annotate src/opus-1.3/celt/mathops.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 4664ac0c1032
children
rev   line source
cannam@154 1 /* Copyright (c) 2002-2008 Jean-Marc Valin
cannam@154 2 Copyright (c) 2007-2008 CSIRO
cannam@154 3 Copyright (c) 2007-2009 Xiph.Org Foundation
cannam@154 4 Written by Jean-Marc Valin */
cannam@154 5 /**
cannam@154 6 @file mathops.h
cannam@154 7 @brief Various math functions
cannam@154 8 */
cannam@154 9 /*
cannam@154 10 Redistribution and use in source and binary forms, with or without
cannam@154 11 modification, are permitted provided that the following conditions
cannam@154 12 are met:
cannam@154 13
cannam@154 14 - Redistributions of source code must retain the above copyright
cannam@154 15 notice, this list of conditions and the following disclaimer.
cannam@154 16
cannam@154 17 - Redistributions in binary form must reproduce the above copyright
cannam@154 18 notice, this list of conditions and the following disclaimer in the
cannam@154 19 documentation and/or other materials provided with the distribution.
cannam@154 20
cannam@154 21 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
cannam@154 22 ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
cannam@154 23 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
cannam@154 24 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
cannam@154 25 OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
cannam@154 26 EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
cannam@154 27 PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
cannam@154 28 PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
cannam@154 29 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
cannam@154 30 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
cannam@154 31 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
cannam@154 32 */
cannam@154 33
cannam@154 34 #ifdef HAVE_CONFIG_H
cannam@154 35 #include "config.h"
cannam@154 36 #endif
cannam@154 37
cannam@154 38 #include "mathops.h"
cannam@154 39
cannam@154 40 /*Compute floor(sqrt(_val)) with exact arithmetic.
cannam@154 41 _val must be greater than 0.
cannam@154 42 This has been tested on all possible 32-bit inputs greater than 0.*/
cannam@154 43 unsigned isqrt32(opus_uint32 _val){
cannam@154 44 unsigned b;
cannam@154 45 unsigned g;
cannam@154 46 int bshift;
cannam@154 47 /*Uses the second method from
cannam@154 48 http://www.azillionmonkeys.com/qed/sqroot.html
cannam@154 49 The main idea is to search for the largest binary digit b such that
cannam@154 50 (g+b)*(g+b) <= _val, and add it to the solution g.*/
cannam@154 51 g=0;
cannam@154 52 bshift=(EC_ILOG(_val)-1)>>1;
cannam@154 53 b=1U<<bshift;
cannam@154 54 do{
cannam@154 55 opus_uint32 t;
cannam@154 56 t=(((opus_uint32)g<<1)+b)<<bshift;
cannam@154 57 if(t<=_val){
cannam@154 58 g+=b;
cannam@154 59 _val-=t;
cannam@154 60 }
cannam@154 61 b>>=1;
cannam@154 62 bshift--;
cannam@154 63 }
cannam@154 64 while(bshift>=0);
cannam@154 65 return g;
cannam@154 66 }
cannam@154 67
cannam@154 68 #ifdef FIXED_POINT
cannam@154 69
cannam@154 70 opus_val32 frac_div32(opus_val32 a, opus_val32 b)
cannam@154 71 {
cannam@154 72 opus_val16 rcp;
cannam@154 73 opus_val32 result, rem;
cannam@154 74 int shift = celt_ilog2(b)-29;
cannam@154 75 a = VSHR32(a,shift);
cannam@154 76 b = VSHR32(b,shift);
cannam@154 77 /* 16-bit reciprocal */
cannam@154 78 rcp = ROUND16(celt_rcp(ROUND16(b,16)),3);
cannam@154 79 result = MULT16_32_Q15(rcp, a);
cannam@154 80 rem = PSHR32(a,2)-MULT32_32_Q31(result, b);
cannam@154 81 result = ADD32(result, SHL32(MULT16_32_Q15(rcp, rem),2));
cannam@154 82 if (result >= 536870912) /* 2^29 */
cannam@154 83 return 2147483647; /* 2^31 - 1 */
cannam@154 84 else if (result <= -536870912) /* -2^29 */
cannam@154 85 return -2147483647; /* -2^31 */
cannam@154 86 else
cannam@154 87 return SHL32(result, 2);
cannam@154 88 }
cannam@154 89
cannam@154 90 /** Reciprocal sqrt approximation in the range [0.25,1) (Q16 in, Q14 out) */
cannam@154 91 opus_val16 celt_rsqrt_norm(opus_val32 x)
cannam@154 92 {
cannam@154 93 opus_val16 n;
cannam@154 94 opus_val16 r;
cannam@154 95 opus_val16 r2;
cannam@154 96 opus_val16 y;
cannam@154 97 /* Range of n is [-16384,32767] ([-0.5,1) in Q15). */
cannam@154 98 n = x-32768;
cannam@154 99 /* Get a rough initial guess for the root.
cannam@154 100 The optimal minimax quadratic approximation (using relative error) is
cannam@154 101 r = 1.437799046117536+n*(-0.823394375837328+n*0.4096419668459485).
cannam@154 102 Coefficients here, and the final result r, are Q14.*/
cannam@154 103 r = ADD16(23557, MULT16_16_Q15(n, ADD16(-13490, MULT16_16_Q15(n, 6713))));
cannam@154 104 /* We want y = x*r*r-1 in Q15, but x is 32-bit Q16 and r is Q14.
cannam@154 105 We can compute the result from n and r using Q15 multiplies with some
cannam@154 106 adjustment, carefully done to avoid overflow.
