cannam@154
|
1 /* Copyright (c) 2007-2008 CSIRO
|
cannam@154
|
2 Copyright (c) 2007-2008 Xiph.Org Foundation
|
cannam@154
|
3 Written by Jean-Marc Valin */
|
cannam@154
|
4 /*
|
cannam@154
|
5 Redistribution and use in source and binary forms, with or without
|
cannam@154
|
6 modification, are permitted provided that the following conditions
|
cannam@154
|
7 are met:
|
cannam@154
|
8
|
cannam@154
|
9 - Redistributions of source code must retain the above copyright
|
cannam@154
|
10 notice, this list of conditions and the following disclaimer.
|
cannam@154
|
11
|
cannam@154
|
12 - Redistributions in binary form must reproduce the above copyright
|
cannam@154
|
13 notice, this list of conditions and the following disclaimer in the
|
cannam@154
|
14 documentation and/or other materials provided with the distribution.
|
cannam@154
|
15
|
cannam@154
|
16 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
cannam@154
|
17 ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
cannam@154
|
18 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
cannam@154
|
19 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
cannam@154
|
20 OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
cannam@154
|
21 EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
cannam@154
|
22 PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
cannam@154
|
23 PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
cannam@154
|
24 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
cannam@154
|
25 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
cannam@154
|
26 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
cannam@154
|
27 */
|
cannam@154
|
28
|
cannam@154
|
29 /* This is a simple MDCT implementation that uses a N/4 complex FFT
|
cannam@154
|
30 to do most of the work. It should be relatively straightforward to
|
cannam@154
|
31 plug in pretty much and FFT here.
|
cannam@154
|
32
|
cannam@154
|
33 This replaces the Vorbis FFT (and uses the exact same API), which
|
cannam@154
|
34 was a bit too messy and that was ending up duplicating code
|
cannam@154
|
35 (might as well use the same FFT everywhere).
|
cannam@154
|
36
|
cannam@154
|
37 The algorithm is similar to (and inspired from) Fabrice Bellard's
|
cannam@154
|
38 MDCT implementation in FFMPEG, but has differences in signs, ordering
|
cannam@154
|
39 and scaling in many places.
|
cannam@154
|
40 */
|
cannam@154
|
41
|
cannam@154
|
42 #ifndef SKIP_CONFIG_H
|
cannam@154
|
43 #ifdef HAVE_CONFIG_H
|
cannam@154
|
44 #include "config.h"
|
cannam@154
|
45 #endif
|
cannam@154
|
46 #endif
|
cannam@154
|
47
|
cannam@154
|
48 #include "mdct.h"
|
cannam@154
|
49 #include "kiss_fft.h"
|
cannam@154
|
50 #include "_kiss_fft_guts.h"
|
cannam@154
|
51 #include <math.h>
|
cannam@154
|
52 #include "os_support.h"
|
cannam@154
|
53 #include "mathops.h"
|
cannam@154
|
54 #include "stack_alloc.h"
|
cannam@154
|
55
|
cannam@154
|
56 #if defined(MIPSr1_ASM)
|
cannam@154
|
57 #include "mips/mdct_mipsr1.h"
|
cannam@154
|
58 #endif
|
cannam@154
|
59
|
cannam@154
|
60
|
cannam@154
|
61 #ifdef CUSTOM_MODES
|
cannam@154
|
62
|
cannam@154
|
