annotate src/libmad-0.15.1b/layer3.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 545efbb81310
children
rev   line source
cannam@85 1 /*
cannam@85 2 * libmad - MPEG audio decoder library
cannam@85 3 * Copyright (C) 2000-2004 Underbit Technologies, Inc.
cannam@85 4 *
cannam@85 5 * This program is free software; you can redistribute it and/or modify
cannam@85 6 * it under the terms of the GNU General Public License as published by
cannam@85 7 * the Free Software Foundation; either version 2 of the License, or
cannam@85 8 * (at your option) any later version.
cannam@85 9 *
cannam@85 10 * This program is distributed in the hope that it will be useful,
cannam@85 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@85 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@85 13 * GNU General Public License for more details.
cannam@85 14 *
cannam@85 15 * You should have received a copy of the GNU General Public License
cannam@85 16 * along with this program; if not, write to the Free Software
cannam@85 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
cannam@85 18 *
cannam@85 19 * $Id: layer3.c,v 1.43 2004/01/23 09:41:32 rob Exp $
cannam@85 20 */
cannam@85 21
cannam@85 22 # ifdef HAVE_CONFIG_H
cannam@85 23 # include "config.h"
cannam@85 24 # endif
cannam@85 25
cannam@85 26 # include "global.h"
cannam@85 27
cannam@85 28 # include <stdlib.h>
cannam@85 29 # include <string.h>
cannam@85 30
cannam@85 31 # ifdef HAVE_ASSERT_H
cannam@85 32 # include <assert.h>
cannam@85 33 # endif
cannam@85 34
cannam@85 35 # ifdef HAVE_LIMITS_H
cannam@85 36 # include <limits.h>
cannam@85 37 # else
cannam@85 38 # define CHAR_BIT 8
cannam@85 39 # endif
cannam@85 40
cannam@85 41 # include "fixed.h"
cannam@85 42 # include "bit.h"
cannam@85 43 # include "stream.h"
cannam@85 44 # include "frame.h"
cannam@85 45 # include "huffman.h"
cannam@85 46 # include "layer3.h"
cannam@85 47
cannam@85 48 /* --- Layer III ----------------------------------------------------------- */
cannam@85 49
cannam@85 50 enum {
cannam@85 51 count1table_select = 0x01,
cannam@85 52 scalefac_scale = 0x02,
cannam@85 53 preflag = 0x04,
cannam@85 54 mixed_block_flag = 0x08
cannam@85 55 };
cannam@85 56
cannam@85 57 enum {
cannam@85 58 I_STEREO = 0x1,
cannam@85 59 MS_STEREO = 0x2
cannam@85 60 };
cannam@85 61
cannam@85 62 struct sideinfo {
cannam@85 63 unsigned int main_data_begin;
cannam@85 64 unsigned int private_bits;
cannam@85 65
cannam@85 66 unsigned char scfsi[2];
cannam@85 67
cannam@85 68 struct granule {
cannam@85 69 struct channel {
cannam@85 70 /* from side info */
cannam@85 71 unsigned short part2_3_length;
cannam@85 72 unsigned short big_values;
cannam@85 73 unsigned short global_gain;
cannam@85 74 unsigned short scalefac_compress;
cannam@85 75
cannam@85 76 unsigned char flags;
cannam@85 77 unsigned char block_type;
cannam@85 78 unsigned char table_select[3];
cannam@85 79 unsigned char subblock_gain[3];
cannam@85 80 unsigned char region0_count;
cannam@85 81 unsigned char region1_count;
cannam@85 82
cannam@85 83 /* from main_data */
cannam@85 84 unsigned char scalefac[39]; /* scalefac_l and/or scalefac_s */
cannam@85 85 } ch[2];
cannam@85 86 } gr[2];
cannam@85 87 };
cannam@85 88
cannam@85 89 /*
cannam@85 90 * scalefactor bit lengths
cannam@85 91 * derived from section 2.4.2.7 of ISO/IEC 11172-3
cannam@85 92 */
cannam@85 93 static
cannam@85 94 struct {
cannam@85 95 unsigned char slen1;
cannam@85 96 unsigned char slen2;
cannam@85 97 } const sflen_table[16] = {
cannam@85 98 { 0, 0 }, { 0, 1 }, { 0, 2 }, { 0, 3 },
cannam@85 99 { 3, 0 }, { 1, 1 }, { 1, 2 }, { 1, 3 },
cannam@85 100 { 2, 1 }, { 2, 2 }, { 2, 3 }, { 3, 1 },
cannam@85 101 { 3, 2 }, { 3, 3 }, { 4, 2 }, { 4, 3 }
cannam@85 102 };
cannam@85 103
cannam@85 104 /*
cannam@85 105 * number of LSF scalefactor band values
cannam@85 106 * derived from section 2.4.3.2 of ISO/IEC 13818-3
cannam@85 107 */
cannam@85 108 static
cannam@85 109 unsigned char const nsfb_table[6][3][4] = {
cannam@85 110 { { 6, 5, 5, 5 },
cannam@85 111 { 9, 9, 9, 9 },
cannam@85 112 { 6, 9, 9, 9 } },
cannam@85 113
cannam@85 114 { { 6, 5, 7, 3 },
cannam@85 115 { 9, 9, 12, 6 },
cannam@85 116 { 6, 9, 12, 6 } },
cannam@85 117
cannam@85 118 { { 11, 10, 0, 0 },
cannam@85 119 { 18, 18, 0, 0 },
cannam@85 120 { 15, 18, 0, 0 } },
cannam@85 121
cannam@85 122 { { 7, 7, 7, 0 },
cannam@85 123 { 12, 12, 12, 0 },
cannam@85 124 { 6, 15, 12, 0 } },
cannam@85 125
cannam@85 126 { { 6, 6, 6, 3 },
cannam@85 127 { 12, 9, 9, 6 },
cannam@85 128 { 6, 12, 9, 6 } },
cannam@85 129
cannam@85 130 { { 8, 8, 5, 0 },
cannam@85 131 { 15, 12, 9, 0 },
cannam@85 132 { 6, 18, 9, 0 } }
cannam@85 133 };
cannam@85 134
cannam@85 135 /*
cannam@85 136 * MPEG-1 scalefactor band widths
cannam@85 137 * derived from Table B.8 of ISO/IEC 11172-3
cannam@85 138 */
cannam@85 139 static
cannam@85 140 unsigned char const sfb_48000_long[] = {
cannam@85 141 4, 4, 4, 4, 4, 4, 6, 6, 6, 8, 10,
cannam@85 142 12, 16, 18, 22, 28, 34, 40, 46, 54, 54, 192
cannam@85 143 };
cannam@85 144
cannam@85 145 static
cannam@85 146 unsigned char const sfb_44100_long[] = {
cannam@85 147 4, 4, 4, 4, 4, 4, 6, 6, 8, 8, 10,
cannam@85 148 12, 16, 20, 24, 28, 34, 42, 50, 54, 76, 158
cannam@85 149 };
cannam@85 150
cannam@85 151 static
cannam@85 152 unsigned char const sfb_32000_long[] = {
cannam@85 153 4, 4, 4, 4, 4, 4, 6, 6, 8, 10, 12,
cannam@85 154 16, 20, 24, 30, 38, 46, 56, 68, 84, 102, 26
cannam@85 155 };
cannam@85 156
cannam@85 157 static
cannam@85 158 unsigned char const sfb_48000_short[] = {
cannam@85 159 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6,
cannam@85 160 6, 6, 6, 6, 6, 10, 10, 10, 12, 12, 12, 14, 14,
cannam@85 161 14, 16, 16, 16, 20, 20, 20, 26, 26, 26, 66, 66, 66
cannam@85 162 };
cannam@85 163
cannam@85 164 static
cannam@85 165 unsigned char const sfb_44100_short[] = {
cannam@85 166 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6,
cannam@85 167 6, 6, 8, 8, 8, 10, 10, 10, 12, 12, 12, 14, 14,
cannam@85 168 14, 18, 18, 18, 22, 22, 22, 30, 30, 30, 56, 56, 56
cannam@85 169 };
cannam@85 170
cannam@85 171 static
cannam@85 172 unsigned char const sfb_32000_short[] = {
cannam@85 173 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6,
cannam@85 174 6, 6, 8, 8, 8, 12, 12, 12, 16, 16, 16, 20, 20,
cannam@85 175 20, 26, 26, 26, 34, 34, 34, 42, 42, 42, 12, 12, 12
cannam@85 176 };
cannam@85 177
cannam@85 178 static
cannam@85 179 unsigned char const sfb_48000_mixed[] = {
cannam@85 180 /* long */ 4, 4, 4, 4, 4, 4, 6, 6,
cannam@85 181 /* short */ 4, 4, 4, 6, 6, 6, 6, 6, 6, 10,
cannam@85 182 10, 10, 12, 12, 12, 14, 14, 14, 16, 16,
cannam@85 183 16, 20, 20, 20, 26, 26, 26, 66, 66, 66
cannam@85 184 };
cannam@85 185
cannam@85 186 static
cannam@85 187 unsigned char const sfb_44100_mixed[] = {
cannam@85 188 /* long */ 4, 4, 4, 4, 4, 4, 6, 6,
cannam@85 189 /* short */ 4, 4, 4, 6, 6, 6, 8, 8, 8, 10,
cannam@85 190 10, 10, 12, 12, 12, 14, 14, 14, 18, 18,
cannam@85 191 18, 22, 22, 22, 30, 30, 30, 56, 56, 56
cannam@85 192 };
cannam@85 193
cannam@85 194 static
cannam@85 195 unsigned char const sfb_32000_mixed[] = {
cannam@85 196 /* long */ 4, 4, 4, 4, 4, 4, 6, 6,
cannam@85 197 /* short */ 4, 4, 4, 6, 6, 6, 8, 8, 8, 12,
cannam@85 198 12, 12, 16, 16, 16, 20, 20, 20, 26, 26,
cannam@85 199 26, 34, 34, 34, 42, 42, 42, 12, 12, 12
cannam@85 200 };
cannam@85 201
cannam@85 202 /*
cannam@85 203 * MPEG-2 scalefactor band widths
cannam@85 204 * derived from Table B.2 of ISO/IEC 13818-3
cannam@85 205 */
cannam@85 206 static
cannam@85 207 unsigned char const sfb_24000_long[] = {
cannam@85 208 6, 6, 6, 6, 6, 6, 8, 10, 12, 14, 16,
cannam@85 209 18, 22, 26, 32, 38, 46, 54, 62, 70, 76, 36
cannam@85 210 };
