annotate src/opus-1.3/celt/mdct.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 4664ac0c1032
children
rev   line source
cannam@154 1 /* Copyright (c) 2007-2008 CSIRO
cannam@154 2 Copyright (c) 2007-2008 Xiph.Org Foundation
cannam@154 3 Written by Jean-Marc Valin */
cannam@154 4 /*
cannam@154 5 Redistribution and use in source and binary forms, with or without
cannam@154 6 modification, are permitted provided that the following conditions
cannam@154 7 are met:
cannam@154 8
cannam@154 9 - Redistributions of source code must retain the above copyright
cannam@154 10 notice, this list of conditions and the following disclaimer.
cannam@154 11
cannam@154 12 - Redistributions in binary form must reproduce the above copyright
cannam@154 13 notice, this list of conditions and the following disclaimer in the
cannam@154 14 documentation and/or other materials provided with the distribution.
cannam@154 15
cannam@154 16 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
cannam@154 17 ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
cannam@154 18 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
cannam@154 19 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
cannam@154 20 OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
cannam@154 21 EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
cannam@154 22 PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
cannam@154 23 PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
cannam@154 24 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
cannam@154 25 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
cannam@154 26 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
cannam@154 27 */
cannam@154 28
cannam@154 29 /* This is a simple MDCT implementation that uses a N/4 complex FFT
cannam@154 30 to do most of the work. It should be relatively straightforward to
cannam@154 31 plug in pretty much and FFT here.
cannam@154 32
cannam@154 33 This replaces the Vorbis FFT (and uses the exact same API), which
cannam@154 34 was a bit too messy and that was ending up duplicating code
cannam@154 35 (might as well use the same FFT everywhere).
cannam@154 36
cannam@154 37 The algorithm is similar to (and inspired from) Fabrice Bellard's
cannam@154 38 MDCT implementation in FFMPEG, but has differences in signs, ordering
cannam@154 39 and scaling in many places.
cannam@154 40 */
cannam@154 41
cannam@154 42 #ifndef SKIP_CONFIG_H
cannam@154 43 #ifdef HAVE_CONFIG_H
cannam@154 44 #include "config.h"
cannam@154 45 #endif
cannam@154 46 #endif
cannam@154 47
cannam@154 48 #include "mdct.h"
cannam@154 49 #include "kiss_fft.h"
cannam@154 50 #include "_kiss_fft_guts.h"
cannam@154 51 #include <math.h>
cannam@154 52 #include "os_support.h"
cannam@154 53 #include "mathops.h"
cannam@154 54 #include "stack_alloc.h"
cannam@154 55
cannam@154 56 #if defined(MIPSr1_ASM)