63 int clt_mdct_init(mdct_lookup *l,int N, int maxshift, int arch)
|
cannam@154
|
64 {
|
cannam@154
|
65 int i;
|
cannam@154
|
66 kiss_twiddle_scalar *trig;
|
cannam@154
|
67 int shift;
|
cannam@154
|
68 int N2=N>>1;
|
cannam@154
|
69 l->n = N;
|
cannam@154
|
70 l->maxshift = maxshift;
|
cannam@154
|
71 for (i=0;i<=maxshift;i++)
|
cannam@154
|
72 {
|
cannam@154
|
73 if (i==0)
|
cannam@154
|
74 l->kfft[i] = opus_fft_alloc(N>>2>>i, 0, 0, arch);
|
cannam@154
|
75 else
|
cannam@154
|
76 l->kfft[i] = opus_fft_alloc_twiddles(N>>2>>i, 0, 0, l->kfft[0], arch);
|
cannam@154
|
77 #ifndef ENABLE_TI_DSPLIB55
|
cannam@154
|
78 if (l->kfft[i]==NULL)
|
cannam@154
|
79 return 0;
|
cannam@154
|
80 #endif
|
cannam@154
|
81 }
|
cannam@154
|
82 l->trig = trig = (kiss_twiddle_scalar*)opus_alloc((N-(N2>>maxshift))*sizeof(kiss_twiddle_scalar));
|
cannam@154
|
83 if (l->trig==NULL)
|
cannam@154
|
84 return 0;
|
cannam@154
|
85 for (shift=0;shift<=maxshift;shift++)
|
cannam@154
|
86 {
|
cannam@154
|
87 /* We have enough points that sine isn't necessary */
|
cannam@154
|
88 #if defined(FIXED_POINT)
|
cannam@154
|
89 #if 1
|
cannam@154
|
90 for (i=0;i<N2;i++)
|
cannam@154
|
91 trig[i] = TRIG_UPSCALE*celt_cos_norm(DIV32(ADD32(SHL32(EXTEND32(i),17),N2+16384),N));
|
cannam@154
|
92 #else
|
cannam@154
|
93 for (i=0;i<N2;i++)
|
cannam@154
|
94 trig[i] = (kiss_twiddle_scalar)MAX32(-32767,MIN32(32767,floor(.5+32768*cos(2*M_PI*(i+.125)/N))));
|
cannam@154
|
95 #endif
|
cannam@154
|
96 #else
|
cannam@154
|
97 for (i=0;i<N2;i++)
|
cannam@154
|
98 trig[i] = (kiss_twiddle_scalar)cos(2*PI*(i+.125)/N);
|
cannam@154
|
99 #endif
|
cannam@154
|
100 trig += N2;
|
cannam@154
|
101 N2 >>= 1;
|
cannam@154
|
102 N >>= 1;
|
cannam@154
|
103 }
|
cannam@154
|
104 return 1;
|
cannam@154
|
105 }
|
cannam@154
|
106
|
cannam@154
|
107 void clt_mdct_clear(mdct_lookup *l, int arch)
|
cannam@154
|
108 {
|
cannam@154
|
109 int i;
|
cannam@154
|
110 for (i=0;i<=l->maxshift;i++)
|
cannam@154
|
111 opus_fft_free(l->kfft[i], arch);
|
cannam@154
|
112 opus_free((kiss_twiddle_scalar*)l->trig);
|
cannam@154
|
113 }
|
cannam@154
|
114
|
cannam@154
|
115 #endif /* CUSTOM_MODES */
|
cannam@154
|
116
|
cannam@154
|
117 /* Forward MDCT trashes the input array */
|
cannam@154
|
118 #ifndef OVERRIDE_clt_mdct_forward
|
cannam@154
|
119 void clt_mdct_forward_c(const mdct_lookup *l, kiss_fft_scalar *in, kiss_fft_scalar * OPUS_RESTRICT out,
|
cannam@154
|
120 const opus_val16 *window, int overlap, int shift, int stride, int arch)
|
cannam@154
|
121 {
|
cannam@154
|
122 int i;
|
cannam@154
|
123 int N, N2, N4;
|
cannam@154
|
124 VARDECL(kiss_fft_scalar, f);
|
cannam@154
|
125 VARDECL(kiss_fft_cpx, f2);
|
cannam@154
|
126 const kiss_fft_state *st = l->kfft[shift];
|
cannam@154
|
127 const kiss_twiddle_scalar *trig;
|
cannam@154
|
128 opus_val16 scale;
|
cannam@154
|
129 #ifdef FIXED_POINT
|
cannam@154
|
130 /* Allows us to scale with MULT16_32_Q16(), which is faster than
|
cannam@154
|
131 MULT16_32_Q15() on ARM. */
|
cannam@154
|
132 int scale_shift = st->scale_shift-1;
|
cannam@154
|
133 #endif
|
cannam@154
|
134 SAVE_STACK;
