cannam@154
|
1 /***********************************************************************
|
cannam@154
|
2 Copyright (c) 2006-2011, Skype Limited. All rights reserved.
|
cannam@154
|
3 Redistribution and use in source and binary forms, with or without
|
cannam@154
|
4 modification, are permitted provided that the following conditions
|
cannam@154
|
5 are met:
|
cannam@154
|
6 - Redistributions of source code must retain the above copyright notice,
|
cannam@154
|
7 this list of conditions and the following disclaimer.
|
cannam@154
|
8 - Redistributions in binary form must reproduce the above copyright
|
cannam@154
|
9 notice, this list of conditions and the following disclaimer in the
|
cannam@154
|
10 documentation and/or other materials provided with the distribution.
|
cannam@154
|
11 - Neither the name of Internet Society, IETF or IETF Trust, nor the
|
cannam@154
|
12 names of specific contributors, may be used to endorse or promote
|
cannam@154
|
13 products derived from this software without specific prior written
|
cannam@154
|
14 permission.
|
cannam@154
|
15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
cannam@154
|
16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
cannam@154
|
17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
cannam@154
|
18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
cannam@154
|
19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
cannam@154
|
20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
cannam@154
|
21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
cannam@154
|
22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
cannam@154
|
23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
cannam@154
|
24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
cannam@154
|
25 POSSIBILITY OF SUCH DAMAGE.
|
cannam@154
|
26 ***********************************************************************/
|
cannam@154
|
27
|
cannam@154
|
28 #ifdef HAVE_CONFIG_H
|
cannam@154
|
29 #include "config.h"
|
cannam@154
|
30 #endif
|
cannam@154
|
31
|
cannam@154
|
32 #include "SigProc_FIX.h"
|
cannam@154
|
33 #include "define.h"
|
cannam@154
|
34
|
cannam@154
|
35 #define QA 24
|
cannam@154
|
36 #define A_LIMIT SILK_FIX_CONST( 0.99975, QA )
|
cannam@154
|
37
|
cannam@154
|
38 #define MUL32_FRAC_Q(a32, b32, Q) ((opus_int32)(silk_RSHIFT_ROUND64(silk_SMULL(a32, b32), Q)))
|
cannam@154
|
39
|
cannam@154
|
40 /* Compute inverse of LPC prediction gain, and */
|
cannam@154
|
41 /* test if LPC coefficients are stable (all poles within unit circle) */
|
cannam@154
|
42 static opus_int32 LPC_inverse_pred_gain_QA_c( /* O Returns inverse prediction gain in energy domain, Q30 */
|
cannam@154
|
43 opus_int32 A_QA[ SILK_MAX_ORDER_LPC ], /* I Prediction coefficients */
|
cannam@154
|
44 const opus_int order /* I Prediction order */
|
cannam@154
|
45 )
|
cannam@154
|
46 {
|
cannam@154
|
47 opus_int k, n, mult2Q;
|
cannam@154
|
48 opus_int32 invGain_Q30, rc_Q31, rc_mult1_Q30, rc_mult2, tmp1, tmp2;
|
cannam@154
|
49
|
cannam@154
|
50 invGain_Q30 = SILK_FIX_CONST( 1, 30 );
|
cannam@154
|
51 for( k = order - 1; k > 0; k-- ) {
|
cannam@154
|
52 /* Check for stability */
|
cannam@154
|
53 if( ( A_QA[ k ] > A_LIMIT ) || ( A_QA[ k ] < -A_LIMIT ) ) {
|
cannam@154
|
54 return 0;
|
cannam@154
|
55 }
|
cannam@154
|
56
|
cannam@154
|
57 /* Set RC equal to negated AR coef */
|
cannam@154
|
58 rc_Q31 = -silk_LSHIFT( A_QA[ k ], 31 - QA );
|
cannam@154
|
59
|
cannam@154
|
60 /* rc_mult1_Q30 range: [ 1 : 2^30 ] */
|
cannam@154
|
61 rc_mult1_Q30 = silk_SUB32( SILK_FIX_CONST( 1, 30 ), silk_SMMUL( rc_Q31, rc_Q31 ) );
|
cannam@154
|
62 silk_assert( rc_mult1_Q30 > ( 1 << 15 ) ); /* reduce A_LIMIT if fails */
|
cannam@154
|
63 silk_assert( rc_mult1_Q30 <= ( 1 << 30 ) );
|
cannam@154
|