cannam@154 57 #include "mips/mdct_mipsr1.h"
cannam@154 58 #endif
cannam@154 59
cannam@154 60
cannam@154 61 #ifdef CUSTOM_MODES
cannam@154 62
cannam@154 63 int clt_mdct_init(mdct_lookup *l,int N, int maxshift, int arch)
cannam@154 64 {
cannam@154 65 int i;
cannam@154 66 kiss_twiddle_scalar *trig;
cannam@154 67 int shift;
cannam@154 68 int N2=N>>1;
cannam@154 69 l->n = N;
cannam@154 70 l->maxshift = maxshift;
cannam@154 71 for (i=0;i<=maxshift;i++)
cannam@154 72 {
cannam@154 73 if (i==0)
cannam@154 74 l->kfft[i] = opus_fft_alloc(N>>2>>i, 0, 0, arch);
cannam@154 75 else
cannam@154 76 l->kfft[i] = opus_fft_alloc_twiddles(N>>2>>i, 0, 0, l->kfft[0], arch);
cannam@154 77 #ifndef ENABLE_TI_DSPLIB55
cannam@154 78 if (l->kfft[i]==NULL)
cannam@154 79 return 0;
cannam@154 80 #endif
cannam@154 81 }
cannam@154 82 l->trig = trig = (kiss_twiddle_scalar*)opus_alloc((N-(N2>>maxshift))*sizeof(kiss_twiddle_scalar));
cannam@154 83 if (l->trig==NULL)
cannam@154 84 return 0;
cannam@154 85 for (shift=0;shift<=maxshift;shift++)
cannam@154 86 {
cannam@154 87 /* We have enough points that sine isn't necessary */
cannam@154 88 #if defined(FIXED_POINT)
cannam@154 89 #if 1
cannam@154 90 for (i=0;i<N2;i++)
cannam@154 91 trig[i] = TRIG_UPSCALE*celt_cos_norm(DIV32(ADD32(SHL32(EXTEND32(i),17),N2+16384),N));
cannam@154 92 #else
cannam@154 93 for (i=0;i<N2;i++)
cannam@154 94 trig[i] = (kiss_twiddle_scalar)MAX32(-32767,MIN32(32767,floor(.5+32768*cos(2*M_PI*(i+.125)/N))));
cannam@154 95 #endif
cannam@154 96 #else
cannam@154 97 for (i=0;i<N2;i++)
cannam@154 98 trig[i] = (kiss_twiddle_scalar)cos(2*PI*(i+.125)/N);
cannam@154 99 #endif
cannam@154 100 trig += N2;
cannam@154 101 N2 >>= 1;
cannam@154 102 N >>= 1;
cannam@154 103 }
cannam@154 104 return 1;
cannam@154 105 }
cannam@154 106
cannam@154 107 void clt_mdct_clear(mdct_lookup *l, int arch)
cannam@154 108 {
cannam@154 109 int i;
cannam@154 110 for (i=0;i<=l->maxshift;i++)
cannam@154 111 opus_fft_free(l->kfft[i], arch);
cannam@154 112 opus_free((kiss_twiddle_scalar*)l->trig);
cannam@154 113 }
cannam@154 114
cannam@154 115 #endif /* CUSTOM_MODES */
cannam@154 116
cannam@154 117 /* Forward MDCT trashes the input array */
cannam@154 118 #ifndef OVERRIDE_clt_mdct_forward
cannam@154 119 void clt_mdct_forward_c(const mdct_lookup *l, kiss_fft_scalar *in, kiss_fft_scalar * OPUS_RESTRICT out,
cannam@154 120 const opus_val16 *window, int overlap, int shift, int stride, int arch)
cannam@154 121 {
cannam@154 122 int i;
cannam@154 123 int N, N2, N4;
cannam@154 124 VARDECL(kiss_fft_scalar, f);
cannam@154 125 VARDECL(kiss_fft_cpx, f2);
cannam@154 126 const kiss_fft_state *st = l->kfft[shift];
cannam@154 127 const kiss_twiddle_scalar *trig;
cannam@154 128 opus_val16 scale;
cannam@154 129 #ifdef FIXED_POINT
cannam@154 130 /* Allows us to scale with MULT16_32_Q16(), which is faster than
cannam@154 131 MULT16_32_Q15() on ARM. */