|
cannam@154
|
135 (void)arch;
|
cannam@154
|
136 scale = st->scale;
|
cannam@154
|
137
|
cannam@154
|
138 N = l->n;
|
cannam@154
|
139 trig = l->trig;
|
cannam@154
|
140 for (i=0;i<shift;i++)
|
cannam@154
|
141 {
|
cannam@154
|
142 N >>= 1;
|
cannam@154
|
143 trig += N;
|
cannam@154
|
144 }
|
cannam@154
|
145 N2 = N>>1;
|
cannam@154
|
146 N4 = N>>2;
|
cannam@154
|
147
|
cannam@154
|
148 ALLOC(f, N2, kiss_fft_scalar);
|
cannam@154
|
149 ALLOC(f2, N4, kiss_fft_cpx);
|
cannam@154
|
150
|
cannam@154
|
151 /* Consider the input to be composed of four blocks: [a, b, c, d] */
|
cannam@154
|
152 /* Window, shuffle, fold */
|
cannam@154
|
153 {
|
cannam@154
|
154 /* Temp pointers to make it really clear to the compiler what we're doing */
|
cannam@154
|
155 const kiss_fft_scalar * OPUS_RESTRICT xp1 = in+(overlap>>1);
|
cannam@154
|
156 const kiss_fft_scalar * OPUS_RESTRICT xp2 = in+N2-1+(overlap>>1);
|
cannam@154
|
157 kiss_fft_scalar * OPUS_RESTRICT yp = f;
|
cannam@154
|
158 const opus_val16 * OPUS_RESTRICT wp1 = window+(overlap>>1);
|
cannam@154
|
159 const opus_val16 * OPUS_RESTRICT wp2 = window+(overlap>>1)-1;
|
cannam@154
|
160 for(i=0;i<((overlap+3)>>2);i++)
|
cannam@154
|
161 {
|
cannam@154
|
162 /* Real part arranged as -d-cR, Imag part arranged as -b+aR*/
|
cannam@154
|
163 *yp++ = MULT16_32_Q15(*wp2, xp1[N2]) + MULT16_32_Q15(*wp1,*xp2);
|
cannam@154
|
164 *yp++ = MULT16_32_Q15(*wp1, *xp1) - MULT16_32_Q15(*wp2, xp2[-N2]);
|
cannam@154
|
165 xp1+=2;
|
cannam@154
|
166 xp2-=2;
|
cannam@154
|
167 wp1+=2;
|
cannam@154
|
168 wp2-=2;
|
cannam@154
|
169 }
|
cannam@154
|
170 wp1 = window;
|
cannam@154
|
171 wp2 = window+overlap-1;
|
cannam@154
|
172 for(;i<N4-((overlap+3)>>2);i++)
|
cannam@154
|
173 {
|
cannam@154
|
174 /* Real part arranged as a-bR, Imag part arranged as -c-dR */
|
cannam@154
|
175 *yp++ = *xp2;
|
cannam@154
|
176 *yp++ = *xp1;
|
cannam@154
|
177 xp1+=2;
|
cannam@154
|
178 xp2-=2;
|
cannam@154
|
179 }
|
cannam@154
|
180 for(;i<N4;i++)
|
cannam@154
|
181 {
|
cannam@154
|
182 /* Real part arranged as a-bR, Imag part arranged as -c-dR */
|
cannam@154
|
183 *yp++ = -MULT16_32_Q15(*wp1, xp1[-N2]) + MULT16_32_Q15(*wp2, *xp2);
|
cannam@154
|
184 *yp++ = MULT16_32_Q15(*wp2, *xp1) + MULT16_32_Q15(*wp1, xp2[N2]);
|
cannam@154
|
185 xp1+=2;
|
cannam@154
|
186 xp2-=2;
|
cannam@154
|
187 wp1+=2;
|
cannam@154
|
188 wp2-=2;
|
cannam@154
|
189 }
|
cannam@154
|
190 }
|
cannam@154
|
191 /* Pre-rotation */
|
cannam@154
|
192 {
|
cannam@154
|
193 kiss_fft_scalar * OPUS_RESTRICT yp = f;
|
cannam@154
|
194 const kiss_twiddle_scalar *t = &trig[0];
|
cannam@154
|
195 for(i=0;i<N4;i++)
|
cannam@154
|
196 {
|
cannam@154
|
197 kiss_fft_cpx yc;
|
cannam@154
|
198 kiss_twiddle_scalar t0, t1;
|
cannam@154
|
199 kiss_fft_scalar re, im, yr, yi;
|
cannam@154
|
200 t0 = t[i];
|
cannam@154
|
201 t1 = t[N4+i];
|
cannam@154
|
202 re = *yp++;
|
cannam@154
|
203 im = *yp++;
|
cannam@154
|
204 yr = S_MUL(re,t0) - S_MUL(im,t1);
|
cannam@154
|
205 yi = S_MUL(im,t0) + S_MUL(re,t1);
|
cannam@154
|
206 yc.r = yr;
|
cannam@154
|
207 yc.i = yi;
|
cannam@154
|
