annotate src/libvorbis-1.3.3/doc/06-floor0.tex @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 98c1576536ae
children
rev   line source
cannam@86 1 % -*- mode: latex; TeX-master: "Vorbis_I_spec"; -*-
cannam@86 2 %!TEX root = Vorbis_I_spec.tex
cannam@86 3 % $Id$
cannam@86 4 \section{Floor type 0 setup and decode} \label{vorbis:spec:floor0}
cannam@86 5
cannam@86 6 \subsection{Overview}
cannam@86 7
cannam@86 8 Vorbis floor type zero uses Line Spectral Pair (LSP, also alternately
cannam@86 9 known as Line Spectral Frequency or LSF) representation to encode a
cannam@86 10 smooth spectral envelope curve as the frequency response of the LSP
cannam@86 11 filter. This representation is equivalent to a traditional all-pole
cannam@86 12 infinite impulse response filter as would be used in linear predictive
cannam@86 13 coding; LSP representation may be converted to LPC representation and
cannam@86 14 vice-versa.
cannam@86 15
cannam@86 16
cannam@86 17
cannam@86 18 \subsection{Floor 0 format}
cannam@86 19
cannam@86 20 Floor zero configuration consists of six integer fields and a list of
cannam@86 21 VQ codebooks for use in coding/decoding the LSP filter coefficient
cannam@86 22 values used by each frame.
cannam@86 23
cannam@86 24 \subsubsection{header decode}
cannam@86 25
cannam@86 26 Configuration information for instances of floor zero decodes from the
cannam@86 27 codec setup header (third packet). configuration decode proceeds as
cannam@86 28 follows:
cannam@86 29
cannam@86 30 \begin{Verbatim}[commandchars=\\\{\}]
cannam@86 31 1) [floor0\_order] = read an unsigned integer of 8 bits
cannam@86 32 2) [floor0\_rate] = read an unsigned integer of 16 bits
cannam@86 33 3) [floor0\_bark\_map\_size] = read an unsigned integer of 16 bits
cannam@86 34 4) [floor0\_amplitude\_bits] = read an unsigned integer of six bits
cannam@86 35 5) [floor0\_amplitude\_offset] = read an unsigned integer of eight bits
cannam@86 36 6) [floor0\_number\_of\_books] = read an unsigned integer of four bits and add 1
cannam@86 37 7) array [floor0\_book\_list] = read a list of [floor0\_number\_of\_books] unsigned integers of eight bits each;
cannam@86 38 \end{Verbatim}
cannam@86 39
cannam@86 40 An end-of-packet condition during any of these bitstream reads renders
cannam@86 41 this stream undecodable. In addition, any element of the array
cannam@86 42 \varname{[floor0\_book\_list]} that is greater than the maximum codebook
cannam@86 43 number for this bitstream is an error condition that also renders the
cannam@86 44 stream undecodable.
cannam@86 45
cannam@86 46
cannam@86 47
cannam@86 48 \subsubsection{packet decode} \label{vorbis:spec:floor0-decode}
cannam@86 49
cannam@86 50 Extracting a floor0 curve from an audio packet consists of first
cannam@86 51 decoding the curve amplitude and \varname{[floor0\_order]} LSP
cannam@86 52 coefficient values from the bitstream, and then computing the floor
cannam@86 53 curve, which is defined as the frequency response of the decoded LSP
cannam@86 54 filter.
cannam@86 55
cannam@86 56 Packet decode proceeds as follows:
cannam@86 57 \begin{Verbatim}[commandchars=\\\{\}]
cannam@86 58 1) [amplitude] = read an unsigned integer of [floor0\_amplitude\_bits] bits
cannam@86 59 2) if ( [amplitude] is greater than zero ) \{
cannam@86 60 3) [coefficients] is an empty, zero length vector
cannam@86 61 4) [booknumber] = read an unsigned integer of \link{vorbis:spec:ilog}{ilog}( [floor0\_number\_of\_books] ) bits
cannam@86 62 5) if ( [booknumber] is greater than the highest number decode codebook ) then packet is undecodable
cannam@86 63 6) [last] = zero;
cannam@86 64 7) vector [temp\_vector] = read vector from bitstream using codebook number [floor0\_book\_list] element [booknumber] in VQ context.