cannam@154 132 int scale_shift = st->scale_shift-1;
cannam@154 133 #endif
cannam@154 134 SAVE_STACK;
cannam@154 135 (void)arch;
cannam@154 136 scale = st->scale;
cannam@154 137
cannam@154 138 N = l->n;
cannam@154 139 trig = l->trig;
cannam@154 140 for (i=0;i<shift;i++)
cannam@154 141 {
cannam@154 142 N >>= 1;
cannam@154 143 trig += N;
cannam@154 144 }
cannam@154 145 N2 = N>>1;
cannam@154 146 N4 = N>>2;
cannam@154 147
cannam@154 148 ALLOC(f, N2, kiss_fft_scalar);
cannam@154 149 ALLOC(f2, N4, kiss_fft_cpx);
cannam@154 150
cannam@154 151 /* Consider the input to be composed of four blocks: [a, b, c, d] */
cannam@154 152 /* Window, shuffle, fold */
cannam@154 153 {
cannam@154 154 /* Temp pointers to make it really clear to the compiler what we're doing */
cannam@154 155 const kiss_fft_scalar * OPUS_RESTRICT xp1 = in+(overlap>>1);
cannam@154 156 const kiss_fft_scalar * OPUS_RESTRICT xp2 = in+N2-1+(overlap>>1);
cannam@154 157 kiss_fft_scalar * OPUS_RESTRICT yp = f;
cannam@154 158 const opus_val16 * OPUS_RESTRICT wp1 = window+(overlap>>1);
cannam@154 159 const opus_val16 * OPUS_RESTRICT wp2 = window+(overlap>>1)-1;
cannam@154 160 for(i=0;i<((overlap+3)>>2);i++)
cannam@154 161 {
cannam@154 162 /* Real part arranged as -d-cR, Imag part arranged as -b+aR*/
cannam@154 163 *yp++ = MULT16_32_Q15(*wp2, xp1[N2]) + MULT16_32_Q15(*wp1,*xp2);
cannam@154 164 *yp++ = MULT16_32_Q15(*wp1, *xp1) - MULT16_32_Q15(*wp2, xp2[-N2]);
cannam@154 165 xp1+=2;
cannam@154 166 xp2-=2;
cannam@154 167 wp1+=2;
cannam@154 168 wp2-=2;
cannam@154 169 }
cannam@154 170 wp1 = window;
cannam@154 171 wp2 = window+overlap-1;
cannam@154 172 for(;i<N4-((overlap+3)>>2);i++)
cannam@154 173 {
cannam@154 174 /* Real part arranged as a-bR, Imag part arranged as -c-dR */
cannam@154 175 *yp++ = *xp2;
cannam@154 176 *yp++ = *xp1;
cannam@154 177 xp1+=2;
cannam@154 178 xp2-=2;
cannam@154 179 }
cannam@154 180 for(;i<N4;i++)
cannam@154 181 {
cannam@154 182 /* Real part arranged as a-bR, Imag part arranged as -c-dR */
cannam@154 183 *yp++ = -MULT16_32_Q15(*wp1, xp1[-N2]) + MULT16_32_Q15(*wp2, *xp2);
cannam@154 184 *yp++ = MULT16_32_Q15(*wp2, *xp1) + MULT16_32_Q15(*wp1, xp2[N2]);
cannam@154 185 xp1+=2;
cannam@154 186 xp2-=2;
cannam@154 187 wp1+=2;
cannam@154 188 wp2-=2;
cannam@154 189 }
cannam@154 190 }
cannam@154 191 /* Pre-rotation */
cannam@154 192 {
cannam@154 193 kiss_fft_scalar * OPUS_RESTRICT yp = f;
cannam@154 194 const kiss_twiddle_scalar *t = &trig[0];
cannam@154 195 for(i=0;i<N4;i++)
cannam@154 196 {
cannam@154 197 kiss_fft_cpx yc;
cannam@154 198 kiss_twiddle_scalar t0, t1;
cannam@154 199 kiss_fft_scalar re, im, yr, yi;
cannam@154 200 t0 = t[i];
cannam@154 201 t1 = t[N4+i];
cannam@154 202 re = *yp++;
cannam@154 203 im = *yp++;
cannam@154 204 yr = S_MUL(re,t0) - S_MUL(im,t1);
cannam@154 205 yi = S_MUL(im,t0) + S_MUL(re,t1);
cannam@154 206 yc.r = yr;