208 yc.r = PSHR32(MULT16_32_Q16(scale, yc.r), scale_shift);
|
cannam@154
|
209 yc.i = PSHR32(MULT16_32_Q16(scale, yc.i), scale_shift);
|
cannam@154
|
210 f2[st->bitrev[i]] = yc;
|
cannam@154
|
211 }
|
cannam@154
|
212 }
|
cannam@154
|
213
|
cannam@154
|
214 /* N/4 complex FFT, does not downscale anymore */
|
cannam@154
|
215 opus_fft_impl(st, f2);
|
cannam@154
|
216
|
cannam@154
|
217 /* Post-rotate */
|
cannam@154
|
218 {
|
cannam@154
|
219 /* Temp pointers to make it really clear to the compiler what we're doing */
|
cannam@154
|
220 const kiss_fft_cpx * OPUS_RESTRICT fp = f2;
|
cannam@154
|
221 kiss_fft_scalar * OPUS_RESTRICT yp1 = out;
|
cannam@154
|
222 kiss_fft_scalar * OPUS_RESTRICT yp2 = out+stride*(N2-1);
|
cannam@154
|
223 const kiss_twiddle_scalar *t = &trig[0];
|
cannam@154
|
224 /* Temp pointers to make it really clear to the compiler what we're doing */
|
cannam@154
|
225 for(i=0;i<N4;i++)
|
cannam@154
|
226 {
|
cannam@154
|
227 kiss_fft_scalar yr, yi;
|
cannam@154
|
228 yr = S_MUL(fp->i,t[N4+i]) - S_MUL(fp->r,t[i]);
|
cannam@154
|
229 yi = S_MUL(fp->r,t[N4+i]) + S_MUL(fp->i,t[i]);
|
cannam@154
|
230 *yp1 = yr;
|
cannam@154
|
231 *yp2 = yi;
|
cannam@154
|
232 fp++;
|
cannam@154
|
233 yp1 += 2*stride;
|
cannam@154
|
234 yp2 -= 2*stride;
|
cannam@154
|
235 }
|
cannam@154
|
236 }
|
cannam@154
|
237 RESTORE_STACK;
|
cannam@154
|
238 }
|
cannam@154
|
239 #endif /* OVERRIDE_clt_mdct_forward */
|
cannam@154
|
240
|
cannam@154
|
241 #ifndef OVERRIDE_clt_mdct_backward
|
cannam@154
|
242 void clt_mdct_backward_c(const mdct_lookup *l, kiss_fft_scalar *in, kiss_fft_scalar * OPUS_RESTRICT out,
|
cannam@154
|
243 const opus_val16 * OPUS_RESTRICT window, int overlap, int shift, int stride, int arch)
|
cannam@154
|
244 {
|
cannam@154
|
245 int i;
|
cannam@154
|
246 int N, N2, N4;
|
cannam@154
|
247 const kiss_twiddle_scalar *trig;
|
cannam@154
|
248 (void) arch;
|
cannam@154
|
249
|
cannam@154
|
250 N = l->n;
|
cannam@154
|
251 trig = l->trig;
|
cannam@154
|
252 for (i=0;i<shift;i++)
|
cannam@154
|
253 {
|
cannam@154
|
254 N >>= 1;
|
cannam@154
|
255 trig += N;
|
cannam@154
|
256 }
|
cannam@154
|
257 N2 = N>>1;
|
cannam@154
|
258 N4 = N>>2;
|
cannam@154
|
259
|
cannam@154
|
260 /* Pre-rotate */
|
cannam@154
|
261 {
|
cannam@154
|
262 /* Temp pointers to make it really clear to the compiler what we're doing */
|
cannam@154
|
263 const kiss_fft_scalar * OPUS_RESTRICT xp1 = in;
|
cannam@154
|
264 const kiss_fft_scalar * OPUS_RESTRICT xp2 = in+stride*(N2-1);
|
cannam@154
|
265 kiss_fft_scalar * OPUS_RESTRICT yp = out+(overlap>>1);
|
cannam@154
|
266 const kiss_twiddle_scalar * OPUS_RESTRICT t = &trig[0];
|
cannam@154
|
267 const opus_int16 * OPUS_RESTRICT bitrev = l->kfft[shift]->bitrev;
|
cannam@154
|
268 for(i=0;i<N4;i++)
|
cannam@154
|
269 {
|
cannam@154
|
270 int rev;
|
cannam@154
|
271 kiss_fft_scalar yr, yi;
|
cannam@154
|
272 rev = *bitrev++;
|
cannam@154
|
273 yr = ADD32_ovflw(S_MUL(*xp2, t[i]), S_MUL(*xp1, t[N4+i]));
|
cannam@154
|
274 yi = SUB32_ovflw(S_MUL(*xp1, t[i]), S_MUL(*xp2, t[N4+i]));
|
cannam@154
|
275 /* We swap real and imag because we use an FFT instead of an IFFT. */