cannam@85 211
cannam@85 212 static
cannam@85 213 unsigned char const sfb_22050_long[] = {
cannam@85 214 6, 6, 6, 6, 6, 6, 8, 10, 12, 14, 16,
cannam@85 215 20, 24, 28, 32, 38, 46, 52, 60, 68, 58, 54
cannam@85 216 };
cannam@85 217
cannam@85 218 # define sfb_16000_long sfb_22050_long
cannam@85 219
cannam@85 220 static
cannam@85 221 unsigned char const sfb_24000_short[] = {
cannam@85 222 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 8,
cannam@85 223 8, 8, 10, 10, 10, 12, 12, 12, 14, 14, 14, 18, 18,
cannam@85 224 18, 24, 24, 24, 32, 32, 32, 44, 44, 44, 12, 12, 12
cannam@85 225 };
cannam@85 226
cannam@85 227 static
cannam@85 228 unsigned char const sfb_22050_short[] = {
cannam@85 229 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6,
cannam@85 230 6, 6, 8, 8, 8, 10, 10, 10, 14, 14, 14, 18, 18,
cannam@85 231 18, 26, 26, 26, 32, 32, 32, 42, 42, 42, 18, 18, 18
cannam@85 232 };
cannam@85 233
cannam@85 234 static
cannam@85 235 unsigned char const sfb_16000_short[] = {
cannam@85 236 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 8,
cannam@85 237 8, 8, 10, 10, 10, 12, 12, 12, 14, 14, 14, 18, 18,
cannam@85 238 18, 24, 24, 24, 30, 30, 30, 40, 40, 40, 18, 18, 18
cannam@85 239 };
cannam@85 240
cannam@85 241 static
cannam@85 242 unsigned char const sfb_24000_mixed[] = {
cannam@85 243 /* long */ 6, 6, 6, 6, 6, 6,
cannam@85 244 /* short */ 6, 6, 6, 8, 8, 8, 10, 10, 10, 12,
cannam@85 245 12, 12, 14, 14, 14, 18, 18, 18, 24, 24,
cannam@85 246 24, 32, 32, 32, 44, 44, 44, 12, 12, 12
cannam@85 247 };
cannam@85 248
cannam@85 249 static
cannam@85 250 unsigned char const sfb_22050_mixed[] = {
cannam@85 251 /* long */ 6, 6, 6, 6, 6, 6,
cannam@85 252 /* short */ 6, 6, 6, 6, 6, 6, 8, 8, 8, 10,
cannam@85 253 10, 10, 14, 14, 14, 18, 18, 18, 26, 26,
cannam@85 254 26, 32, 32, 32, 42, 42, 42, 18, 18, 18
cannam@85 255 };
cannam@85 256
cannam@85 257 static
cannam@85 258 unsigned char const sfb_16000_mixed[] = {
cannam@85 259 /* long */ 6, 6, 6, 6, 6, 6,
cannam@85 260 /* short */ 6, 6, 6, 8, 8, 8, 10, 10, 10, 12,
cannam@85 261 12, 12, 14, 14, 14, 18, 18, 18, 24, 24,
cannam@85 262 24, 30, 30, 30, 40, 40, 40, 18, 18, 18
cannam@85 263 };
cannam@85 264
cannam@85 265 /*
cannam@85 266 * MPEG 2.5 scalefactor band widths
cannam@85 267 * derived from public sources
cannam@85 268 */
cannam@85 269 # define sfb_12000_long sfb_16000_long
cannam@85 270 # define sfb_11025_long sfb_12000_long
cannam@85 271
cannam@85 272 static
cannam@85 273 unsigned char const sfb_8000_long[] = {
cannam@85 274 12, 12, 12, 12, 12, 12, 16, 20, 24, 28, 32,
cannam@85 275 40, 48, 56, 64, 76, 90, 2, 2, 2, 2, 2
cannam@85 276 };
cannam@85 277
cannam@85 278 # define sfb_12000_short sfb_16000_short
cannam@85 279 # define sfb_11025_short sfb_12000_short
cannam@85 280
cannam@85 281 static
cannam@85 282 unsigned char const sfb_8000_short[] = {
cannam@85 283 8, 8, 8, 8, 8, 8, 8, 8, 8, 12, 12, 12, 16,
cannam@85 284 16, 16, 20, 20, 20, 24, 24, 24, 28, 28, 28, 36, 36,
cannam@85 285 36, 2, 2, 2, 2, 2, 2, 2, 2, 2, 26, 26, 26
cannam@85 286 };
cannam@85 287
cannam@85 288 # define sfb_12000_mixed sfb_16000_mixed
cannam@85 289 # define sfb_11025_mixed sfb_12000_mixed
cannam@85 290
cannam@85 291 /* the 8000 Hz short block scalefactor bands do not break after
cannam@85 292 the first 36 frequency lines, so this is probably wrong */
cannam@85 293 static
cannam@85 294 unsigned char const sfb_8000_mixed[] = {
cannam@85 295 /* long */ 12, 12, 12,
cannam@85 296 /* short */ 4, 4, 4, 8, 8, 8, 12, 12, 12, 16, 16, 16,
cannam@85 297 20, 20, 20, 24, 24, 24, 28, 28, 28, 36, 36, 36,
cannam@85 298 2, 2, 2, 2, 2, 2, 2, 2, 2, 26, 26, 26
cannam@85 299 };
cannam@85 300
cannam@85 301 static
cannam@85 302 struct {
cannam@85 303 unsigned char const *l;
cannam@85 304 unsigned char const *s;
cannam@85 305 unsigned char const *m;
cannam@85 306 } const sfbwidth_table[9] = {
cannam@85 307 { sfb_48000_long, sfb_48000_short, sfb_48000_mixed },
cannam@85 308 { sfb_44100_long, sfb_44100_short, sfb_44100_mixed },
cannam@85 309 { sfb_32000_long, sfb_32000_short, sfb_32000_mixed },
cannam@85 310 { sfb_24000_long, sfb_24000_short, sfb_24000_mixed },
cannam@85 311 { sfb_22050_long, sfb_22050_short, sfb_22050_mixed },
cannam@85 312 { sfb_16000_long, sfb_16000_short, sfb_16000_mixed },
cannam@85 313 { sfb_12000_long, sfb_12000_short, sfb_12000_mixed },
cannam@85 314 { sfb_11025_long, sfb_11025_short, sfb_11025_mixed },
cannam@85 315 { sfb_8000_long, sfb_8000_short, sfb_8000_mixed }
cannam@85 316 };
cannam@85 317
cannam@85 318 /*
cannam@85 319 * scalefactor band preemphasis (used only when preflag is set)
cannam@85 320 * derived from Table B.6 of ISO/IEC 11172-3
cannam@85 321 */
cannam@85 322 static
cannam@85 323 unsigned char const pretab[22] = {
cannam@85 324 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 3, 2, 0
cannam@85 325 };
cannam@85 326
cannam@85 327 /*
cannam@85 328 * table for requantization
cannam@85 329 *
cannam@85 330 * rq_table[x].mantissa * 2^(rq_table[x].exponent) = x^(4/3)
cannam@85 331 */
cannam@85 332 static
cannam@85 333 struct fixedfloat {
cannam@85 334 unsigned long mantissa : 27;
cannam@85 335 unsigned short exponent : 5;
cannam@85 336 } const rq_table[8207] = {
cannam@85 337 # include "rq_table.dat"
cannam@85 338 };
cannam@85 339
cannam@85 340 /*
cannam@85 341 * fractional powers of two
cannam@85 342 * used for requantization and joint stereo decoding
cannam@85 343 *
cannam@85 344 * root_table[3 + x] = 2^(x/4)
cannam@85 345 */
cannam@85 346 static
cannam@85 347 mad_fixed_t const root_table[7] = {
cannam@85 348 MAD_F(0x09837f05) /* 2^(-3/4) == 0.59460355750136 */,
cannam@85 349 MAD_F(0x0b504f33) /* 2^(-2/4) == 0.70710678118655 */,
cannam@85 350 MAD_F(0x0d744fcd) /* 2^(-1/4) == 0.84089641525371 */,
cannam@85 351 MAD_F(0x10000000) /* 2^( 0/4) == 1.00000000000000 */,
cannam@85 352 MAD_F(0x1306fe0a) /* 2^(+1/4) == 1.18920711500272 */,
cannam@85 353 MAD_F(0x16a09e66) /* 2^(+2/4) == 1.41421356237310 */,
cannam@85 354 MAD_F(0x1ae89f99) /* 2^(+3/4) == 1.68179283050743 */
cannam@85 355 };
cannam@85 356
cannam@85 357 /*
cannam@85 358 * coefficients for aliasing reduction
cannam@85 359 * derived from Table B.9 of ISO/IEC 11172-3
cannam@85 360 *
cannam@85 361 * c[] = { -0.6, -0.535, -0.33, -0.185, -0.095, -0.041, -0.0142, -0.0037 }
cannam@85 362 * cs[i] = 1 / sqrt(1 + c[i]^2)
cannam@85 363 * ca[i] = c[i] / sqrt(1 + c[i]^2)
cannam@85 364 */
cannam@85 365 static
cannam@85 366 mad_fixed_t const cs[8] = {
cannam@85 367 +MAD_F(0x0db84a81) /* +0.857492926 */, +MAD_F(0x0e1b9d7f) /* +0.881741997 */,
cannam@85 368 +MAD_F(0x0f31adcf) /* +0.949628649 */, +MAD_F(0x0fbba815) /* +0.983314592 */,
cannam@85 369 +MAD_F(0x0feda417) /* +0.995517816 */, +MAD_F(0x0ffc8fc8) /* +0.999160558 */,
cannam@85 370 +MAD_F(0x0fff964c) /* +0.999899195 */, +MAD_F(0x0ffff8d3) /* +0.999993155 */
cannam@85 371 };
cannam@85 372
cannam@85 373 static
cannam@85 374 mad_fixed_t const ca[8] = {
cannam@85 375 -MAD_F(0x083b5fe7) /* -0.514495755 */, -MAD_F(0x078c36d2) /* -0.471731969 */,
cannam@85 376 -MAD_F(0x05039814) /* -0.313377454 */, -MAD_F(0x02e91dd1) /* -0.181913200 */,
cannam@85 377 -MAD_F(0x0183603a) /* -0.094574193 */, -MAD_F(0x00a7cb87) /* -0.040965583 */,
cannam@85 378 -MAD_F(0x003a2847) /* -0.014198569 */, -MAD_F(0x000f27b4) /* -0.003699975 */
cannam@85 379 };
cannam@85 380
cannam@85 381 /*
cannam@85 382 * IMDCT coefficients for short blocks
cannam@85 383 * derived from section 2.4.3.4.10.2 of ISO/IEC 11172-3
cannam@85 384 *
cannam@85 385 * imdct_s[i/even][k] = cos((PI / 24) * (2 * (i / 2) + 7) * (2 * k + 1))
cannam@85 386 * imdct_s[i /odd][k] = cos((PI / 24) * (2 * (6 + (i-1)/2) + 7) * (2 * k + 1))