64
|
cannam@154
|
65 /* Update inverse gain */
|
cannam@154
|
66 /* invGain_Q30 range: [ 0 : 2^30 ] */
|
cannam@154
|
67 invGain_Q30 = silk_LSHIFT( silk_SMMUL( invGain_Q30, rc_mult1_Q30 ), 2 );
|
cannam@154
|
68 silk_assert( invGain_Q30 >= 0 );
|
cannam@154
|
69 silk_assert( invGain_Q30 <= ( 1 << 30 ) );
|
cannam@154
|
70 if( invGain_Q30 < SILK_FIX_CONST( 1.0f / MAX_PREDICTION_POWER_GAIN, 30 ) ) {
|
cannam@154
|
71 return 0;
|
cannam@154
|
72 }
|
cannam@154
|
73
|
cannam@154
|
74 /* rc_mult2 range: [ 2^30 : silk_int32_MAX ] */
|
cannam@154
|
75 mult2Q = 32 - silk_CLZ32( silk_abs( rc_mult1_Q30 ) );
|
cannam@154
|
76 rc_mult2 = silk_INVERSE32_varQ( rc_mult1_Q30, mult2Q + 30 );
|
cannam@154
|
77
|
cannam@154
|
78 /* Update AR coefficient */
|
cannam@154
|
79 for( n = 0; n < (k + 1) >> 1; n++ ) {
|
cannam@154
|
80 opus_int64 tmp64;
|
cannam@154
|
81 tmp1 = A_QA[ n ];
|
cannam@154
|
82 tmp2 = A_QA[ k - n - 1 ];
|
cannam@154
|
83 tmp64 = silk_RSHIFT_ROUND64( silk_SMULL( silk_SUB_SAT32(tmp1,
|
cannam@154
|
84 MUL32_FRAC_Q( tmp2, rc_Q31, 31 ) ), rc_mult2 ), mult2Q);
|
cannam@154
|
85 if( tmp64 > silk_int32_MAX || tmp64 < silk_int32_MIN ) {
|
cannam@154
|
86 return 0;
|
cannam@154
|
87 }
|
cannam@154
|
88 A_QA[ n ] = ( opus_int32 )tmp64;
|
cannam@154
|
89 tmp64 = silk_RSHIFT_ROUND64( silk_SMULL( silk_SUB_SAT32(tmp2,
|
cannam@154
|
90 MUL32_FRAC_Q( tmp1, rc_Q31, 31 ) ), rc_mult2), mult2Q);
|
cannam@154
|
91 if( tmp64 > silk_int32_MAX || tmp64 < silk_int32_MIN ) {
|
cannam@154
|
92 return 0;
|
cannam@154
|
93 }
|
cannam@154
|
94 A_QA[ k - n - 1 ] = ( opus_int32 )tmp64;
|
cannam@154
|
95 }
|
cannam@154
|
96 }
|
cannam@154
|
97
|
cannam@154
|
98 /* Check for stability */
|
cannam@154
|
99 if( ( A_QA[ k ] > A_LIMIT ) || ( A_QA[ k ] < -A_LIMIT ) ) {
|
cannam@154
|
100 return 0;
|
cannam@154
|
101 }
|
cannam@154
|
102
|
cannam@154
|
103 /* Set RC equal to negated AR coef */
|
cannam@154
|
104 rc_Q31 = -silk_LSHIFT( A_QA[ 0 ], 31 - QA );
|
cannam@154
|
105
|
cannam@154
|
106 /* Range: [ 1 : 2^30 ] */
|
cannam@154
|
107 rc_mult1_Q30 = silk_SUB32( SILK_FIX_CONST( 1, 30 ), silk_SMMUL( rc_Q31, rc_Q31 ) );
|
cannam@154
|
108
|
cannam@154
|
109 /* Update inverse gain */
|
cannam@154
|
110 /* Range: [ 0 : 2^30 ] */
|
cannam@154
|
111 invGain_Q30 = silk_LSHIFT( silk_SMMUL( invGain_Q30, rc_mult1_Q30 ), 2 );
|
cannam@154
|
112 silk_assert( invGain_Q30 >= 0 );
|
cannam@154
|
113 silk_assert( invGain_Q30 <= ( 1 << 30 ) );
|
cannam@154
|
114 if( invGain_Q30 < SILK_FIX_CONST( 1.0f / MAX_PREDICTION_POWER_GAIN, 30 ) ) {
|
cannam@154
|
115 return 0;
|
cannam@154
|
116 }
|
cannam@154
|
117
|
cannam@154
|
118 return invGain_Q30;
|
cannam@154
|
119 }
|
cannam@154
|
120
|
cannam@154
|
121 /* For input in Q12 domain */
|
cannam@154
|
122 opus_int32 silk_LPC_inverse_pred_gain_c( /* O Returns inverse prediction gain in energy domain, Q30 */
|
cannam@154
|
123 const opus_int16 *A_Q12, /* I Prediction coefficients, Q12 [order] */
|
cannam@154
|
124 const opus_int order /* I Prediction order */
|
cannam@154
|
125 )
|
cannam@154
|
126 {
|
cannam@154
|
127 opus_int k;
|
cannam@154
|
128 opus_int32 Atmp_QA[ SILK_MAX_ORDER_LPC ];
|
cannam@154
|
129 opus_int32 DC_resp = 0;
|
cannam@154
|
130
|
cannam@154
|
131 /* Increase Q domain of the AR coefficients */
|
cannam@154
|
132 for( k = 0; k < order; k++ ) {
|
cannam@154
|
133 DC_resp += (opus_int32)A_Q12[ k ];
|
cannam@154
|
134 Atmp_QA[ k ] = silk_LSHIFT32( (opus_int32)A_Q12[ k ], QA - 12 );
|
cannam@154
|
135 }
|
cannam@154
|
136 /* If the DC is unstable, we don't even need to do the full calculations */
|
cannam@154
|
137 if( DC_resp >= 4096 ) {
|
cannam@154
|
138 return 0;
|
cannam@154
|
139 }
|
cannam@154
|
140 return LPC_inverse_pred_gain_QA_c( Atmp_QA, order );
|
cannam@154
|
141 }
|