cannam@154 107 Range of y is [-1564,1594]. */
cannam@154 108 r2 = MULT16_16_Q15(r, r);
cannam@154 109 y = SHL16(SUB16(ADD16(MULT16_16_Q15(r2, n), r2), 16384), 1);
cannam@154 110 /* Apply a 2nd-order Householder iteration: r += r*y*(y*0.375-0.5).
cannam@154 111 This yields the Q14 reciprocal square root of the Q16 x, with a maximum
cannam@154 112 relative error of 1.04956E-4, a (relative) RMSE of 2.80979E-5, and a
cannam@154 113 peak absolute error of 2.26591/16384. */
cannam@154 114 return ADD16(r, MULT16_16_Q15(r, MULT16_16_Q15(y,
cannam@154 115 SUB16(MULT16_16_Q15(y, 12288), 16384))));
cannam@154 116 }
cannam@154 117
cannam@154 118 /** Sqrt approximation (QX input, QX/2 output) */
cannam@154 119 opus_val32 celt_sqrt(opus_val32 x)
cannam@154 120 {
cannam@154 121 int k;
cannam@154 122 opus_val16 n;
cannam@154 123 opus_val32 rt;
cannam@154 124 static const opus_val16 C[5] = {23175, 11561, -3011, 1699, -664};
cannam@154 125 if (x==0)
cannam@154 126 return 0;
cannam@154 127 else if (x>=1073741824)
cannam@154 128 return 32767;
cannam@154 129 k = (celt_ilog2(x)>>1)-7;
cannam@154 130 x = VSHR32(x, 2*k);
cannam@154 131 n = x-32768;
cannam@154 132 rt = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2],
cannam@154 133 MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, (C[4])))))))));
cannam@154 134 rt = VSHR32(rt,7-k);
cannam@154 135 return rt;
cannam@154 136 }
cannam@154 137
cannam@154 138 #define L1 32767
cannam@154 139 #define L2 -7651
cannam@154 140 #define L3 8277
cannam@154 141 #define L4 -626
cannam@154 142
cannam@154 143 static OPUS_INLINE opus_val16 _celt_cos_pi_2(opus_val16 x)
cannam@154 144 {
cannam@154 145 opus_val16 x2;
cannam@154 146
cannam@154 147 x2 = MULT16_16_P15(x,x);
cannam@154 148 return ADD16(1,MIN16(32766,ADD32(SUB16(L1,x2), MULT16_16_P15(x2, ADD32(L2, MULT16_16_P15(x2, ADD32(L3, MULT16_16_P15(L4, x2
cannam@154 149 ))))))));
cannam@154 150 }
cannam@154 151
cannam@154 152 #undef L1
cannam@154 153 #undef L2
cannam@154 154 #undef L3
cannam@154 155 #undef L4
cannam@154 156
cannam@154 157 opus_val16 celt_cos_norm(opus_val32 x)
cannam@154 158 {
cannam@154 159 x = x&0x0001ffff;
cannam@154 160 if (x>SHL32(EXTEND32(1), 16))
cannam@154 161 x = SUB32(SHL32(EXTEND32(1), 17),x);
cannam@154 162 if (x&0x00007fff)
cannam@154 163 {
cannam@154 164 if (x<SHL32(EXTEND32(1), 15))
cannam@154 165 {
cannam@154 166 return _celt_cos_pi_2(EXTRACT16(x));
cannam@154 167 } else {
cannam@154 168 return NEG16(_celt_cos_pi_2(EXTRACT16(65536-x)));
cannam@154 169 }
cannam@154 170 } else {
cannam@154 171 if (x&0x0000ffff)
cannam@154 172 return 0;
cannam@154 173 else if (x&0x0001ffff)
cannam@154 174 return -32767;
cannam@154 175 else
cannam@154 176 return 32767;
cannam@154 177 }
cannam@154 178 }
cannam@154 179
cannam@154 180 /** Reciprocal approximation (Q15 input, Q16 output) */
cannam@154 181 opus_val32 celt_rcp(opus_val32 x)
cannam@154 182 {
cannam@154 183 int i;
cannam@154 184 opus_val16 n;
cannam@154 185 opus_val16 r;
cannam@154 186 celt_sig_assert(x>0);
cannam@154 187 i = celt_ilog2(x);
cannam@154 188 /* n is Q15 with range [0,1). */
cannam@154 189 n = VSHR32(x,i-15)-32768;
cannam@154 190 /* Start with a linear approximation:
cannam@154 191 r = 1.8823529411764706-0.9411764705882353*n.
cannam@154 192 The coefficients and the result are Q14 in the range [15420,30840].*/
cannam@154 193 r = ADD16(30840, MULT16_16_Q15(-15420, n));
cannam@154 194 /* Perform two Newton iterations:
cannam@154 195 r -= r*((r*n)-1.Q15)
cannam@154 196 = r*((r*n)+(r-1.Q15)). */
cannam@154 197 r = SUB16(r, MULT16_16_Q15(r,
cannam@154 198 ADD16(MULT16_16_Q15(r, n), ADD16(r, -32768))));
cannam@154 199 /* We subtract an extra 1 in the second iteration to avoid overflow; it also
cannam@154 200 neatly compensates for truncation error in the rest of the process. */
cannam@154 201 r = SUB16(r, ADD16(1, MULT16_16_Q15(r,
cannam@154 202 ADD16(MULT16_16_Q15(r, n), ADD16(r, -32768)))));
cannam@154 203 /* r is now the Q15 solution to 2/(n+1), with a maximum relative error
cannam@154 204 of 7.05346E-5, a (relative) RMSE of 2.14418E-5, and a peak absolute
cannam@154 205 error of 1.24665/32768. */
cannam@154 206 return VSHR32(EXTEND32(r),i-16);
cannam@154 207 }
cannam@154 208
cannam@154 209 #endif