cannam@154 207 yc.i = yi;
cannam@154 208 yc.r = PSHR32(MULT16_32_Q16(scale, yc.r), scale_shift);
cannam@154 209 yc.i = PSHR32(MULT16_32_Q16(scale, yc.i), scale_shift);
cannam@154 210 f2[st->bitrev[i]] = yc;
cannam@154 211 }
cannam@154 212 }
cannam@154 213
cannam@154 214 /* N/4 complex FFT, does not downscale anymore */
cannam@154 215 opus_fft_impl(st, f2);
cannam@154 216
cannam@154 217 /* Post-rotate */
cannam@154 218 {
cannam@154 219 /* Temp pointers to make it really clear to the compiler what we're doing */
cannam@154 220 const kiss_fft_cpx * OPUS_RESTRICT fp = f2;
cannam@154 221 kiss_fft_scalar * OPUS_RESTRICT yp1 = out;
cannam@154 222 kiss_fft_scalar * OPUS_RESTRICT yp2 = out+stride*(N2-1);
cannam@154 223 const kiss_twiddle_scalar *t = &trig[0];
cannam@154 224 /* Temp pointers to make it really clear to the compiler what we're doing */
cannam@154 225 for(i=0;i<N4;i++)
cannam@154 226 {
cannam@154 227 kiss_fft_scalar yr, yi;
cannam@154 228 yr = S_MUL(fp->i,t[N4+i]) - S_MUL(fp->r,t[i]);
cannam@154 229 yi = S_MUL(fp->r,t[N4+i]) + S_MUL(fp->i,t[i]);
cannam@154 230 *yp1 = yr;
cannam@154 231 *yp2 = yi;
cannam@154 232 fp++;
cannam@154 233 yp1 += 2*stride;
cannam@154 234 yp2 -= 2*stride;
cannam@154 235 }
cannam@154 236 }
cannam@154 237 RESTORE_STACK;
cannam@154 238 }
cannam@154 239 #endif /* OVERRIDE_clt_mdct_forward */
cannam@154 240
cannam@154 241 #ifndef OVERRIDE_clt_mdct_backward
cannam@154 242 void clt_mdct_backward_c(const mdct_lookup *l, kiss_fft_scalar *in, kiss_fft_scalar * OPUS_RESTRICT out,
cannam@154 243 const opus_val16 * OPUS_RESTRICT window, int overlap, int shift, int stride, int arch)
cannam@154 244 {
cannam@154 245 int i;
cannam@154 246 int N, N2, N4;
cannam@154 247 const kiss_twiddle_scalar *trig;
cannam@154 248 (void) arch;
cannam@154 249
cannam@154 250 N = l->n;
cannam@154 251 trig = l->trig;
cannam@154 252 for (i=0;i<shift;i++)
cannam@154 253 {
cannam@154 254 N >>= 1;
cannam@154 255 trig += N;
cannam@154 256 }
cannam@154 257 N2 = N>>1;
cannam@154 258 N4 = N>>2;
cannam@154 259
cannam@154 260 /* Pre-rotate */
cannam@154 261 {
cannam@154 262 /* Temp pointers to make it really clear to the compiler what we're doing */
cannam@154 263 const kiss_fft_scalar * OPUS_RESTRICT xp1 = in;
cannam@154 264 const kiss_fft_scalar * OPUS_RESTRICT xp2 = in+stride*(N2-1);
cannam@154 265 kiss_fft_scalar * OPUS_RESTRICT yp = out+(overlap>>1);
cannam@154 266 const kiss_twiddle_scalar * OPUS_RESTRICT t = &trig[0];
cannam@154 267 const opus_int16 * OPUS_RESTRICT bitrev = l->kfft[shift]->bitrev;
cannam@154 268 for(i=0;i<N4;i++)
cannam@154 269 {
cannam@154 270 int rev;
cannam@154 271 kiss_fft_scalar yr, yi;
cannam@154 272 rev = *bitrev++;
cannam@154 273 yr = ADD32_ovflw(S_MUL(*xp2, t[i]), S_MUL(*xp1, t[N4+i]));
cannam@154 274 yi = SUB32_ovflw(S_MUL(*xp1, t[i]), S_MUL(*xp2, t[N4+i]));
cannam@154 275 /* We swap real and imag because we use an FFT instead of an IFFT. */