cannam@85 387 */
cannam@85 388 static
cannam@85 389 mad_fixed_t const imdct_s[6][6] = {
cannam@85 390 # include "imdct_s.dat"
cannam@85 391 };
cannam@85 392
cannam@85 393 # if !defined(ASO_IMDCT)
cannam@85 394 /*
cannam@85 395 * windowing coefficients for long blocks
cannam@85 396 * derived from section 2.4.3.4.10.3 of ISO/IEC 11172-3
cannam@85 397 *
cannam@85 398 * window_l[i] = sin((PI / 36) * (i + 1/2))
cannam@85 399 */
cannam@85 400 static
cannam@85 401 mad_fixed_t const window_l[36] = {
cannam@85 402 MAD_F(0x00b2aa3e) /* 0.043619387 */, MAD_F(0x0216a2a2) /* 0.130526192 */,
cannam@85 403 MAD_F(0x03768962) /* 0.216439614 */, MAD_F(0x04cfb0e2) /* 0.300705800 */,
cannam@85 404 MAD_F(0x061f78aa) /* 0.382683432 */, MAD_F(0x07635284) /* 0.461748613 */,
cannam@85 405 MAD_F(0x0898c779) /* 0.537299608 */, MAD_F(0x09bd7ca0) /* 0.608761429 */,
cannam@85 406 MAD_F(0x0acf37ad) /* 0.675590208 */, MAD_F(0x0bcbe352) /* 0.737277337 */,
cannam@85 407 MAD_F(0x0cb19346) /* 0.793353340 */, MAD_F(0x0d7e8807) /* 0.843391446 */,
cannam@85 408
cannam@85 409 MAD_F(0x0e313245) /* 0.887010833 */, MAD_F(0x0ec835e8) /* 0.923879533 */,
cannam@85 410 MAD_F(0x0f426cb5) /* 0.953716951 */, MAD_F(0x0f9ee890) /* 0.976296007 */,
cannam@85 411 MAD_F(0x0fdcf549) /* 0.991444861 */, MAD_F(0x0ffc19fd) /* 0.999048222 */,
cannam@85 412 MAD_F(0x0ffc19fd) /* 0.999048222 */, MAD_F(0x0fdcf549) /* 0.991444861 */,
cannam@85 413 MAD_F(0x0f9ee890) /* 0.976296007 */, MAD_F(0x0f426cb5) /* 0.953716951 */,
cannam@85 414 MAD_F(0x0ec835e8) /* 0.923879533 */, MAD_F(0x0e313245) /* 0.887010833 */,
cannam@85 415
cannam@85 416 MAD_F(0x0d7e8807) /* 0.843391446 */, MAD_F(0x0cb19346) /* 0.793353340 */,
cannam@85 417 MAD_F(0x0bcbe352) /* 0.737277337 */, MAD_F(0x0acf37ad) /* 0.675590208 */,
cannam@85 418 MAD_F(0x09bd7ca0) /* 0.608761429 */, MAD_F(0x0898c779) /* 0.537299608 */,
cannam@85 419 MAD_F(0x07635284) /* 0.461748613 */, MAD_F(0x061f78aa) /* 0.382683432 */,
cannam@85 420 MAD_F(0x04cfb0e2) /* 0.300705800 */, MAD_F(0x03768962) /* 0.216439614 */,
cannam@85 421 MAD_F(0x0216a2a2) /* 0.130526192 */, MAD_F(0x00b2aa3e) /* 0.043619387 */,
cannam@85 422 };
cannam@85 423 # endif /* ASO_IMDCT */
cannam@85 424
cannam@85 425 /*
cannam@85 426 * windowing coefficients for short blocks
cannam@85 427 * derived from section 2.4.3.4.10.3 of ISO/IEC 11172-3
cannam@85 428 *
cannam@85 429 * window_s[i] = sin((PI / 12) * (i + 1/2))
cannam@85 430 */
cannam@85 431 static
cannam@85 432 mad_fixed_t const window_s[12] = {
cannam@85 433 MAD_F(0x0216a2a2) /* 0.130526192 */, MAD_F(0x061f78aa) /* 0.382683432 */,
cannam@85 434 MAD_F(0x09bd7ca0) /* 0.608761429 */, MAD_F(0x0cb19346) /* 0.793353340 */,
cannam@85 435 MAD_F(0x0ec835e8) /* 0.923879533 */, MAD_F(0x0fdcf549) /* 0.991444861 */,
cannam@85 436 MAD_F(0x0fdcf549) /* 0.991444861 */, MAD_F(0x0ec835e8) /* 0.923879533 */,
cannam@85 437 MAD_F(0x0cb19346) /* 0.793353340 */, MAD_F(0x09bd7ca0) /* 0.608761429 */,
cannam@85 438 MAD_F(0x061f78aa) /* 0.382683432 */, MAD_F(0x0216a2a2) /* 0.130526192 */,
cannam@85 439 };
cannam@85 440
cannam@85 441 /*
cannam@85 442 * coefficients for intensity stereo processing
cannam@85 443 * derived from section 2.4.3.4.9.3 of ISO/IEC 11172-3
cannam@85 444 *
cannam@85 445 * is_ratio[i] = tan(i * (PI / 12))
cannam@85 446 * is_table[i] = is_ratio[i] / (1 + is_ratio[i])
cannam@85 447 */
cannam@85 448 static
cannam@85 449 mad_fixed_t const is_table[7] = {
cannam@85 450 MAD_F(0x00000000) /* 0.000000000 */,
cannam@85 451 MAD_F(0x0361962f) /* 0.211324865 */,
cannam@85 452 MAD_F(0x05db3d74) /* 0.366025404 */,
cannam@85 453 MAD_F(0x08000000) /* 0.500000000 */,
cannam@85 454 MAD_F(0x0a24c28c) /* 0.633974596 */,
cannam@85 455 MAD_F(0x0c9e69d1) /* 0.788675135 */,
cannam@85 456 MAD_F(0x10000000) /* 1.000000000 */
cannam@85 457 };
cannam@85 458
cannam@85 459 /*
cannam@85 460 * coefficients for LSF intensity stereo processing
cannam@85 461 * derived from section 2.4.3.2 of ISO/IEC 13818-3
cannam@85 462 *
cannam@85 463 * is_lsf_table[0][i] = (1 / sqrt(sqrt(2)))^(i + 1)
cannam@85 464 * is_lsf_table[1][i] = (1 / sqrt(2)) ^(i + 1)
cannam@85 465 */
cannam@85 466 static
cannam@85 467 mad_fixed_t const is_lsf_table[2][15] = {
cannam@85 468 {
cannam@85 469 MAD_F(0x0d744fcd) /* 0.840896415 */,
cannam@85 470 MAD_F(0x0b504f33) /* 0.707106781 */,
cannam@85 471 MAD_F(0x09837f05) /* 0.594603558 */,
cannam@85 472 MAD_F(0x08000000) /* 0.500000000 */,
cannam@85 473 MAD_F(0x06ba27e6) /* 0.420448208 */,
cannam@85 474 MAD_F(0x05a8279a) /* 0.353553391 */,
cannam@85 475 MAD_F(0x04c1bf83) /* 0.297301779 */,
cannam@85 476 MAD_F(0x04000000) /* 0.250000000 */,
cannam@85 477 MAD_F(0x035d13f3) /* 0.210224104 */,
cannam@85 478 MAD_F(0x02d413cd) /* 0.176776695 */,
cannam@85 479 MAD_F(0x0260dfc1) /* 0.148650889 */,
cannam@85 480 MAD_F(0x02000000) /* 0.125000000 */,
cannam@85 481 MAD_F(0x01ae89fa) /* 0.105112052 */,
cannam@85 482 MAD_F(0x016a09e6) /* 0.088388348 */,
cannam@85 483 MAD_F(0x01306fe1) /* 0.074325445 */
cannam@85 484 }, {
cannam@85 485 MAD_F(0x0b504f33) /* 0.707106781 */,
cannam@85 486 MAD_F(0x08000000) /* 0.500000000 */,
cannam@85 487 MAD_F(0x05a8279a) /* 0.353553391 */,
cannam@85 488 MAD_F(0x04000000) /* 0.250000000 */,
cannam@85 489 MAD_F(0x02d413cd) /* 0.176776695 */,
cannam@85 490 MAD_F(0x02000000) /* 0.125000000 */,
cannam@85 491 MAD_F(0x016a09e6) /* 0.088388348 */,
cannam@85 492 MAD_F(0x01000000) /* 0.062500000 */,
cannam@85 493 MAD_F(0x00b504f3) /* 0.044194174 */,
cannam@85 494 MAD_F(0x00800000) /* 0.031250000 */,
cannam@85 495 MAD_F(0x005a827a) /* 0.022097087 */,
cannam@85 496 MAD_F(0x00400000) /* 0.015625000 */,
cannam@85 497 MAD_F(0x002d413d) /* 0.011048543 */,
cannam@85 498 MAD_F(0x00200000) /* 0.007812500 */,
cannam@85 499 MAD_F(0x0016a09e) /* 0.005524272 */
cannam@85 500 }
cannam@85 501 };
cannam@85 502
cannam@85 503 /*
cannam@85 504 * NAME: III_sideinfo()
cannam@85 505 * DESCRIPTION: decode frame side information from a bitstream
cannam@85 506 */
cannam@85 507 static
cannam@85 508 enum mad_error III_sideinfo(struct mad_bitptr *ptr, unsigned int nch,
cannam@85 509 int lsf, struct sideinfo *si,
cannam@85 510 unsigned int *data_bitlen,
cannam@85 511 unsigned int *priv_bitlen)
cannam@85 512 {
cannam@85 513 unsigned int ngr, gr, ch, i;
cannam@85 514 enum mad_error result = MAD_ERROR_NONE;
cannam@85 515
cannam@85 516 *data_bitlen = 0;
cannam@85 517 *priv_bitlen = lsf ? ((nch == 1) ? 1 : 2) : ((nch == 1) ? 5 : 3);
cannam@85 518
cannam@85 519 si->main_data_begin = mad_bit_read(ptr, lsf ? 8 : 9);
cannam@85 520 si->private_bits = mad_bit_read(ptr, *priv_bitlen);
cannam@85 521
cannam@85 522 ngr = 1;
cannam@85 523 if (!lsf) {
cannam@85 524 ngr = 2;
cannam@85 525
cannam@85 526 for (ch = 0; ch < nch; ++ch)
cannam@85 527 si->scfsi[ch] = mad_bit_read(ptr, 4);
cannam@85 528 }
cannam@85 529
cannam@85 530 for (gr = 0; gr < ngr; ++gr) {
cannam@85 531 struct granule *granule = &si->gr[gr];
cannam@85 532
cannam@85 533 for (ch = 0; ch < nch; ++ch) {
cannam@85 534 struct channel *channel = &granule->ch[ch];
cannam@85 535
cannam@85 536 channel->part2_3_length = mad_bit_read(ptr, 12);
cannam@85 537 channel->big_values = mad_bit_read(ptr, 9);
cannam@85 538 channel->global_gain = mad_bit_read(ptr, 8);
cannam@85 539 channel->scalefac_compress = mad_bit_read(ptr, lsf ? 9 : 4);
cannam@85 540
cannam@85 541 *data_bitlen += channel->part2_3_length;
cannam@85 542
cannam@85 543 if (channel->big_values > 288 && result == 0)
cannam@85 544 result = MAD_ERROR_BADBIGVALUES;
cannam@85 545
cannam@85 546 channel->flags = 0;
cannam@85 547
cannam@85 548 /* window_switching_flag */
cannam@85 549 if (mad_bit_read(ptr, 1)) {
cannam@85 550 channel->block_type = mad_bit_read(ptr, 2);