cannam@86 65 8) add the scalar value [last] to each scalar in vector [temp\_vector]
cannam@86 66 9) [last] = the value of the last scalar in vector [temp\_vector]
cannam@86 67 10) concatenate [temp\_vector] onto the end of the [coefficients] vector
cannam@86 68 11) if (length of vector [coefficients] is less than [floor0\_order], continue at step 6
cannam@86 69
cannam@86 70 \}
cannam@86 71
cannam@86 72 12) done.
cannam@86 73
cannam@86 74 \end{Verbatim}
cannam@86 75
cannam@86 76 Take note of the following properties of decode:
cannam@86 77 \begin{itemize}
cannam@86 78 \item An \varname{[amplitude]} value of zero must result in a return code that indicates this channel is unused in this frame (the output of the channel will be all-zeroes in synthesis). Several later stages of decode don't occur for an unused channel.
cannam@86 79 \item An end-of-packet condition during decode should be considered a
cannam@86 80 nominal occruence; if end-of-packet is reached during any read
cannam@86 81 operation above, floor decode is to return 'unused' status as if the
cannam@86 82 \varname{[amplitude]} value had read zero at the beginning of decode.
cannam@86 83
cannam@86 84 \item The book number used for decode
cannam@86 85 can, in fact, be stored in the bitstream in \link{vorbis:spec:ilog}{ilog}( \varname{[floor0\_number\_of\_books]} -
cannam@86 86 1 ) bits. Nevertheless, the above specification is correct and values
cannam@86 87 greater than the maximum possible book value are reserved.
cannam@86 88
cannam@86 89 \item The number of scalars read into the vector \varname{[coefficients]}
cannam@86 90 may be greater than \varname{[floor0\_order]}, the number actually
cannam@86 91 required for curve computation. For example, if the VQ codebook used
cannam@86 92 for the floor currently being decoded has a
cannam@86 93 \varname{[codebook\_dimensions]} value of three and
cannam@86 94 \varname{[floor0\_order]} is ten, the only way to fill all the needed
cannam@86 95 scalars in \varname{[coefficients]} is to to read a total of twelve
cannam@86 96 scalars as four vectors of three scalars each. This is not an error
cannam@86 97 condition, and care must be taken not to allow a buffer overflow in
cannam@86 98 decode. The extra values are not used and may be ignored or discarded.
cannam@86 99 \end{itemize}
cannam@86 100
cannam@86 101
cannam@86 102
cannam@86 103
cannam@86 104 \subsubsection{curve computation} \label{vorbis:spec:floor0-synth}
cannam@86 105
cannam@86 106 Given an \varname{[amplitude]} integer and \varname{[coefficients]}
cannam@86 107 vector from packet decode as well as the [floor0\_order],
cannam@86 108 [floor0\_rate], [floor0\_bark\_map\_size], [floor0\_amplitude\_bits] and
cannam@86 109 [floor0\_amplitude\_offset] values from floor setup, and an output
cannam@86 110 vector size \varname{[n]} specified by the decode process, we compute a
cannam@86 111 floor output vector.
cannam@86 112
cannam@86 113 If the value \varname{[amplitude]} is zero, the return value is a
cannam@86 114 length \varname{[n]} vector with all-zero scalars. Otherwise, begin by
cannam@86 115 assuming the following definitions for the given vector to be
cannam@86 116 synthesized:
cannam@86 117
cannam@86 118 \begin{displaymath}
cannam@86 119 \mathrm{map}_i = \left\{
cannam@86 120 \begin{array}{ll}
cannam@86 121 \min (
cannam@86 122 \mathtt{floor0\texttt{\_}bark\texttt{\_}map\texttt{\_}size} - 1,
cannam@86 123 foobar
cannam@86 124 ) & \textrm{for } i \in [0,n-1] \\
cannam@86 125 -1 & \textrm{for } i = n
cannam@86 126 \end{array}
cannam@86 127 \right.