cannam@154 276 yp[2*rev+1] = yr;
cannam@154 277 yp[2*rev] = yi;
cannam@154 278 /* Storing the pre-rotation directly in the bitrev order. */
cannam@154 279 xp1+=2*stride;
cannam@154 280 xp2-=2*stride;
cannam@154 281 }
cannam@154 282 }
cannam@154 283
cannam@154 284 opus_fft_impl(l->kfft[shift], (kiss_fft_cpx*)(out+(overlap>>1)));
cannam@154 285
cannam@154 286 /* Post-rotate and de-shuffle from both ends of the buffer at once to make
cannam@154 287 it in-place. */
cannam@154 288 {
cannam@154 289 kiss_fft_scalar * yp0 = out+(overlap>>1);
cannam@154 290 kiss_fft_scalar * yp1 = out+(overlap>>1)+N2-2;
cannam@154 291 const kiss_twiddle_scalar *t = &trig[0];
cannam@154 292 /* Loop to (N4+1)>>1 to handle odd N4. When N4 is odd, the
cannam@154 293 middle pair will be computed twice. */
cannam@154 294 for(i=0;i<(N4+1)>>1;i++)
cannam@154 295 {
cannam@154 296 kiss_fft_scalar re, im, yr, yi;
cannam@154 297 kiss_twiddle_scalar t0, t1;
cannam@154 298 /* We swap real and imag because we're using an FFT instead of an IFFT. */
cannam@154 299 re = yp0[1];
cannam@154 300 im = yp0[0];
cannam@154 301 t0 = t[i];
cannam@154 302 t1 = t[N4+i];
cannam@154 303 /* We'd scale up by 2 here, but instead it's done when mixing the windows */
cannam@154 304 yr = ADD32_ovflw(S_MUL(re,t0), S_MUL(im,t1));
cannam@154 305 yi = SUB32_ovflw(S_MUL(re,t1), S_MUL(im,t0));
cannam@154 306 /* We swap real and imag because we're using an FFT instead of an IFFT. */
cannam@154 307 re = yp1[1];
cannam@154 308 im = yp1[0];
cannam@154 309 yp0[0] = yr;
cannam@154 310 yp1[1] = yi;
cannam@154 311
cannam@154 312 t0 = t[(N4-i-1)];
cannam@154 313 t1 = t[(N2-i-1)];
cannam@154 314 /* We'd scale up by 2 here, but instead it's done when mixing the windows */
cannam@154 315 yr = ADD32_ovflw(S_MUL(re,t0), S_MUL(im,t1));
cannam@154 316 yi = SUB32_ovflw(S_MUL(re,t1), S_MUL(im,t0));
cannam@154 317 yp1[0] = yr;
cannam@154 318 yp0[1] = yi;
cannam@154 319 yp0 += 2;
cannam@154 320 yp1 -= 2;
cannam@154 321 }
cannam@154 322 }
cannam@154 323
cannam@154 324 /* Mirror on both sides for TDAC */
cannam@154 325 {
cannam@154 326 kiss_fft_scalar * OPUS_RESTRICT xp1 = out+overlap-1;
cannam@154 327 kiss_fft_scalar * OPUS_RESTRICT yp1 = out;
cannam@154 328 const opus_val16 * OPUS_RESTRICT wp1 = window;
cannam@154 329 const opus_val16 * OPUS_RESTRICT wp2 = window+overlap-1;
cannam@154 330
cannam@154 331 for(i = 0; i < overlap/2; i++)
cannam@154 332 {
cannam@154 333 kiss_fft_scalar x1, x2;
cannam@154 334 x1 = *xp1;
cannam@154 335 x2 = *yp1;
cannam@154 336 *yp1++ = SUB32_ovflw(MULT16_32_Q15(*wp2, x2), MULT16_32_Q15(*wp1, x1));
cannam@154 337 *xp1-- = ADD32_ovflw(MULT16_32_Q15(*wp1, x2), MULT16_32_Q15(*wp2, x1));
cannam@154 338 wp1++;
cannam@154 339 wp2--;
cannam@154 340 }
cannam@154 341 }
cannam@154 342 }
cannam@154 343 #endif /* OVERRIDE_clt_mdct_backward */