cannam@85 551
cannam@85 552 if (channel->block_type == 0 && result == 0)
cannam@85 553 result = MAD_ERROR_BADBLOCKTYPE;
cannam@85 554
cannam@85 555 if (!lsf && channel->block_type == 2 && si->scfsi[ch] && result == 0)
cannam@85 556 result = MAD_ERROR_BADSCFSI;
cannam@85 557
cannam@85 558 channel->region0_count = 7;
cannam@85 559 channel->region1_count = 36;
cannam@85 560
cannam@85 561 if (mad_bit_read(ptr, 1))
cannam@85 562 channel->flags |= mixed_block_flag;
cannam@85 563 else if (channel->block_type == 2)
cannam@85 564 channel->region0_count = 8;
cannam@85 565
cannam@85 566 for (i = 0; i < 2; ++i)
cannam@85 567 channel->table_select[i] = mad_bit_read(ptr, 5);
cannam@85 568
cannam@85 569 # if defined(DEBUG)
cannam@85 570 channel->table_select[2] = 4; /* not used */
cannam@85 571 # endif
cannam@85 572
cannam@85 573 for (i = 0; i < 3; ++i)
cannam@85 574 channel->subblock_gain[i] = mad_bit_read(ptr, 3);
cannam@85 575 }
cannam@85 576 else {
cannam@85 577 channel->block_type = 0;
cannam@85 578
cannam@85 579 for (i = 0; i < 3; ++i)
cannam@85 580 channel->table_select[i] = mad_bit_read(ptr, 5);
cannam@85 581
cannam@85 582 channel->region0_count = mad_bit_read(ptr, 4);
cannam@85 583 channel->region1_count = mad_bit_read(ptr, 3);
cannam@85 584 }
cannam@85 585
cannam@85 586 /* [preflag,] scalefac_scale, count1table_select */
cannam@85 587 channel->flags |= mad_bit_read(ptr, lsf ? 2 : 3);
cannam@85 588 }
cannam@85 589 }
cannam@85 590
cannam@85 591 return result;
cannam@85 592 }
cannam@85 593
cannam@85 594 /*
cannam@85 595 * NAME: III_scalefactors_lsf()
cannam@85 596 * DESCRIPTION: decode channel scalefactors for LSF from a bitstream
cannam@85 597 */
cannam@85 598 static
cannam@85 599 unsigned int III_scalefactors_lsf(struct mad_bitptr *ptr,
cannam@85 600 struct channel *channel,
cannam@85 601 struct channel *gr1ch, int mode_extension)
cannam@85 602 {
cannam@85 603 struct mad_bitptr start;
cannam@85 604 unsigned int scalefac_compress, index, slen[4], part, n, i;
cannam@85 605 unsigned char const *nsfb;
cannam@85 606
cannam@85 607 start = *ptr;
cannam@85 608
cannam@85 609 scalefac_compress = channel->scalefac_compress;
cannam@85 610 index = (channel->block_type == 2) ?
cannam@85 611 ((channel->flags & mixed_block_flag) ? 2 : 1) : 0;
cannam@85 612
cannam@85 613 if (!((mode_extension & I_STEREO) && gr1ch)) {
cannam@85 614 if (scalefac_compress < 400) {
cannam@85 615 slen[0] = (scalefac_compress >> 4) / 5;
cannam@85 616 slen[1] = (scalefac_compress >> 4) % 5;
cannam@85 617 slen[2] = (scalefac_compress % 16) >> 2;
cannam@85 618 slen[3] = scalefac_compress % 4;
cannam@85 619
cannam@85 620 nsfb = nsfb_table[0][index];
cannam@85 621 }
cannam@85 622 else if (scalefac_compress < 500) {
cannam@85 623 scalefac_compress -= 400;
cannam@85 624
cannam@85 625 slen[0] = (scalefac_compress >> 2) / 5;
cannam@85 626 slen[1] = (scalefac_compress >> 2) % 5;
cannam@85 627 slen[2] = scalefac_compress % 4;
cannam@85 628 slen[3] = 0;
cannam@85 629
cannam@85 630 nsfb = nsfb_table[1][index];
cannam@85 631 }
cannam@85 632 else {
cannam@85 633 scalefac_compress -= 500;
cannam@85 634
cannam@85 635 slen[0] = scalefac_compress / 3;
cannam@85 636 slen[1] = scalefac_compress % 3;
cannam@85 637 slen[2] = 0;
cannam@85 638 slen[3] = 0;
cannam@85 639
cannam@85 640 channel->flags |= preflag;
cannam@85 641
cannam@85 642 nsfb = nsfb_table[2][index];
cannam@85 643 }
cannam@85 644
cannam@85 645 n = 0;
cannam@85 646 for (part = 0; part < 4; ++part) {
cannam@85 647 for (i = 0; i < nsfb[part]; ++i)
cannam@85 648 channel->scalefac[n++] = mad_bit_read(ptr, slen[part]);
cannam@85 649 }
cannam@85 650
cannam@85 651 while (n < 39)
cannam@85 652 channel->scalefac[n++] = 0;
cannam@85 653 }
cannam@85 654 else { /* (mode_extension & I_STEREO) && gr1ch (i.e. ch == 1) */
cannam@85 655 scalefac_compress >>= 1;
cannam@85 656
cannam@85 657 if (scalefac_compress < 180) {
cannam@85 658 slen[0] = scalefac_compress / 36;
cannam@85 659 slen[1] = (scalefac_compress % 36) / 6;
cannam@85 660 slen[2] = (scalefac_compress % 36) % 6;
cannam@85 661 slen[3] = 0;
cannam@85 662
cannam@85 663 nsfb = nsfb_table[3][index];
cannam@85 664 }
cannam@85 665 else if (scalefac_compress < 244) {
cannam@85 666 scalefac_compress -= 180;
cannam@85 667
cannam@85 668 slen[0] = (scalefac_compress % 64) >> 4;
cannam@85 669 slen[1] = (scalefac_compress % 16) >> 2;
cannam@85 670 slen[2] = scalefac_compress % 4;
cannam@85 671 slen[3] = 0;
cannam@85 672
cannam@85 673 nsfb = nsfb_table[4][index];
cannam@85 674 }
cannam@85 675 else {
cannam@85 676 scalefac_compress -= 244;
cannam@85 677
cannam@85 678 slen[0] = scalefac_compress / 3;
cannam@85 679 slen[1] = scalefac_compress % 3;
cannam@85 680 slen[2] = 0;
cannam@85 681 slen[3] = 0;
cannam@85 682
cannam@85 683 nsfb = nsfb_table[5][index];
cannam@85 684 }
cannam@85 685
cannam@85 686 n = 0;
cannam@85 687 for (part = 0; part < 4; ++part) {
cannam@85 688 unsigned int max, is_pos;
cannam@85 689
cannam@85 690 max = (1 << slen[part]) - 1;
cannam@85 691
cannam@85 692 for (i = 0; i < nsfb[part]; ++i) {
cannam@85 693 is_pos = mad_bit_read(ptr, slen[part]);
cannam@85 694
cannam@85 695 channel->scalefac[n] = is_pos;
cannam@85 696 gr1ch->scalefac[n++] = (is_pos == max);
cannam@85 697 }
cannam@85 698 }
cannam@85 699
cannam@85 700 while (n < 39) {
cannam@85 701 channel->scalefac[n] = 0;
cannam@85 702 gr1ch->scalefac[n++] = 0; /* apparently not illegal */
cannam@85 703 }
cannam@85 704 }
cannam@85 705
cannam@85 706 return mad_bit_length(&start, ptr);
cannam@85 707 }
cannam@85 708
cannam@85 709 /*
cannam@85 710 * NAME: III_scalefactors()
cannam@85 711 * DESCRIPTION: decode channel scalefactors of one granule from a bitstream
cannam@85 712 */
cannam@85 713 static
cannam@85 714 unsigned int III_scalefactors(struct mad_bitptr *ptr, struct channel *channel,
cannam@85 715 struct channel const *gr0ch, unsigned int scfsi)
cannam@85 716 {
cannam@85 717 struct mad_bitptr start;
cannam@85 718 unsigned int slen1, slen2, sfbi;
cannam@85 719
cannam@85 720 start = *ptr;
cannam@85 721
cannam@85 722 slen1 = sflen_table[channel->scalefac_compress].slen1;
cannam@85 723 slen2 = sflen_table[channel->scalefac_compress].slen2;
cannam@85 724
cannam@85 725 if (channel->block_type == 2) {
cannam@85 726 unsigned int nsfb;
cannam@85 727
cannam@85 728 sfbi = 0;
cannam@85 729
cannam@85 730 nsfb = (channel->flags & mixed_block_flag) ? 8 + 3 * 3 : 6 * 3;
cannam@85 731 while (nsfb--)
cannam@85 732 channel->scalefac[sfbi++] = mad_bit_read(ptr, slen1);
cannam@85 733
cannam@85 734 nsfb = 6 * 3;
cannam@85 735 while (nsfb--)
cannam@85 736 channel->scalefac[sfbi++] = mad_bit_read(ptr, slen2);
cannam@85 737
cannam@85 738 nsfb = 1 * 3;
cannam@85 739 while (nsfb--)
cannam@85 740 channel->scalefac[sfbi++] = 0;
cannam@85 741 }
cannam@85 742 else { /* channel->block_type != 2 */
cannam@85 743 if (scfsi & 0x8) {
cannam@85 744 for (sfbi = 0; sfbi < 6; ++sfbi)
cannam@85 745 channel->scalefac[sfbi] = gr0ch->scalefac[sfbi];
cannam@85 746 }
cannam@85 747 else {
cannam@85 748 for (sfbi = 0; sfbi < 6; ++sfbi)
cannam@85 749 channel->scalefac[sfbi] = mad_bit_read(ptr, slen1);
cannam@85 750 }
cannam@85 751
cannam@85 752 if (scfsi & 0x4) {
cannam@85 753 for (sfbi = 6; sfbi < 11; ++sfbi)
cannam@85 754 channel->scalefac[sfbi] = gr0ch->scalefac[sfbi];
cannam@85 755 }
cannam@85 756 else {
cannam@85 757 for (sfbi = 6; sfbi < 11; ++sfbi)
cannam@85 758 channel->scalefac[sfbi] = mad_bit_read(ptr, slen1);
cannam@85 759 }
cannam@85 760
cannam@85 761 if (scfsi & 0x2) {
cannam@85 762 for (sfbi = 11; sfbi < 16; ++sfbi)
cannam@85 763 channel->scalefac[sfbi] = gr0ch->scalefac[sfbi];
cannam@85 764 }
