cannam@86
|
1 % -*- mode: latex; TeX-master: "Vorbis_I_spec"; -*-
|
cannam@86
|
2 %!TEX root = Vorbis_I_spec.tex
|
cannam@86
|
3 % $Id$
|
cannam@86
|
4 \section{Helper equations} \label{vorbis:spec:helper}
|
cannam@86
|
5
|
cannam@86
|
6 \subsection{Overview}
|
cannam@86
|
7
|
cannam@86
|
8 The equations below are used in multiple places by the Vorbis codec
|
cannam@86
|
9 specification. Rather than cluttering up the main specification
|
cannam@86
|
10 documents, they are defined here and referenced where appropriate.
|
cannam@86
|
11
|
cannam@86
|
12
|
cannam@86
|
13 \subsection{Functions}
|
cannam@86
|
14
|
cannam@86
|
15 \subsubsection{ilog} \label{vorbis:spec:ilog}
|
cannam@86
|
16
|
cannam@86
|
17 The "ilog(x)" function returns the position number (1 through n) of the highest set bit in the two's complement integer value
|
cannam@86
|
18 \varname{[x]}. Values of \varname{[x]} less than zero are defined to return zero.
|
cannam@86
|
19
|
cannam@86
|
20 \begin{programlisting}
|
cannam@86
|
21 1) [return\_value] = 0;
|
cannam@86
|
22 2) if ( [x] is greater than zero ) {
|
cannam@86
|
23
|
cannam@86
|
24 3) increment [return\_value];
|
cannam@86
|
25 4) logical shift [x] one bit to the right, padding the MSb with zero
|
cannam@86
|
26 5) repeat at step 2)
|
cannam@86
|
27
|
cannam@86
|
28 }
|
cannam@86
|
29
|
cannam@86
|
30 6) done
|
cannam@86
|
31 \end{programlisting}
|
cannam@86
|
32
|
cannam@86
|
33 Examples:
|
cannam@86
|
34
|
cannam@86
|
35 \begin{itemize}
|
cannam@86
|
36 \item ilog(0) = 0;
|
cannam@86
|
37 \item ilog(1) = 1;
|
cannam@86
|
38 \item ilog(2) = 2;
|
cannam@86
|
39 \item ilog(3) = 2;
|
cannam@86
|
40 \item ilog(4) = 3;
|
cannam@86
|
41 \item ilog(7) = 3;
|
cannam@86
|
42 \item ilog(negative number) = 0;
|
cannam@86
|
43 \end{itemize}
|
cannam@86
|
44
|
cannam@86
|
45
|
cannam@86
|
46
|
cannam@86
|
47
|
cannam@86
|
48 \subsubsection{float32\_unpack} \label{vorbis:spec:float32:unpack}
|
cannam@86
|
49
|
cannam@86
|
50 "float32\_unpack(x)" is intended to translate the packed binary
|
cannam@86
|
51 representation of a Vorbis codebook float value into the
|
cannam@86
|
52 representation used by the decoder for floating point numbers. For
|
cannam@86
|
53 purposes of this example, we will unpack a Vorbis float32 into a
|
cannam@86
|
54 host-native floating point number.
|
cannam@86
|
55
|
cannam@86
|
56 \begin{programlisting}
|
cannam@86
|
57 1) [mantissa] = [x] bitwise AND 0x1fffff (unsigned result)
|
cannam@86
|
58 2) [sign] = [x] bitwise AND 0x80000000 (unsigned result)
|
cannam@86
|
59 3) [exponent] = ( [x] bitwise AND 0x7fe00000) shifted right 21 bits (unsigned result)
|
cannam@86
|
60 4) if ( [sign] is nonzero ) then negate [mantissa]
|
cannam@86
|
61 5) return [mantissa] * ( 2 ^ ( [exponent] - 788 ) )
|
cannam@86
|
62 \end{programlisting}
|
cannam@86
|
63
|
cannam@86
|
64
|
cannam@86
|
65
|
cannam@86
|
66 \subsubsection{lookup1\_values} \label{vorbis:spec:lookup1:values}
|
cannam@86
|
67
|
cannam@86
|
68 "lookup1\_values(codebook\_entries,codebook\_dimensions)" is used to
|
cannam@86
|
69 compute the correct length of the value index for a codebook VQ lookup
|
cannam@86
|
70 table of lookup type 1. The values on this list are permuted to
|
cannam@86
|
71 construct the VQ vector lookup table of size
|
cannam@86
|
72 \varname{[codebook\_entries]}.
|
cannam@86
|
73
|
cannam@86
|
74 The return value for this function is defined to be 'the greatest
|
cannam@86
|
75 integer value for which \varname{[return\_value]} to the power of
|
cannam@86
|
76 \varname{[codebook\_dimensions]} is less than or equal to
|
cannam@86
|
77 \varname{[codebook\_entries]}'.
|
cannam@86
|
78
|
cannam@86
|
79
|
cannam@86
|
80
|
cannam@86
|
81 \subsubsection{low\_neighbor} \label{vorbis:spec:low:neighbor}
|
cannam@86
|
82
|
cannam@86
|
83 "low\_neighbor(v,x)" finds the position \varname{n} in vector \varname{[v]} of
|
cannam@86
|
84 the greatest value scalar element for which \varname{n} is less than
|
cannam@86
|
85 \varname{[x]} and vector \varname{[v]} element \varname{n} is less
|
cannam@86
|
86 than vector \varname{[v]} element \varname{[x]}.
