|
305 rd1_Q20 = silk_SMULBB( q1_Q10, Lambda_Q10 );
|
cannam@154
|
306 rd2_Q20 = silk_SMULBB( q2_Q10, Lambda_Q10 );
|
cannam@154
|
307 } else if( q1_Q0 == 0 ) {
|
cannam@154
|
308 q1_Q10 = offset_Q10;
|
cannam@154
|
309 q2_Q10 = silk_ADD32( q1_Q10, 1024 - QUANT_LEVEL_ADJUST_Q10 );
|
cannam@154
|
310 rd1_Q20 = silk_SMULBB( q1_Q10, Lambda_Q10 );
|
cannam@154
|
311 rd2_Q20 = silk_SMULBB( q2_Q10, Lambda_Q10 );
|
cannam@154
|
312 } else if( q1_Q0 == -1 ) {
|
cannam@154
|
313 q2_Q10 = offset_Q10;
|
cannam@154
|
314 q1_Q10 = silk_SUB32( q2_Q10, 1024 - QUANT_LEVEL_ADJUST_Q10 );
|
cannam@154
|
315 rd1_Q20 = silk_SMULBB( -q1_Q10, Lambda_Q10 );
|
cannam@154
|
316 rd2_Q20 = silk_SMULBB( q2_Q10, Lambda_Q10 );
|
cannam@154
|
317 } else { /* Q1_Q0 < -1 */
|
cannam@154
|
318 q1_Q10 = silk_ADD32( silk_LSHIFT( q1_Q0, 10 ), QUANT_LEVEL_ADJUST_Q10 );
|
cannam@154
|
319 q1_Q10 = silk_ADD32( q1_Q10, offset_Q10 );
|
cannam@154
|
320 q2_Q10 = silk_ADD32( q1_Q10, 1024 );
|
cannam@154
|
321 rd1_Q20 = silk_SMULBB( -q1_Q10, Lambda_Q10 );
|
cannam@154
|
322 rd2_Q20 = silk_SMULBB( -q2_Q10, Lambda_Q10 );
|
cannam@154
|
323 }
|
cannam@154
|
324 rr_Q10 = silk_SUB32( r_Q10, q1_Q10 );
|
cannam@154
|
325 rd1_Q20 = silk_SMLABB( rd1_Q20, rr_Q10, rr_Q10 );
|
cannam@154
|
326 rr_Q10 = silk_SUB32( r_Q10, q2_Q10 );
|
cannam@154
|
327 rd2_Q20 = silk_SMLABB( rd2_Q20, rr_Q10, rr_Q10 );
|
cannam@154
|
328
|
cannam@154
|
329 if( rd2_Q20 < rd1_Q20 ) {
|
cannam@154
|
330 q1_Q10 = q2_Q10;
|
cannam@154
|
331 }
|
cannam@154
|
332
|
cannam@154
|
333 pulses[ i ] = (opus_int8)silk_RSHIFT_ROUND( q1_Q10, 10 );
|
cannam@154
|
334
|
cannam@154
|
335 /* Excitation */
|
cannam@154
|
336 exc_Q14 = silk_LSHIFT( q1_Q10, 4 );
|
cannam@154
|
337 if ( NSQ->rand_seed < 0 ) {
|
cannam@154
|
338 exc_Q14 = -exc_Q14;
|
cannam@154
|
339 }
|
cannam@154
|
340
|
cannam@154
|
341 /* Add predictions */
|
cannam@154
|
342 LPC_exc_Q14 = silk_ADD_LSHIFT32( exc_Q14, LTP_pred_Q13, 1 );
|
cannam@154
|
343 xq_Q14 = silk_ADD_LSHIFT32( LPC_exc_Q14, LPC_pred_Q10, 4 );
|
cannam@154
|
344
|
cannam@154
|
345 /* Scale XQ back to normal level before saving */
|
cannam@154
|
346 xq[ i ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( silk_SMULWW( xq_Q14, Gain_Q10 ), 8 ) );
|
cannam@154
|
347
|
cannam@154
|
348 /* Update states */
|
cannam@154
|
349 psLPC_Q14++;
|
cannam@154
|
350 *psLPC_Q14 = xq_Q14;
|
cannam@154
|