cannam@85 765 else {
cannam@85 766 for (sfbi = 11; sfbi < 16; ++sfbi)
cannam@85 767 channel->scalefac[sfbi] = mad_bit_read(ptr, slen2);
cannam@85 768 }
cannam@85 769
cannam@85 770 if (scfsi & 0x1) {
cannam@85 771 for (sfbi = 16; sfbi < 21; ++sfbi)
cannam@85 772 channel->scalefac[sfbi] = gr0ch->scalefac[sfbi];
cannam@85 773 }
cannam@85 774 else {
cannam@85 775 for (sfbi = 16; sfbi < 21; ++sfbi)
cannam@85 776 channel->scalefac[sfbi] = mad_bit_read(ptr, slen2);
cannam@85 777 }
cannam@85 778
cannam@85 779 channel->scalefac[21] = 0;
cannam@85 780 }
cannam@85 781
cannam@85 782 return mad_bit_length(&start, ptr);
cannam@85 783 }
cannam@85 784
cannam@85 785 /*
cannam@85 786 * The Layer III formula for requantization and scaling is defined by
cannam@85 787 * section 2.4.3.4.7.1 of ISO/IEC 11172-3, as follows:
cannam@85 788 *
cannam@85 789 * long blocks:
cannam@85 790 * xr[i] = sign(is[i]) * abs(is[i])^(4/3) *
cannam@85 791 * 2^((1/4) * (global_gain - 210)) *
cannam@85 792 * 2^-(scalefac_multiplier *
cannam@85 793 * (scalefac_l[sfb] + preflag * pretab[sfb]))
cannam@85 794 *
cannam@85 795 * short blocks:
cannam@85 796 * xr[i] = sign(is[i]) * abs(is[i])^(4/3) *
cannam@85 797 * 2^((1/4) * (global_gain - 210 - 8 * subblock_gain[w])) *
cannam@85 798 * 2^-(scalefac_multiplier * scalefac_s[sfb][w])
cannam@85 799 *
cannam@85 800 * where:
cannam@85 801 * scalefac_multiplier = (scalefac_scale + 1) / 2
cannam@85 802 *
cannam@85 803 * The routines III_exponents() and III_requantize() facilitate this
cannam@85 804 * calculation.
cannam@85 805 */
cannam@85 806
cannam@85 807 /*
cannam@85 808 * NAME: III_exponents()
cannam@85 809 * DESCRIPTION: calculate scalefactor exponents
cannam@85 810 */
cannam@85 811 static
cannam@85 812 void III_exponents(struct channel const *channel,
cannam@85 813 unsigned char const *sfbwidth, signed int exponents[39])
cannam@85 814 {
cannam@85 815 signed int gain;
cannam@85 816 unsigned int scalefac_multiplier, sfbi;
cannam@85 817
cannam@85 818 gain = (signed int) channel->global_gain - 210;
cannam@85 819 scalefac_multiplier = (channel->flags & scalefac_scale) ? 2 : 1;
cannam@85 820
cannam@85 821 if (channel->block_type == 2) {
cannam@85 822 unsigned int l;
cannam@85 823 signed int gain0, gain1, gain2;
cannam@85 824
cannam@85 825 sfbi = l = 0;
cannam@85 826
cannam@85 827 if (channel->flags & mixed_block_flag) {
cannam@85 828 unsigned int premask;
cannam@85 829
cannam@85 830 premask = (channel->flags & preflag) ? ~0 : 0;
cannam@85 831
cannam@85 832 /* long block subbands 0-1 */
cannam@85 833
cannam@85 834 while (l < 36) {
cannam@85 835 exponents[sfbi] = gain -
cannam@85 836 (signed int) ((channel->scalefac[sfbi] + (pretab[sfbi] & premask)) <<
cannam@85 837 scalefac_multiplier);
cannam@85 838
cannam@85 839 l += sfbwidth[sfbi++];
cannam@85 840 }
cannam@85 841 }
cannam@85 842
cannam@85 843 /* this is probably wrong for 8000 Hz short/mixed blocks */
cannam@85 844
cannam@85 845 gain0 = gain - 8 * (signed int) channel->subblock_gain[0];
cannam@85 846 gain1 = gain - 8 * (signed int) channel->subblock_gain[1];
cannam@85 847 gain2 = gain - 8 * (signed int) channel->subblock_gain[2];
cannam@85 848
cannam@85 849 while (l < 576) {
cannam@85 850 exponents[sfbi + 0] = gain0 -
cannam@85 851 (signed int) (channel->scalefac[sfbi + 0] << scalefac_multiplier);
cannam@85 852 exponents[sfbi + 1] = gain1 -
cannam@85 853 (signed int) (channel->scalefac[sfbi + 1] << scalefac_multiplier);
cannam@85 854 exponents[sfbi + 2] = gain2 -
cannam@85 855 (signed int) (channel->scalefac[sfbi + 2] << scalefac_multiplier);
cannam@85 856
cannam@85 857 l += 3 * sfbwidth[sfbi];
cannam@85 858 sfbi += 3;
cannam@85 859 }
cannam@85 860 }
cannam@85 861 else { /* channel->block_type != 2 */
cannam@85 862 if (channel->flags & preflag) {
cannam@85 863 for (sfbi = 0; sfbi < 22; ++sfbi) {
cannam@85 864 exponents[sfbi] = gain -
cannam@85 865 (signed int) ((channel->scalefac[sfbi] + pretab[sfbi]) <<
cannam@85 866 scalefac_multiplier);
cannam@85 867 }
cannam@85 868 }
cannam@85 869 else {
cannam@85 870 for (sfbi = 0; sfbi < 22; ++sfbi) {
cannam@85 871 exponents[sfbi] = gain -
cannam@85 872 (signed int) (channel->scalefac[sfbi] << scalefac_multiplier);
cannam@85 873 }
cannam@85 874 }
cannam@85 875 }
cannam@85 876 }
cannam@85 877
cannam@85 878 /*
cannam@85 879 * NAME: III_requantize()
cannam@85 880 * DESCRIPTION: requantize one (positive) value
cannam@85 881 */
cannam@85 882 static
cannam@85 883 mad_fixed_t III_requantize(unsigned int value, signed int exp)
cannam@85 884 {
cannam@85 885 mad_fixed_t requantized;
cannam@85 886 signed int frac;
cannam@85 887 struct fixedfloat const *power;
cannam@85 888
cannam@85 889 frac = exp % 4; /* assumes sign(frac) == sign(exp) */
cannam@85 890 exp /= 4;
cannam@85 891
cannam@85 892 power = &rq_table[value];
cannam@85 893 requantized = power->mantissa;
cannam@85 894 exp += power->exponent;
cannam@85 895
cannam@85 896 if (exp < 0) {
cannam@85 897 if (-exp >= sizeof(mad_fixed_t) * CHAR_BIT) {
cannam@85 898 /* underflow */
cannam@85 899 requantized = 0;
cannam@85 900 }
cannam@85 901 else {
cannam@85 902 requantized += 1L << (-exp - 1);
cannam@85 903 requantized >>= -exp;
cannam@85 904 }
cannam@85 905 }
cannam@85 906 else {
cannam@85 907 if (exp >= 5) {
cannam@85 908 /* overflow */
cannam@85 909 # if defined(DEBUG)
cannam@85 910 fprintf(stderr, "requantize overflow (%f * 2^%d)\n",
cannam@85 911 mad_f_todouble(requantized), exp);
cannam@85 912 # endif
cannam@85 913 requantized = MAD_F_MAX;
cannam@85 914 }
cannam@85 915 else
cannam@85 916 requantized <<= exp;
cannam@85 917 }
cannam@85 918
cannam@85 919 return frac ? mad_f_mul(requantized, root_table[3 + frac]) : requantized;
cannam@85 920 }
cannam@85 921
cannam@85 922 /* we must take care that sz >= bits and sz < sizeof(long) lest bits == 0 */
cannam@85 923 # define MASK(cache, sz, bits) \
cannam@85 924 (((cache) >> ((sz) - (bits))) & ((1 << (bits)) - 1))
cannam@85 925 # define MASK1BIT(cache, sz) \
cannam@85 926 ((cache) & (1 << ((sz) - 1)))
cannam@85 927
cannam@85 928 /*
cannam@85 929 * NAME: III_huffdecode()
cannam@85 930 * DESCRIPTION: decode Huffman code words of one channel of one granule
cannam@85 931 */
cannam@85 932 static
cannam@85 933 enum mad_error III_huffdecode(struct mad_bitptr *ptr, mad_fixed_t xr[576],
cannam@85 934 struct channel *channel,
cannam@85 935 unsigned char const *sfbwidth,
cannam@85 936 unsigned int part2_length)
cannam@85 937 {
cannam@85 938 signed int exponents[39], exp;
cannam@85 939 signed int const *expptr;
cannam@85 940 struct mad_bitptr peek;
cannam@85 941 signed int bits_left, cachesz;
cannam@85 942 register mad_fixed_t *xrptr;
cannam@85 943 mad_fixed_t const *sfbound;
cannam@85 944 register unsigned long bitcache;
cannam@85 945
cannam@85 946 bits_left = (signed) channel->part2_3_length - (signed) part2_length;
cannam@85 947 if (bits_left < 0)
cannam@85 948 return MAD_ERROR_BADPART3LEN;
cannam@85 949
cannam@85 950 III_exponents(channel, sfbwidth, exponents);
cannam@85 951
cannam@85 952 peek = *ptr;
cannam@85 953 mad_bit_skip(ptr, bits_left);
cannam@85 954
cannam@85 955 /* align bit reads to byte boundaries */
cannam@85 956 cachesz = mad_bit_bitsleft(&peek);
cannam@85 957 cachesz += ((32 - 1 - 24) + (24 - cachesz)) & ~7;
cannam@85 958
cannam@85 959 bitcache = mad_bit_read(&peek, cachesz);
cannam@85 960 bits_left -= cachesz;
cannam@85 961
cannam@85 962 xrptr = &xr[0];
cannam@85 963
cannam@85 964 /* big_values */
cannam@85 965 {
cannam@85 966 unsigned int region, rcount;
cannam@85 967 struct hufftable const *entry;
cannam@85 968 union huffpair const *table;
cannam@85 969 unsigned int linbits, startbits, big_values, reqhits;
