annotate src/opus-1.3/celt/mathops.h @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 4664ac0c1032
children
rev   line source
cannam@154 1 /* Copyright (c) 2002-2008 Jean-Marc Valin
cannam@154 2 Copyright (c) 2007-2008 CSIRO
cannam@154 3 Copyright (c) 2007-2009 Xiph.Org Foundation
cannam@154 4 Written by Jean-Marc Valin */
cannam@154 5 /**
cannam@154 6 @file mathops.h
cannam@154 7 @brief Various math functions
cannam@154 8 */
cannam@154 9 /*
cannam@154 10 Redistribution and use in source and binary forms, with or without
cannam@154 11 modification, are permitted provided that the following conditions
cannam@154 12 are met:
cannam@154 13
cannam@154 14 - Redistributions of source code must retain the above copyright
cannam@154 15 notice, this list of conditions and the following disclaimer.
cannam@154 16
cannam@154 17 - Redistributions in binary form must reproduce the above copyright
cannam@154 18 notice, this list of conditions and the following disclaimer in the
cannam@154 19 documentation and/or other materials provided with the distribution.
cannam@154 20
cannam@154 21 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
cannam@154 22 ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
cannam@154 23 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
cannam@154 24 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
cannam@154 25 OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
cannam@154 26 EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
cannam@154 27 PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
cannam@154 28 PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
cannam@154 29 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
cannam@154 30 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
cannam@154 31 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
cannam@154 32 */
cannam@154 33
cannam@154 34 #ifndef MATHOPS_H
cannam@154 35 #define MATHOPS_H
cannam@154 36
cannam@154 37 #include "arch.h"
cannam@154 38 #include "entcode.h"
cannam@154 39 #include "os_support.h"
cannam@154 40
cannam@154 41 #define PI 3.141592653f
cannam@154 42
cannam@154 43 /* Multiplies two 16-bit fractional values. Bit-exactness of this macro is important */
cannam@154 44 #define FRAC_MUL16(a,b) ((16384+((opus_int32)(opus_int16)(a)*(opus_int16)(b)))>>15)
cannam@154 45
cannam@154 46 unsigned isqrt32(opus_uint32 _val);
cannam@154 47
cannam@154 48 /* CELT doesn't need it for fixed-point, by analysis.c does. */
cannam@154 49 #if !defined(FIXED_POINT) || defined(ANALYSIS_C)
cannam@154 50 #define cA 0.43157974f
cannam@154 51 #define cB 0.67848403f
cannam@154 52 #define cC 0.08595542f
cannam@154 53 #define cE ((float)PI/2)
cannam@154 54 static OPUS_INLINE float fast_atan2f(float y, float x) {
cannam@154 55 float x2, y2;
cannam@154 56 x2 = x*x;
cannam@154 57 y2 = y*y;
cannam@154 58 /* For very small values, we don't care about the answer, so
cannam@154 59 we can just return 0. */
cannam@154 60 if (x2 + y2 < 1e-18f)
cannam@154 61 {
cannam@154 62 return 0;
cannam@154 63 }
cannam@154 64 if(x2<y2){
cannam@154 65 float den = (y2 + cB*x2) * (y2 + cC*x2);
cannam@154 66 return -x*y*(y2 + cA*x2) / den + (y<0 ? -cE : cE);
cannam@154 67 }else{
cannam@154 68 float den = (x2 + cB*y2) * (x2 + cC*y2);
cannam@154 69 return x*y*(x2 + cA*y2) / den + (y<0 ? -cE : cE) - (x*y<0 ? -cE : cE);
cannam@154 70 }
cannam@154 71 }
cannam@154 72 #undef cA
cannam@154 73 #undef cB
cannam@154 74 #undef cC
cannam@154 75 #undef cE
cannam@154 76 #endif
cannam@154 77
cannam@154 78
cannam@154 79 #ifndef OVERRIDE_CELT_MAXABS16
cannam@154 80 static OPUS_INLINE opus_val32 celt_maxabs16(const opus_val16 *x, int len)
cannam@154 81 {
cannam@154 82 int i;
cannam@154 83 opus_val16 maxval = 0;
cannam@154 84 opus_val16 minval = 0;
cannam@154 85 for (i=0;i<len;i++)
cannam@154 86 {
cannam@154 87 maxval = MAX16(maxval, x[i]);