cannam@86 128 \end{displaymath}
cannam@86 129
cannam@86 130 where
cannam@86 131
cannam@86 132 \begin{displaymath}
cannam@86 133 foobar =
cannam@86 134 \left\lfloor
cannam@86 135 \mathrm{bark}\left(\frac{\mathtt{floor0\texttt{\_}rate} \cdot i}{2n}\right) \cdot \frac{\mathtt{floor0\texttt{\_}bark\texttt{\_}map\texttt{\_}size}} {\mathrm{bark}(.5 \cdot \mathtt{floor0\texttt{\_}rate})}
cannam@86 136 \right\rfloor
cannam@86 137 \end{displaymath}
cannam@86 138
cannam@86 139 and
cannam@86 140
cannam@86 141 \begin{displaymath}
cannam@86 142 \mathrm{bark}(x) = 13.1 \arctan (.00074x) + 2.24 \arctan (.0000000185x^2 + .0001x)
cannam@86 143 \end{displaymath}
cannam@86 144
cannam@86 145 The above is used to synthesize the LSP curve on a Bark-scale frequency
cannam@86 146 axis, then map the result to a linear-scale frequency axis.
cannam@86 147 Similarly, the below calculation synthesizes the output LSP curve \varname{[output]} on a log
cannam@86 148 (dB) amplitude scale, mapping it to linear amplitude in the last step:
cannam@86 149
cannam@86 150 \begin{enumerate}
cannam@86 151 \item \varname{[i]} = 0
cannam@86 152 \item \varname{[$\omega$]} = $\pi$ * map element \varname{[i]} / \varname{[floor0\_bark\_map\_size]}
cannam@86 153 \item if ( \varname{[floor0\_order]} is odd ) {
cannam@86 154 \begin{enumerate}
cannam@86 155 \item calculate \varname{[p]} and \varname{[q]} according to:
cannam@86 156 \begin{eqnarray*}
cannam@86 157 p & = & (1 - \cos^2\omega)\prod_{j=0}^{\frac{\mathtt{floor0\texttt{\_}order}-3}{2}} 4 (\cos([\mathtt{coefficients}]_{2j+1}) - \cos \omega)^2 \\
cannam@86 158 q & = & \frac{1}{4} \prod_{j=0}^{\frac{\mathtt{floor0\texttt{\_}order}-1}{2}} 4 (\cos([\mathtt{coefficients}]_{2j}) - \cos \omega)^2
cannam@86 159 \end{eqnarray*}
cannam@86 160
cannam@86 161 \end{enumerate}
cannam@86 162 } else \varname{[floor0\_order]} is even {
cannam@86 163 \begin{enumerate}[resume]
cannam@86 164 \item calculate \varname{[p]} and \varname{[q]} according to:
cannam@86 165 \begin{eqnarray*}
cannam@86 166 p & = & \frac{(1 - \cos\omega)}{2} \prod_{j=0}^{\frac{\mathtt{floor0\texttt{\_}order}-2}{2}} 4 (\cos([\mathtt{coefficients}]_{2j+1}) - \cos \omega)^2 \\
cannam@86 167 q & = & \frac{(1 + \cos\omega)}{2} \prod_{j=0}^{\frac{\mathtt{floor0\texttt{\_}order}-2}{2}} 4 (\cos([\mathtt{coefficients}]_{2j}) - \cos \omega)^2
cannam@86 168 \end{eqnarray*}
cannam@86 169
cannam@86 170 \end{enumerate}
cannam@86 171 }
cannam@86 172
cannam@86 173 \item calculate \varname{[linear\_floor\_value]} according to:
cannam@86 174 \begin{displaymath}
cannam@86 175 \exp \left( .11512925 \left(\frac{\mathtt{amplitude} \cdot \mathtt{floor0\texttt{\_}amplitute\texttt{\_}offset}}{(2^{\mathtt{floor0\texttt{\_}amplitude\texttt{\_}bits}}-1)\sqrt{p+q}}
cannam@86 176 - \mathtt{floor0\texttt{\_}amplitude\texttt{\_}offset} \right) \right)
cannam@86 177 \end{displaymath}
cannam@86 178
cannam@86 179 \item \varname{[iteration\_condition]} = map element \varname{[i]}
cannam@86 180 \item \varname{[output]} element \varname{[i]} = \varname{[linear\_floor\_value]}
cannam@86 181 \item increment \varname{[i]}
cannam@86 182 \item if ( map element \varname{[i]} is equal to \varname{[iteration\_condition]} ) continue at step 5
cannam@86 183 \item if ( \varname{[i]} is less than \varname{[n]} ) continue at step 2
cannam@86 184 \item done
cannam@86 185 \end{enumerate}
cannam@86 186
cannam@86 187
cannam@86 188
cannam@86 189
cannam@86 190
cannam@86 191
cannam@86 192