cannam@85 970 mad_fixed_t reqcache[16];
cannam@85 971
cannam@85 972 sfbound = xrptr + *sfbwidth++;
cannam@85 973 rcount = channel->region0_count + 1;
cannam@85 974
cannam@85 975 entry = &mad_huff_pair_table[channel->table_select[region = 0]];
cannam@85 976 table = entry->table;
cannam@85 977 linbits = entry->linbits;
cannam@85 978 startbits = entry->startbits;
cannam@85 979
cannam@85 980 if (table == 0)
cannam@85 981 return MAD_ERROR_BADHUFFTABLE;
cannam@85 982
cannam@85 983 expptr = &exponents[0];
cannam@85 984 exp = *expptr++;
cannam@85 985 reqhits = 0;
cannam@85 986
cannam@85 987 big_values = channel->big_values;
cannam@85 988
cannam@85 989 while (big_values-- && cachesz + bits_left > 0) {
cannam@85 990 union huffpair const *pair;
cannam@85 991 unsigned int clumpsz, value;
cannam@85 992 register mad_fixed_t requantized;
cannam@85 993
cannam@85 994 if (xrptr == sfbound) {
cannam@85 995 sfbound += *sfbwidth++;
cannam@85 996
cannam@85 997 /* change table if region boundary */
cannam@85 998
cannam@85 999 if (--rcount == 0) {
cannam@85 1000 if (region == 0)
cannam@85 1001 rcount = channel->region1_count + 1;
cannam@85 1002 else
cannam@85 1003 rcount = 0; /* all remaining */
cannam@85 1004
cannam@85 1005 entry = &mad_huff_pair_table[channel->table_select[++region]];
cannam@85 1006 table = entry->table;
cannam@85 1007 linbits = entry->linbits;
cannam@85 1008 startbits = entry->startbits;
cannam@85 1009
cannam@85 1010 if (table == 0)
cannam@85 1011 return MAD_ERROR_BADHUFFTABLE;
cannam@85 1012 }
cannam@85 1013
cannam@85 1014 if (exp != *expptr) {
cannam@85 1015 exp = *expptr;
cannam@85 1016 reqhits = 0;
cannam@85 1017 }
cannam@85 1018
cannam@85 1019 ++expptr;
cannam@85 1020 }
cannam@85 1021
cannam@85 1022 if (cachesz < 21) {
cannam@85 1023 unsigned int bits;
cannam@85 1024
cannam@85 1025 bits = ((32 - 1 - 21) + (21 - cachesz)) & ~7;
cannam@85 1026 bitcache = (bitcache << bits) | mad_bit_read(&peek, bits);
cannam@85 1027 cachesz += bits;
cannam@85 1028 bits_left -= bits;
cannam@85 1029 }
cannam@85 1030
cannam@85 1031 /* hcod (0..19) */
cannam@85 1032
cannam@85 1033 clumpsz = startbits;
cannam@85 1034 pair = &table[MASK(bitcache, cachesz, clumpsz)];
cannam@85 1035
cannam@85 1036 while (!pair->final) {
cannam@85 1037 cachesz -= clumpsz;
cannam@85 1038
cannam@85 1039 clumpsz = pair->ptr.bits;
cannam@85 1040 pair = &table[pair->ptr.offset + MASK(bitcache, cachesz, clumpsz)];
cannam@85 1041 }
cannam@85 1042
cannam@85 1043 cachesz -= pair->value.hlen;
cannam@85 1044
cannam@85 1045 if (linbits) {
cannam@85 1046 /* x (0..14) */
cannam@85 1047
cannam@85 1048 value = pair->value.x;
cannam@85 1049
cannam@85 1050 switch (value) {
cannam@85 1051 case 0:
cannam@85 1052 xrptr[0] = 0;
cannam@85 1053 break;
cannam@85 1054
cannam@85 1055 case 15:
cannam@85 1056 if (cachesz < linbits + 2) {
cannam@85 1057 bitcache = (bitcache << 16) | mad_bit_read(&peek, 16);
cannam@85 1058 cachesz += 16;
cannam@85 1059 bits_left -= 16;
cannam@85 1060 }
cannam@85 1061
cannam@85 1062 value += MASK(bitcache, cachesz, linbits);
cannam@85 1063 cachesz -= linbits;
cannam@85 1064
cannam@85 1065 requantized = III_requantize(value, exp);
cannam@85 1066 goto x_final;
cannam@85 1067
cannam@85 1068 default:
cannam@85 1069 if (reqhits & (1 << value))
cannam@85 1070 requantized = reqcache[value];
cannam@85 1071 else {
cannam@85 1072 reqhits |= (1 << value);
cannam@85 1073 requantized = reqcache[value] = III_requantize(value, exp);
cannam@85 1074 }
cannam@85 1075
cannam@85 1076 x_final:
cannam@85 1077 xrptr[0] = MASK1BIT(bitcache, cachesz--) ?
cannam@85 1078 -requantized : requantized;
cannam@85 1079 }
cannam@85 1080
cannam@85 1081 /* y (0..14) */
cannam@85 1082
cannam@85 1083 value = pair->value.y;
cannam@85 1084
cannam@85 1085 switch (value) {
cannam@85 1086 case 0:
cannam@85 1087 xrptr[1] = 0;
cannam@85 1088 break;
cannam@85 1089
cannam@85 1090 case 15:
cannam@85 1091 if (cachesz < linbits + 1) {
cannam@85 1092 bitcache = (bitcache << 16) | mad_bit_read(&peek, 16);
cannam@85 1093 cachesz += 16;
cannam@85 1094 bits_left -= 16;
cannam@85 1095 }
cannam@85 1096
cannam@85 1097 value += MASK(bitcache, cachesz, linbits);
cannam@85 1098 cachesz -= linbits;
cannam@85 1099
cannam@85 1100 requantized = III_requantize(value, exp);
cannam@85 1101 goto y_final;
cannam@85 1102
cannam@85 1103 default:
cannam@85 1104 if (reqhits & (1 << value))
cannam@85 1105 requantized = reqcache[value];
cannam@85 1106 else {
cannam@85 1107 reqhits |= (1 << value);
cannam@85 1108 requantized = reqcache[value] = III_requantize(value, exp);
cannam@85 1109 }
cannam@85 1110
cannam@85 1111 y_final:
cannam@85 1112 xrptr[1] = MASK1BIT(bitcache, cachesz--) ?
cannam@85 1113 -requantized : requantized;
cannam@85 1114 }
cannam@85 1115 }
cannam@85 1116 else {
cannam@85 1117 /* x (0..1) */
cannam@85 1118
cannam@85 1119 value = pair->value.x;
cannam@85 1120
cannam@85 1121 if (value == 0)
cannam@85 1122 xrptr[0] = 0;
cannam@85 1123 else {
cannam@85 1124 if (reqhits & (1 << value))
cannam@85 1125 requantized = reqcache[value];
cannam@85 1126 else {
cannam@85 1127 reqhits |= (1 << value);
cannam@85 1128 requantized = reqcache[value] = III_requantize(value, exp);
cannam@85 1129 }
cannam@85 1130
cannam@85 1131 xrptr[0] = MASK1BIT(bitcache, cachesz--) ?
cannam@85 1132 -requantized : requantized;
cannam@85 1133 }
cannam@85 1134
cannam@85 1135 /* y (0..1) */
cannam@85 1136
cannam@85 1137 value = pair->value.y;
cannam@85 1138
cannam@85 1139 if (value == 0)
cannam@85 1140 xrptr[1] = 0;
cannam@85 1141 else {
cannam@85 1142 if (reqhits & (1 << value))
cannam@85 1143 requantized = reqcache[value];
cannam@85 1144 else {
cannam@85 1145 reqhits |= (1 << value);
cannam@85 1146 requantized = reqcache[value] = III_requantize(value, exp);
cannam@85 1147 }
cannam@85 1148
cannam@85 1149 xrptr[1] = MASK1BIT(bitcache, cachesz--) ?
cannam@85 1150 -requantized : requantized;
cannam@85 1151 }
cannam@85 1152 }
cannam@85 1153
cannam@85 1154 xrptr += 2;
cannam@85 1155 }
cannam@85 1156 }
cannam@85 1157
cannam@85 1158 if (cachesz + bits_left < 0)
cannam@85 1159 return MAD_ERROR_BADHUFFDATA; /* big_values overrun */
cannam@85 1160
cannam@85 1161 /* count1 */
cannam@85 1162 {
cannam@85 1163 union huffquad const *table;
cannam@85 1164 register mad_fixed_t requantized;
cannam@85 1165
cannam@85 1166 table = mad_huff_quad_table[channel->flags & count1table_select];
cannam@85 1167
cannam@85 1168 requantized = III_requantize(1, exp);
cannam@85 1169
cannam@85 1170 while (cachesz + bits_left > 0 && xrptr <= &xr[572]) {
cannam@85 1171 union huffquad const *quad;
cannam@85 1172
cannam@85 1173 /* hcod (1..6) */
cannam@85 1174
cannam@85 1175 if (cachesz < 10) {
cannam@85 1176 bitcache = (bitcache << 16) | mad_bit_read(&peek, 16);
cannam@85 1177 cachesz += 16;
cannam@85 1178 bits_left -= 16;
cannam@85 1179 }
cannam@85 1180
cannam@85 1181 quad = &table[MASK(bitcache, cachesz, 4)];
cannam@85 1182
cannam@85 1183 /* quad tables guaranteed to have at most one extra lookup */
cannam@85 1184 if (!quad->final) {
cannam@85 1185 cachesz -= 4;
cannam@85 1186
cannam@85 1187 quad = &table[quad->ptr.offset +
cannam@85 1188 MASK(bitcache, cachesz, quad->ptr.bits)];
cannam@85 1189 }
cannam@85 1190
cannam@85 1191 cachesz -= quad->value.hlen;
cannam@85 1192
cannam@85 1193 if (xrptr == sfbound) {
cannam@85 1194 sfbound += *sfbwidth++;
cannam@85 1195
cannam@85 1196 if (exp != *expptr) {
cannam@85 1197 exp = *expptr;
cannam@85 1198 requantized = III_requantize(1, exp);
cannam@85 1199 }
cannam@85 1200
cannam@85 1201 ++expptr;
cannam@85 1202 }
cannam@85 1203
cannam@85 1204 /* v (0..1) */
cannam@85 1205
cannam@85 1206 xrptr[0] = quad->value.v ?