cannam@154 88 minval = MIN16(minval, x[i]);
cannam@154 89 }
cannam@154 90 return MAX32(EXTEND32(maxval),-EXTEND32(minval));
cannam@154 91 }
cannam@154 92 #endif
cannam@154 93
cannam@154 94 #ifndef OVERRIDE_CELT_MAXABS32
cannam@154 95 #ifdef FIXED_POINT
cannam@154 96 static OPUS_INLINE opus_val32 celt_maxabs32(const opus_val32 *x, int len)
cannam@154 97 {
cannam@154 98 int i;
cannam@154 99 opus_val32 maxval = 0;
cannam@154 100 opus_val32 minval = 0;
cannam@154 101 for (i=0;i<len;i++)
cannam@154 102 {
cannam@154 103 maxval = MAX32(maxval, x[i]);
cannam@154 104 minval = MIN32(minval, x[i]);
cannam@154 105 }
cannam@154 106 return MAX32(maxval, -minval);
cannam@154 107 }
cannam@154 108 #else
cannam@154 109 #define celt_maxabs32(x,len) celt_maxabs16(x,len)
cannam@154 110 #endif
cannam@154 111 #endif
cannam@154 112
cannam@154 113
cannam@154 114 #ifndef FIXED_POINT
cannam@154 115
cannam@154 116 #define celt_sqrt(x) ((float)sqrt(x))
cannam@154 117 #define celt_rsqrt(x) (1.f/celt_sqrt(x))
cannam@154 118 #define celt_rsqrt_norm(x) (celt_rsqrt(x))
cannam@154 119 #define celt_cos_norm(x) ((float)cos((.5f*PI)*(x)))
cannam@154 120 #define celt_rcp(x) (1.f/(x))
cannam@154 121 #define celt_div(a,b) ((a)/(b))
cannam@154 122 #define frac_div32(a,b) ((float)(a)/(b))
cannam@154 123
cannam@154 124 #ifdef FLOAT_APPROX
cannam@154 125
cannam@154 126 /* Note: This assumes radix-2 floating point with the exponent at bits 23..30 and an offset of 127
cannam@154 127 denorm, +/- inf and NaN are *not* handled */
cannam@154 128
cannam@154 129 /** Base-2 log approximation (log2(x)). */
cannam@154 130 static OPUS_INLINE float celt_log2(float x)
cannam@154 131 {
cannam@154 132 int integer;
cannam@154 133 float frac;
cannam@154 134 union {
cannam@154 135 float f;
cannam@154 136 opus_uint32 i;
cannam@154 137 } in;
cannam@154 138 in.f = x;
cannam@154 139 integer = (in.i>>23)-127;
cannam@154 140 in.i -= integer<<23;
cannam@154 141 frac = in.f - 1.5f;
cannam@154 142 frac = -0.41445418f + frac*(0.95909232f
cannam@154 143 + frac*(-0.33951290f + frac*0.16541097f));
cannam@154 144 return 1+integer+frac;
cannam@154 145 }
cannam@154 146
cannam@154 147 /** Base-2 exponential approximation (2^x). */
cannam@154 148 static OPUS_INLINE float celt_exp2(float x)
cannam@154 149 {
cannam@154 150 int integer;
cannam@154 151 float frac;
cannam@154 152 union {
cannam@154 153 float f;
cannam@154 154 opus_uint32 i;
cannam@154 155 } res;
cannam@154 156 integer = floor(x);
cannam@154 157 if (integer < -50)
cannam@154 158 return 0;
cannam@154 159 frac = x-integer;
cannam@154 160 /* K0 = 1, K1 = log(2), K2 = 3-4*log(2), K3 = 3*log(2) - 2 */
cannam@154 161 res.f = 0.99992522f + frac * (0.69583354f
cannam@154 162 + frac * (0.22606716f + 0.078024523f*frac));
cannam@154 163 res.i = (res.i + (integer<<23)) & 0x7fffffff;
cannam@154 164 return res.f;
cannam@154 165 }
cannam@154 166
cannam@154 167 #else
cannam@154 168 #define celt_log2(x) ((float)(1.442695040888963387*log(x)))
cannam@154 169 #define celt_exp2(x) ((float)exp(0.6931471805599453094*(x)))
cannam@154 170 #endif
cannam@154 171
cannam@154 172 #endif
cannam@154 173
cannam@154 174 #ifdef FIXED_POINT
cannam@154 175
cannam@154 176 #include "os_support.h"
cannam@154 177
cannam@154 178 #ifndef OVERRIDE_CELT_ILOG2
cannam@154 179 /** Integer log in base2. Undefined for zero and negative numbers */
cannam@154 180 static OPUS_INLINE opus_int16 celt_ilog2(opus_int32 x)
cannam@154 181 {
cannam@154 182 celt_sig_assert(x>0);
cannam@154 183 return EC_ILOG(x)-1;
cannam@154 184 }
cannam@154 185 #endif
cannam@154 186
cannam@154 187
cannam@154 188 /** Integer log in base2. Defined for zero, but not for negative numbers */
cannam@154 189 static OPUS_INLINE opus_int16 celt_zlog2(opus_val32 x)
cannam@154 190 {
cannam@154 191 return x <= 0 ? 0 : celt_ilog2(x);
cannam@154 192 }
cannam@154 193
cannam@154 194 opus_val16 celt_rsqrt_norm(opus_val32 x);