351 NSQ->sDiff_shp_Q14 = silk_SUB_LSHIFT32( xq_Q14, x_sc_Q10[ i ], 4 );
|
cannam@154
|
352 sLF_AR_shp_Q14 = silk_SUB_LSHIFT32( NSQ->sDiff_shp_Q14, n_AR_Q12, 2 );
|
cannam@154
|
353 NSQ->sLF_AR_shp_Q14 = sLF_AR_shp_Q14;
|
cannam@154
|
354
|
cannam@154
|
355 NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx ] = silk_SUB_LSHIFT32( sLF_AR_shp_Q14, n_LF_Q12, 2 );
|
cannam@154
|
356 sLTP_Q15[ NSQ->sLTP_buf_idx ] = silk_LSHIFT( LPC_exc_Q14, 1 );
|
cannam@154
|
357 NSQ->sLTP_shp_buf_idx++;
|
cannam@154
|
358 NSQ->sLTP_buf_idx++;
|
cannam@154
|
359
|
cannam@154
|
360 /* Make dither dependent on quantized signal */
|
cannam@154
|
361 NSQ->rand_seed = silk_ADD32_ovflw( NSQ->rand_seed, pulses[ i ] );
|
cannam@154
|
362 }
|
cannam@154
|
363
|
cannam@154
|
364 /* Update LPC synth buffer */
|
cannam@154
|
365 silk_memcpy( NSQ->sLPC_Q14, &NSQ->sLPC_Q14[ length ], NSQ_LPC_BUF_LENGTH * sizeof( opus_int32 ) );
|
cannam@154
|
366 }
|
cannam@154
|
367
|
cannam@154
|
368 static OPUS_INLINE void silk_nsq_scale_states(
|
cannam@154
|
369 const silk_encoder_state *psEncC, /* I Encoder State */
|
cannam@154
|
370 silk_nsq_state *NSQ, /* I/O NSQ state */
|
cannam@154
|
371 const opus_int16 x16[], /* I input */
|
cannam@154
|
372 opus_int32 x_sc_Q10[], /* O input scaled with 1/Gain */
|
cannam@154
|
373 const opus_int16 sLTP[], /* I re-whitened LTP state in Q0 */
|
cannam@154
|
374 opus_int32 sLTP_Q15[], /* O LTP state matching scaled input */
|
cannam@154
|
375 opus_int subfr, /* I subframe number */
|
cannam@154
|
376 const opus_int LTP_scale_Q14, /* I */
|
cannam@154
|
377 const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I */
|
cannam@154
|
378 const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lag */
|
cannam@154
|
379 const opus_int signal_type /* I Signal type */
|
cannam@154
|
380 )
|
cannam@154
|
381 {
|
cannam@154
|
382 opus_int i, lag;
|
cannam@154
|
383 opus_int32 gain_adj_Q16, inv_gain_Q31, inv_gain_Q26;
|
cannam@154
|
384
|
cannam@154
|
385 lag = pitchL[ subfr ];
|
cannam@154
|
386 inv_gain_Q31 = silk_INVERSE32_varQ( silk_max( Gains_Q16[ subfr ], 1 ), 47 );
|
cannam@154
|
387 silk_assert( inv_gain_Q31 != 0 );
|
cannam@154
|
388
|
cannam@154
|
389 /* Scale input */
|
cannam@154
|
390 inv_gain_Q26 = silk_RSHIFT_ROUND( inv_gain_Q31, 5 );
|
cannam@154
|
391 for( i = 0; i < psEncC->subfr_length; i++ ) {
|
cannam@154
|
392 x_sc_Q10[ i ] = silk_SMULWW( x16[ i ], inv_gain_Q26 );
|