cannam@85 1207 (MASK1BIT(bitcache, cachesz--) ? -requantized : requantized) : 0;
cannam@85 1208
cannam@85 1209 /* w (0..1) */
cannam@85 1210
cannam@85 1211 xrptr[1] = quad->value.w ?
cannam@85 1212 (MASK1BIT(bitcache, cachesz--) ? -requantized : requantized) : 0;
cannam@85 1213
cannam@85 1214 xrptr += 2;
cannam@85 1215
cannam@85 1216 if (xrptr == sfbound) {
cannam@85 1217 sfbound += *sfbwidth++;
cannam@85 1218
cannam@85 1219 if (exp != *expptr) {
cannam@85 1220 exp = *expptr;
cannam@85 1221 requantized = III_requantize(1, exp);
cannam@85 1222 }
cannam@85 1223
cannam@85 1224 ++expptr;
cannam@85 1225 }
cannam@85 1226
cannam@85 1227 /* x (0..1) */
cannam@85 1228
cannam@85 1229 xrptr[0] = quad->value.x ?
cannam@85 1230 (MASK1BIT(bitcache, cachesz--) ? -requantized : requantized) : 0;
cannam@85 1231
cannam@85 1232 /* y (0..1) */
cannam@85 1233
cannam@85 1234 xrptr[1] = quad->value.y ?
cannam@85 1235 (MASK1BIT(bitcache, cachesz--) ? -requantized : requantized) : 0;
cannam@85 1236
cannam@85 1237 xrptr += 2;
cannam@85 1238 }
cannam@85 1239
cannam@85 1240 if (cachesz + bits_left < 0) {
cannam@85 1241 # if 0 && defined(DEBUG)
cannam@85 1242 fprintf(stderr, "huffman count1 overrun (%d bits)\n",
cannam@85 1243 -(cachesz + bits_left));
cannam@85 1244 # endif
cannam@85 1245
cannam@85 1246 /* technically the bitstream is misformatted, but apparently
cannam@85 1247 some encoders are just a bit sloppy with stuffing bits */
cannam@85 1248
cannam@85 1249 xrptr -= 4;
cannam@85 1250 }
cannam@85 1251 }
cannam@85 1252
cannam@85 1253 assert(-bits_left <= MAD_BUFFER_GUARD * CHAR_BIT);
cannam@85 1254
cannam@85 1255 # if 0 && defined(DEBUG)
cannam@85 1256 if (bits_left < 0)
cannam@85 1257 fprintf(stderr, "read %d bits too many\n", -bits_left);
cannam@85 1258 else if (cachesz + bits_left > 0)
cannam@85 1259 fprintf(stderr, "%d stuffing bits\n", cachesz + bits_left);
cannam@85 1260 # endif
cannam@85 1261
cannam@85 1262 /* rzero */
cannam@85 1263 while (xrptr < &xr[576]) {
cannam@85 1264 xrptr[0] = 0;
cannam@85 1265 xrptr[1] = 0;
cannam@85 1266
cannam@85 1267 xrptr += 2;
cannam@85 1268 }
cannam@85 1269
cannam@85 1270 return MAD_ERROR_NONE;
cannam@85 1271 }
cannam@85 1272
cannam@85 1273 # undef MASK
cannam@85 1274 # undef MASK1BIT
cannam@85 1275
cannam@85 1276 /*
cannam@85 1277 * NAME: III_reorder()
cannam@85 1278 * DESCRIPTION: reorder frequency lines of a short block into subband order
cannam@85 1279 */
cannam@85 1280 static
cannam@85 1281 void III_reorder(mad_fixed_t xr[576], struct channel const *channel,
cannam@85 1282 unsigned char const sfbwidth[39])
cannam@85 1283 {
cannam@85 1284 mad_fixed_t tmp[32][3][6];
cannam@85 1285 unsigned int sb, l, f, w, sbw[3], sw[3];
cannam@85 1286
cannam@85 1287 /* this is probably wrong for 8000 Hz mixed blocks */
cannam@85 1288
cannam@85 1289 sb = 0;
cannam@85 1290 if (channel->flags & mixed_block_flag) {
cannam@85 1291 sb = 2;
cannam@85 1292
cannam@85 1293 l = 0;
cannam@85 1294 while (l < 36)
cannam@85 1295 l += *sfbwidth++;
cannam@85 1296 }
cannam@85 1297
cannam@85 1298 for (w = 0; w < 3; ++w) {
cannam@85 1299 sbw[w] = sb;
cannam@85 1300 sw[w] = 0;
cannam@85 1301 }
cannam@85 1302
cannam@85 1303 f = *sfbwidth++;
cannam@85 1304 w = 0;
cannam@85 1305
cannam@85 1306 for (l = 18 * sb; l < 576; ++l) {
cannam@85 1307 if (f-- == 0) {
cannam@85 1308 f = *sfbwidth++ - 1;
cannam@85 1309 w = (w + 1) % 3;
cannam@85 1310 }
cannam@85 1311
cannam@85 1312 tmp[sbw[w]][w][sw[w]++] = xr[l];
cannam@85 1313
cannam@85 1314 if (sw[w] == 6) {
cannam@85 1315 sw[w] = 0;
cannam@85 1316 ++sbw[w];
cannam@85 1317 }
cannam@85 1318 }
cannam@85 1319
cannam@85 1320 memcpy(&xr[18 * sb], &tmp[sb], (576 - 18 * sb) * sizeof(mad_fixed_t));
cannam@85 1321 }
cannam@85 1322
cannam@85 1323 /*
cannam@85 1324 * NAME: III_stereo()
cannam@85 1325 * DESCRIPTION: perform joint stereo processing on a granule
cannam@85 1326 */
cannam@85 1327 static
cannam@85 1328 enum mad_error III_stereo(mad_fixed_t xr[2][576],
cannam@85 1329 struct granule const *granule,
cannam@85 1330 struct mad_header *header,
cannam@85 1331 unsigned char const *sfbwidth)
cannam@85 1332 {
cannam@85 1333 short modes[39];
cannam@85 1334 unsigned int sfbi, l, n, i;
cannam@85 1335
cannam@85 1336 if (granule->ch[0].block_type !=
cannam@85 1337 granule->ch[1].block_type ||
cannam@85 1338 (granule->ch[0].flags & mixed_block_flag) !=
cannam@85 1339 (granule->ch[1].flags & mixed_block_flag))
cannam@85 1340 return MAD_ERROR_BADSTEREO;
cannam@85 1341
cannam@85 1342 for (i = 0; i < 39; ++i)
cannam@85 1343 modes[i] = header->mode_extension;
cannam@85 1344
cannam@85 1345 /* intensity stereo */
cannam@85 1346
cannam@85 1347 if (header->mode_extension & I_STEREO) {
cannam@85 1348 struct channel const *right_ch = &granule->ch[1];
cannam@85 1349 mad_fixed_t const *right_xr = xr[1];
cannam@85 1350 unsigned int is_pos;
cannam@85 1351
cannam@85 1352 header->flags |= MAD_FLAG_I_STEREO;
cannam@85 1353
cannam@85 1354 /* first determine which scalefactor bands are to be processed */
cannam@85 1355
cannam@85 1356 if (right_ch->block_type == 2) {
cannam@85 1357 unsigned int lower, start, max, bound[3], w;
cannam@85 1358
cannam@85 1359 lower = start = max = bound[0] = bound[1] = bound[2] = 0;
cannam@85 1360
cannam@85 1361 sfbi = l = 0;
cannam@85 1362
cannam@85 1363 if (right_ch->flags & mixed_block_flag) {
cannam@85 1364 while (l < 36) {
cannam@85 1365 n = sfbwidth[sfbi++];
cannam@85 1366
cannam@85 1367 for (i = 0; i < n; ++i) {
cannam@85 1368 if (right_xr[i]) {
cannam@85 1369 lower = sfbi;
cannam@85 1370 break;
cannam@85 1371 }
cannam@85 1372 }
cannam@85 1373
cannam@85 1374 right_xr += n;
cannam@85 1375 l += n;
cannam@85 1376 }
cannam@85 1377
cannam@85 1378 start = sfbi;
cannam@85 1379 }
cannam@85 1380
cannam@85 1381 w = 0;
cannam@85 1382 while (l < 576) {
cannam@85 1383 n = sfbwidth[sfbi++];
cannam@85 1384
cannam@85 1385 for (i = 0; i < n; ++i) {
cannam@85 1386 if (right_xr[i]) {
cannam@85 1387 max = bound[w] = sfbi;
cannam@85 1388 break;
cannam@85 1389 }
cannam@85 1390 }
cannam@85 1391
cannam@85 1392 right_xr += n;
cannam@85 1393 l += n;
cannam@85 1394 w = (w + 1) % 3;
cannam@85 1395 }
cannam@85 1396
cannam@85 1397 if (max)
cannam@85 1398 lower = start;
cannam@85 1399
cannam@85 1400 /* long blocks */
cannam@85 1401
cannam@85 1402 for (i = 0; i < lower; ++i)
cannam@85 1403 modes[i] = header->mode_extension & ~I_STEREO;
cannam@85 1404
cannam@85 1405 /* short blocks */
cannam@85 1406
cannam@85 1407 w = 0;
cannam@85 1408 for (i = start; i < max; ++i) {
cannam@85 1409 if (i < bound[w])
cannam@85 1410 modes[i] = header->mode_extension & ~I_STEREO;
cannam@85 1411
cannam@85 1412 w = (w + 1) % 3;
cannam@85 1413 }
cannam@85 1414 }
cannam@85 1415 else { /* right_ch->block_type != 2 */
cannam@85 1416 unsigned int bound;
cannam@85 1417
cannam@85 1418 bound = 0;
cannam@85 1419 for (sfbi = l = 0; l < 576; l += n) {
cannam@85 1420 n = sfbwidth[sfbi++];
cannam@85 1421
cannam@85 1422 for (i = 0; i < n; ++i) {
cannam@85 1423 if (right_xr[i]) {
cannam@85 1424 bound = sfbi;
cannam@85 1425 break;
cannam@85 1426 }
cannam@85 1427 }
cannam@85 1428
cannam@85 1429 right_xr += n;