cannam@154 195
cannam@154 196 opus_val32 celt_sqrt(opus_val32 x);
cannam@154 197
cannam@154 198 opus_val16 celt_cos_norm(opus_val32 x);
cannam@154 199
cannam@154 200 /** Base-2 logarithm approximation (log2(x)). (Q14 input, Q10 output) */
cannam@154 201 static OPUS_INLINE opus_val16 celt_log2(opus_val32 x)
cannam@154 202 {
cannam@154 203 int i;
cannam@154 204 opus_val16 n, frac;
cannam@154 205 /* -0.41509302963303146, 0.9609890551383969, -0.31836011537636605,
cannam@154 206 0.15530808010959576, -0.08556153059057618 */
cannam@154 207 static const opus_val16 C[5] = {-6801+(1<<(13-DB_SHIFT)), 15746, -5217, 2545, -1401};
cannam@154 208 if (x==0)
cannam@154 209 return -32767;
cannam@154 210 i = celt_ilog2(x);
cannam@154 211 n = VSHR32(x,i-15)-32768-16384;
cannam@154 212 frac = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2], MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, C[4]))))))));
cannam@154 213 return SHL16(i-13,DB_SHIFT)+SHR16(frac,14-DB_SHIFT);
cannam@154 214 }
cannam@154 215
cannam@154 216 /*
cannam@154 217 K0 = 1
cannam@154 218 K1 = log(2)
cannam@154 219 K2 = 3-4*log(2)
cannam@154 220 K3 = 3*log(2) - 2
cannam@154 221 */
cannam@154 222 #define D0 16383
cannam@154 223 #define D1 22804
cannam@154 224 #define D2 14819
cannam@154 225 #define D3 10204
cannam@154 226
cannam@154 227 static OPUS_INLINE opus_val32 celt_exp2_frac(opus_val16 x)
cannam@154 228 {
cannam@154 229 opus_val16 frac;
cannam@154 230 frac = SHL16(x, 4);
cannam@154 231 return ADD16(D0, MULT16_16_Q15(frac, ADD16(D1, MULT16_16_Q15(frac, ADD16(D2 , MULT16_16_Q15(D3,frac))))));
cannam@154 232 }
cannam@154 233 /** Base-2 exponential approximation (2^x). (Q10 input, Q16 output) */
cannam@154 234 static OPUS_INLINE opus_val32 celt_exp2(opus_val16 x)
cannam@154 235 {
cannam@154 236 int integer;
cannam@154 237 opus_val16 frac;
cannam@154 238 integer = SHR16(x,10);
cannam@154 239 if (integer>14)
cannam@154 240 return 0x7f000000;
cannam@154 241 else if (integer < -15)
cannam@154 242 return 0;
cannam@154 243 frac = celt_exp2_frac(x-SHL16(integer,10));
cannam@154 244 return VSHR32(EXTEND32(frac), -integer-2);
cannam@154 245 }
cannam@154 246
cannam@154 247 opus_val32 celt_rcp(opus_val32 x);
cannam@154 248
cannam@154 249 #define celt_div(a,b) MULT32_32_Q31((opus_val32)(a),celt_rcp(b))
cannam@154 250
cannam@154 251 opus_val32 frac_div32(opus_val32 a, opus_val32 b);
cannam@154 252
cannam@154 253 #define M1 32767
cannam@154 254 #define M2 -21
cannam@154 255 #define M3 -11943
cannam@154 256 #define M4 4936
cannam@154 257
cannam@154 258 /* Atan approximation using a 4th order polynomial. Input is in Q15 format
cannam@154 259 and normalized by pi/4. Output is in Q15 format */
cannam@154 260 static OPUS_INLINE opus_val16 celt_atan01(opus_val16 x)
cannam@154 261 {
cannam@154 262 return MULT16_16_P15(x, ADD32(M1, MULT16_16_P15(x, ADD32(M2, MULT16_16_P15(x, ADD32(M3, MULT16_16_P15(M4, x)))))));
cannam@154 263 }
cannam@154 264
cannam@154 265 #undef M1
cannam@154 266 #undef M2
cannam@154 267 #undef M3
cannam@154 268 #undef M4
cannam@154 269
cannam@154 270 /* atan2() approximation valid for positive input values */
cannam@154 271 static OPUS_INLINE opus_val16 celt_atan2p(opus_val16 y, opus_val16 x)
cannam@154 272 {
cannam@154 273 if (y < x)
cannam@154 274 {
cannam@154 275 opus_val32 arg;
cannam@154 276 arg = celt_div(SHL32(EXTEND32(y),15),x);
cannam@154 277 if (arg >= 32767)
cannam@154 278 arg = 32767;
cannam@154 279 return SHR16(celt_atan01(EXTRACT16(arg)),1);
cannam@154 280 } else {
cannam@154 281 opus_val32 arg;
cannam@154 282 arg = celt_div(SHL32(EXTEND32(x),15),y);
cannam@154 283 if (arg >= 32767)
cannam@154 284 arg = 32767;
cannam@154 285 return 25736-SHR16(celt_atan01(EXTRACT16(arg)),1);
cannam@154 286 }
cannam@154 287 }
cannam@154 288
cannam@154 289 #endif /* FIXED_POINT */
cannam@154 290 #endif /* MATHOPS_H */