|
cannam@154
|
276 yp[2*rev+1] = yr;
|
cannam@154
|
277 yp[2*rev] = yi;
|
cannam@154
|
278 /* Storing the pre-rotation directly in the bitrev order. */
|
cannam@154
|
279 xp1+=2*stride;
|
cannam@154
|
280 xp2-=2*stride;
|
cannam@154
|
281 }
|
cannam@154
|
282 }
|
cannam@154
|
283
|
cannam@154
|
284 opus_fft_impl(l->kfft[shift], (kiss_fft_cpx*)(out+(overlap>>1)));
|
cannam@154
|
285
|
cannam@154
|
286 /* Post-rotate and de-shuffle from both ends of the buffer at once to make
|
cannam@154
|
287 it in-place. */
|
cannam@154
|
288 {
|
cannam@154
|
289 kiss_fft_scalar * yp0 = out+(overlap>>1);
|
cannam@154
|
290 kiss_fft_scalar * yp1 = out+(overlap>>1)+N2-2;
|
cannam@154
|
291 const kiss_twiddle_scalar *t = &trig[0];
|
cannam@154
|
292 /* Loop to (N4+1)>>1 to handle odd N4. When N4 is odd, the
|
cannam@154
|
293 middle pair will be computed twice. */
|
cannam@154
|
294 for(i=0;i<(N4+1)>>1;i++)
|
cannam@154
|
295 {
|
cannam@154
|
296 kiss_fft_scalar re, im, yr, yi;
|
cannam@154
|
297 kiss_twiddle_scalar t0, t1;
|
cannam@154
|
298 /* We swap real and imag because we're using an FFT instead of an IFFT. */
|
cannam@154
|
299 re = yp0[1];
|
cannam@154
|
300 im = yp0[0];
|
cannam@154
|
301 t0 = t[i];
|
cannam@154
|
302 t1 = t[N4+i];
|
cannam@154
|
303 /* We'd scale up by 2 here, but instead it's done when mixing the windows */
|
cannam@154
|
304 yr = ADD32_ovflw(S_MUL(re,t0), S_MUL(im,t1));
|
cannam@154
|
305 yi = SUB32_ovflw(S_MUL(re,t1), S_MUL(im,t0));
|
cannam@154
|
306 /* We swap real and imag because we're using an FFT instead of an IFFT. */
|
cannam@154
|
307 re = yp1[1];
|
cannam@154
|
308 im = yp1[0];
|
cannam@154
|
309 yp0[0] = yr;
|
cannam@154
|
310 yp1[1] = yi;
|
cannam@154
|
311
|
cannam@154
|
312 t0 = t[(N4-i-1)];
|
cannam@154
|
313 t1 = t[(N2-i-1)];
|
cannam@154
|
314 /* We'd scale up by 2 here, but instead it's done when mixing the windows */
|
cannam@154
|
315 yr = ADD32_ovflw(S_MUL(re,t0), S_MUL(im,t1));
|
cannam@154
|
316 yi = SUB32_ovflw(S_MUL(re,t1), S_MUL(im,t0));
|
cannam@154
|
317 yp1[0] = yr;
|
cannam@154
|
318 yp0[1] = yi;
|
cannam@154
|
319 yp0 += 2;
|
cannam@154
|
320 yp1 -= 2;
|
cannam@154
|
321 }
|
cannam@154
|
322 }
|
cannam@154
|
323
|
cannam@154
|
324 /* Mirror on both sides for TDAC */
|
cannam@154
|
325 {
|
cannam@154
|
326 kiss_fft_scalar * OPUS_RESTRICT xp1 = out+overlap-1;
|
cannam@154
|
327 kiss_fft_scalar * OPUS_RESTRICT yp1 = out;
|
cannam@154
|
328 const opus_val16 * OPUS_RESTRICT wp1 = window;
|
cannam@154
|
329 const opus_val16 * OPUS_RESTRICT wp2 = window+overlap-1;
|
cannam@154
|
330
|
cannam@154
|
331 for(i = 0; i < overlap/2; i++)
|
cannam@154
|
332 {
|
cannam@154
|
333 kiss_fft_scalar x1, x2;
|
cannam@154
|
334 x1 = *xp1;
|
cannam@154
|
335 x2 = *yp1;
|
cannam@154
|
336 *yp1++ = SUB32_ovflw(MULT16_32_Q15(*wp2, x2), MULT16_32_Q15(*wp1, x1));
|
cannam@154
|
337 *xp1-- = ADD32_ovflw(MULT16_32_Q15(*wp1, x2), MULT16_32_Q15(*wp2, x1));
|
cannam@154
|
338 wp1++;
|
cannam@154
|
339 wp2--;
|
cannam@154
|
340 }
|
cannam@154
|
341 }
|
cannam@154
|
342 }
|
cannam@154
|
343 #endif /* OVERRIDE_clt_mdct_backward */
|