cannam@154
|
393 }
|
cannam@154
|
394
|
cannam@154
|
395 /* After rewhitening the LTP state is un-scaled, so scale with inv_gain_Q16 */
|
cannam@154
|
396 if( NSQ->rewhite_flag ) {
|
cannam@154
|
397 if( subfr == 0 ) {
|
cannam@154
|
398 /* Do LTP downscaling */
|
cannam@154
|
399 inv_gain_Q31 = silk_LSHIFT( silk_SMULWB( inv_gain_Q31, LTP_scale_Q14 ), 2 );
|
cannam@154
|
400 }
|
cannam@154
|
401 for( i = NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2; i < NSQ->sLTP_buf_idx; i++ ) {
|
cannam@154
|
402 silk_assert( i < MAX_FRAME_LENGTH );
|
cannam@154
|
403 sLTP_Q15[ i ] = silk_SMULWB( inv_gain_Q31, sLTP[ i ] );
|
cannam@154
|
404 }
|
cannam@154
|
405 }
|
cannam@154
|
406
|
cannam@154
|
407 /* Adjust for changing gain */
|
cannam@154
|
408 if( Gains_Q16[ subfr ] != NSQ->prev_gain_Q16 ) {
|
cannam@154
|
409 gain_adj_Q16 = silk_DIV32_varQ( NSQ->prev_gain_Q16, Gains_Q16[ subfr ], 16 );
|
cannam@154
|
410
|
cannam@154
|
411 /* Scale long-term shaping state */
|
cannam@154
|
412 for( i = NSQ->sLTP_shp_buf_idx - psEncC->ltp_mem_length; i < NSQ->sLTP_shp_buf_idx; i++ ) {
|
cannam@154
|
413 NSQ->sLTP_shp_Q14[ i ] = silk_SMULWW( gain_adj_Q16, NSQ->sLTP_shp_Q14[ i ] );
|
cannam@154
|
414 }
|
cannam@154
|
415
|
cannam@154
|
416 /* Scale long-term prediction state */
|
cannam@154
|
417 if( signal_type == TYPE_VOICED && NSQ->rewhite_flag == 0 ) {
|
cannam@154
|
418 for( i = NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2; i < NSQ->sLTP_buf_idx; i++ ) {
|
cannam@154
|
419 sLTP_Q15[ i ] = silk_SMULWW( gain_adj_Q16, sLTP_Q15[ i ] );
|
cannam@154
|
420 }
|
cannam@154
|
421 }
|
cannam@154
|
422
|
cannam@154
|
423 NSQ->sLF_AR_shp_Q14 = silk_SMULWW( gain_adj_Q16, NSQ->sLF_AR_shp_Q14 );
|
cannam@154
|
424 NSQ->sDiff_shp_Q14 = silk_SMULWW( gain_adj_Q16, NSQ->sDiff_shp_Q14 );
|
cannam@154
|
425
|
cannam@154
|
426 /* Scale short-term prediction and shaping states */
|
cannam@154
|
427 for( i = 0; i < NSQ_LPC_BUF_LENGTH; i++ ) {
|
cannam@154
|
428 NSQ->sLPC_Q14[ i ] = silk_SMULWW( gain_adj_Q16, NSQ->sLPC_Q14[ i ] );
|
cannam@154
|
429 }
|
cannam@154
|
430 for( i = 0; i < MAX_SHAPE_LPC_ORDER; i++ ) {
|
cannam@154
|
431 NSQ->sAR2_Q14[ i ] = silk_SMULWW( gain_adj_Q16, NSQ->sAR2_Q14[ i ] );
|
cannam@154
|
432 }
|
cannam@154
|
433
|
cannam@154
|
434 /* Save inverse gain */
|
cannam@154
|
435 NSQ->prev_gain_Q16 = Gains_Q16[ subfr ];
|
cannam@154
|
436 }
|
cannam@154
|
437 }
|