|
cannam@86
|
87
|
cannam@86
|
88 \subsubsection{high\_neighbor} \label{vorbis:spec:high:neighbor}
|
cannam@86
|
89
|
cannam@86
|
90 "high\_neighbor(v,x)" finds the position \varname{n} in vector [v] of
|
cannam@86
|
91 the lowest value scalar element for which \varname{n} is less than
|
cannam@86
|
92 \varname{[x]} and vector \varname{[v]} element \varname{n} is greater
|
cannam@86
|
93 than vector \varname{[v]} element \varname{[x]}.
|
cannam@86
|
94
|
cannam@86
|
95
|
cannam@86
|
96
|
cannam@86
|
97 \subsubsection{render\_point} \label{vorbis:spec:render:point}
|
cannam@86
|
98
|
cannam@86
|
99 "render\_point(x0,y0,x1,y1,X)" is used to find the Y value at point X
|
cannam@86
|
100 along the line specified by x0, x1, y0 and y1. This function uses an
|
cannam@86
|
101 integer algorithm to solve for the point directly without calculating
|
cannam@86
|
102 intervening values along the line.
|
cannam@86
|
103
|
cannam@86
|
104 \begin{programlisting}
|
cannam@86
|
105 1) [dy] = [y1] - [y0]
|
cannam@86
|
106 2) [adx] = [x1] - [x0]
|
cannam@86
|
107 3) [ady] = absolute value of [dy]
|
cannam@86
|
108 4) [err] = [ady] * ([X] - [x0])
|
cannam@86
|
109 5) [off] = [err] / [adx] using integer division
|
cannam@86
|
110 6) if ( [dy] is less than zero ) {
|
cannam@86
|
111
|
cannam@86
|
112 7) [Y] = [y0] - [off]
|
cannam@86
|
113
|
cannam@86
|
114 } else {
|
cannam@86
|
115
|
cannam@86
|
116 8) [Y] = [y0] + [off]
|
cannam@86
|
117
|
cannam@86
|
118 }
|
cannam@86
|
119
|
cannam@86
|
120 9) done
|
cannam@86
|
121 \end{programlisting}
|
cannam@86
|
122
|
cannam@86
|
123
|
cannam@86
|
124
|
cannam@86
|
125 \subsubsection{render\_line} \label{vorbis:spec:render:line}
|
cannam@86
|
126
|
cannam@86
|
127 Floor decode type one uses the integer line drawing algorithm of
|
cannam@86
|
128 "render\_line(x0, y0, x1, y1, v)" to construct an integer floor
|
cannam@86
|
129 curve for contiguous piecewise line segments. Note that it has not
|
cannam@86
|
130 been relevant elsewhere, but here we must define integer division as
|
cannam@86
|
131 rounding division of both positive and negative numbers toward zero.
|
cannam@86
|
132
|
cannam@86
|
133
|
cannam@86
|
134 \begin{programlisting}
|
cannam@86
|
135 1) [dy] = [y1] - [y0]
|
cannam@86
|
136 2) [adx] = [x1] - [x0]
|
cannam@86
|
137 3) [ady] = absolute value of [dy]
|
cannam@86
|
138 4) [base] = [dy] / [adx] using integer division
|
cannam@86
|
139 5) [x] = [x0]
|
cannam@86
|
140 6) [y] = [y0]
|
cannam@86
|
141 7) [err] = 0
|
cannam@86
|
142
|
cannam@86
|
143 8) if ( [dy] is less than 0 ) {
|
cannam@86
|
144
|
cannam@86
|
145 9) [sy] = [base] - 1
|
cannam@86
|
146
|
cannam@86
|
147 } else {
|
cannam@86
|
148
|
cannam@86
|
149 10) [sy] = [base] + 1
|
cannam@86
|
150
|
cannam@86
|
151 }
|
cannam@86
|
152
|
cannam@86
|
153 11) [ady] = [ady] - (absolute value of [base]) * [adx]
|
cannam@86
|
154 12) vector [v] element [x] = [y]
|
cannam@86
|
155
|
cannam@86
|
156 13) iterate [x] over the range [x0]+1 ... [x1]-1 {
|
cannam@86
|
157
|
cannam@86
|
158 14) [err] = [err] + [ady];
|
cannam@86
|
159 15) if ( [err] >= [adx] ) {
|
cannam@86
|
160
|
cannam@86
|
161 16) [err] = [err] - [adx]
|
cannam@86
|
162 17) [y] = [y] + [sy]
|
cannam@86
|
163
|
cannam@86
|
164 } else {
|
cannam@86
|
165
|
cannam@86
|
166 18) [y] = [y] + [base]
|
cannam@86
|
167
|
cannam@86
|
168 }
|
cannam@86
|
169
|
cannam@86
|
170 19) vector [v] element [x] = [y]
|
cannam@86
|
171
|
cannam@86
|
172 }
|
cannam@86
|
173 \end{programlisting}
|
cannam@86
|
174
|
cannam@86
|
175
|
cannam@86
|
176
|
cannam@86
|
177
|
cannam@86
|
178
|
cannam@86
|
179
|
cannam@86
|
180
|
cannam@86
|
181
|