cannam@85 1430 }
cannam@85 1431
cannam@85 1432 for (i = 0; i < bound; ++i)
cannam@85 1433 modes[i] = header->mode_extension & ~I_STEREO;
cannam@85 1434 }
cannam@85 1435
cannam@85 1436 /* now do the actual processing */
cannam@85 1437
cannam@85 1438 if (header->flags & MAD_FLAG_LSF_EXT) {
cannam@85 1439 unsigned char const *illegal_pos = granule[1].ch[1].scalefac;
cannam@85 1440 mad_fixed_t const *lsf_scale;
cannam@85 1441
cannam@85 1442 /* intensity_scale */
cannam@85 1443 lsf_scale = is_lsf_table[right_ch->scalefac_compress & 0x1];
cannam@85 1444
cannam@85 1445 for (sfbi = l = 0; l < 576; ++sfbi, l += n) {
cannam@85 1446 n = sfbwidth[sfbi];
cannam@85 1447
cannam@85 1448 if (!(modes[sfbi] & I_STEREO))
cannam@85 1449 continue;
cannam@85 1450
cannam@85 1451 if (illegal_pos[sfbi]) {
cannam@85 1452 modes[sfbi] &= ~I_STEREO;
cannam@85 1453 continue;
cannam@85 1454 }
cannam@85 1455
cannam@85 1456 is_pos = right_ch->scalefac[sfbi];
cannam@85 1457
cannam@85 1458 for (i = 0; i < n; ++i) {
cannam@85 1459 register mad_fixed_t left;
cannam@85 1460
cannam@85 1461 left = xr[0][l + i];
cannam@85 1462
cannam@85 1463 if (is_pos == 0)
cannam@85 1464 xr[1][l + i] = left;
cannam@85 1465 else {
cannam@85 1466 register mad_fixed_t opposite;
cannam@85 1467
cannam@85 1468 opposite = mad_f_mul(left, lsf_scale[(is_pos - 1) / 2]);
cannam@85 1469
cannam@85 1470 if (is_pos & 1) {
cannam@85 1471 xr[0][l + i] = opposite;
cannam@85 1472 xr[1][l + i] = left;
cannam@85 1473 }
cannam@85 1474 else
cannam@85 1475 xr[1][l + i] = opposite;
cannam@85 1476 }
cannam@85 1477 }
cannam@85 1478 }
cannam@85 1479 }
cannam@85 1480 else { /* !(header->flags & MAD_FLAG_LSF_EXT) */
cannam@85 1481 for (sfbi = l = 0; l < 576; ++sfbi, l += n) {
cannam@85 1482 n = sfbwidth[sfbi];
cannam@85 1483
cannam@85 1484 if (!(modes[sfbi] & I_STEREO))
cannam@85 1485 continue;
cannam@85 1486
cannam@85 1487 is_pos = right_ch->scalefac[sfbi];
cannam@85 1488
cannam@85 1489 if (is_pos >= 7) { /* illegal intensity position */
cannam@85 1490 modes[sfbi] &= ~I_STEREO;
cannam@85 1491 continue;
cannam@85 1492 }
cannam@85 1493
cannam@85 1494 for (i = 0; i < n; ++i) {
cannam@85 1495 register mad_fixed_t left;
cannam@85 1496
cannam@85 1497 left = xr[0][l + i];
cannam@85 1498
cannam@85 1499 xr[0][l + i] = mad_f_mul(left, is_table[ is_pos]);
cannam@85 1500 xr[1][l + i] = mad_f_mul(left, is_table[6 - is_pos]);
cannam@85 1501 }
cannam@85 1502 }
cannam@85 1503 }
cannam@85 1504 }
cannam@85 1505
cannam@85 1506 /* middle/side stereo */
cannam@85 1507
cannam@85 1508 if (header->mode_extension & MS_STEREO) {
cannam@85 1509 register mad_fixed_t invsqrt2;
cannam@85 1510
cannam@85 1511 header->flags |= MAD_FLAG_MS_STEREO;
cannam@85 1512
cannam@85 1513 invsqrt2 = root_table[3 + -2];
cannam@85 1514
cannam@85 1515 for (sfbi = l = 0; l < 576; ++sfbi, l += n) {
cannam@85 1516 n = sfbwidth[sfbi];
cannam@85 1517
cannam@85 1518 if (modes[sfbi] != MS_STEREO)
cannam@85 1519 continue;
cannam@85 1520
cannam@85 1521 for (i = 0; i < n; ++i) {
cannam@85 1522 register mad_fixed_t m, s;
cannam@85 1523
cannam@85 1524 m = xr[0][l + i];
cannam@85 1525 s = xr[1][l + i];
cannam@85 1526
cannam@85 1527 xr[0][l + i] = mad_f_mul(m + s, invsqrt2); /* l = (m + s) / sqrt(2) */
cannam@85 1528 xr[1][l + i] = mad_f_mul(m - s, invsqrt2); /* r = (m - s) / sqrt(2) */
cannam@85 1529 }
cannam@85 1530 }
cannam@85 1531 }
cannam@85 1532
cannam@85 1533 return MAD_ERROR_NONE;
cannam@85 1534 }
cannam@85 1535
cannam@85 1536 /*
cannam@85 1537 * NAME: III_aliasreduce()
cannam@85 1538 * DESCRIPTION: perform frequency line alias reduction
cannam@85 1539 */
cannam@85 1540 static
cannam@85 1541 void III_aliasreduce(mad_fixed_t xr[576], int lines)
cannam@85 1542 {
cannam@85 1543 mad_fixed_t const *bound;
cannam@85 1544 int i;
cannam@85 1545
cannam@85 1546 bound = &xr[lines];
cannam@85 1547 for (xr += 18; xr < bound; xr += 18) {
cannam@85 1548 for (i = 0; i < 8; ++i) {
cannam@85 1549 register mad_fixed_t a, b;
cannam@85 1550 register mad_fixed64hi_t hi;
cannam@85 1551 register mad_fixed64lo_t lo;
cannam@85 1552
cannam@85 1553 a = xr[-1 - i];
cannam@85 1554 b = xr[ i];
cannam@85 1555
cannam@85 1556 # if defined(ASO_ZEROCHECK)
cannam@85 1557 if (a | b) {
cannam@85 1558 # endif
cannam@85 1559 MAD_F_ML0(hi, lo, a, cs[i]);
cannam@85 1560 MAD_F_MLA(hi, lo, -b, ca[i]);
cannam@85 1561
cannam@85 1562 xr[-1 - i] = MAD_F_MLZ(hi, lo);
cannam@85 1563
cannam@85 1564 MAD_F_ML0(hi, lo, b, cs[i]);
cannam@85 1565 MAD_F_MLA(hi, lo, a, ca[i]);
cannam@85 1566
cannam@85 1567 xr[ i] = MAD_F_MLZ(hi, lo);
cannam@85 1568 # if defined(ASO_ZEROCHECK)
cannam@85 1569 }
cannam@85 1570 # endif
cannam@85 1571 }
cannam@85 1572 }
cannam@85 1573 }
cannam@85 1574
cannam@85 1575 # if defined(ASO_IMDCT)
cannam@85 1576 void III_imdct_l(mad_fixed_t const [18], mad_fixed_t [36], unsigned int);
cannam@85 1577 # else
cannam@85 1578 # if 1
cannam@85 1579 static
cannam@85 1580 void fastsdct(mad_fixed_t const x[9], mad_fixed_t y[18])
cannam@85 1581 {
cannam@85 1582 mad_fixed_t a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12;
cannam@85 1583 mad_fixed_t a13, a14, a15, a16, a17, a18, a19, a20, a21, a22, a23, a24, a25;
cannam@85 1584 mad_fixed_t m0, m1, m2, m3, m4, m5, m6, m7;
cannam@85 1585
cannam@85 1586 enum {
cannam@85 1587 c0 = MAD_F(0x1f838b8d), /* 2 * cos( 1 * PI / 18) */
cannam@85 1588 c1 = MAD_F(0x1bb67ae8), /* 2 * cos( 3 * PI / 18) */
cannam@85 1589 c2 = MAD_F(0x18836fa3), /* 2 * cos( 4 * PI / 18) */
cannam@85 1590 c3 = MAD_F(0x1491b752), /* 2 * cos( 5 * PI / 18) */
cannam@85 1591 c4 = MAD_F(0x0af1d43a), /* 2 * cos( 7 * PI / 18) */
cannam@85 1592 c5 = MAD_F(0x058e86a0), /* 2 * cos( 8 * PI / 18) */
cannam@85 1593 c6 = -MAD_F(0x1e11f642) /* 2 * cos(16 * PI / 18) */
cannam@85 1594 };
cannam@85 1595
cannam@85 1596 a0 = x[3] + x[5];
cannam@85 1597 a1 = x[3] - x[5];
cannam@85 1598 a2 = x[6] + x[2];
cannam@85 1599 a3 = x[6] - x[2];
cannam@85 1600 a4 = x[1] + x[7];
cannam@85 1601 a5 = x[1] - x[7];
cannam@85 1602 a6 = x[8] + x[0];
cannam@85 1603 a7 = x[8] - x[0];
cannam@85 1604
cannam@85 1605 a8 = a0 + a2;
cannam@85 1606 a9 = a0 - a2;
cannam@85 1607 a10 = a0 - a6;
cannam@85 1608 a11 = a2 - a6;
cannam@85 1609 a12 = a8 + a6;
cannam@85 1610 a13 = a1 - a3;
cannam@85 1611 a14 = a13 + a7;
cannam@85 1612 a15 = a3 + a7;
cannam@85 1613 a16 = a1 - a7;
cannam@85 1614 a17 = a1 + a3;
cannam@85 1615
cannam@85 1616 m0 = mad_f_mul(a17, -c3);
cannam@85 1617 m1 = mad_f_mul(a16, -c0);
cannam@85 1618 m2 = mad_f_mul(a15, -c4);
cannam@85 1619 m3 = mad_f_mul(a14, -c1);
cannam@85 1620 m4 = mad_f_mul(a5, -c1);
cannam@85 1621 m5 = mad_f_mul(a11, -c6);
cannam@85 1622 m6 = mad_f_mul(a10, -c5);
cannam@85 1623 m7 = mad_f_mul(a9, -c2);
cannam@85 1624
cannam@85 1625 a18 = x[4] + a4;
cannam@85 1626 a19 = 2 * x[4] - a4;
cannam@85 1627 a20 = a19 + m5;
cannam@85 1628 a21 = a19 - m5;
cannam@85 1629 a22 = a19 + m6;
cannam@85 1630 a23 = m4 + m2;
cannam@85 1631 a24 = m4 - m2;
cannam@85 1632 a25 = m4 + m1;
cannam@85 1633
cannam@85 1634 /* output to every other slot for convenience */
cannam@85 1635
cannam@85 1636 y[ 0] = a18 + a12;
cannam@85 1637 y[ 2] = m0 - a25;
cannam@85 1638 y[ 4] = m7 - a20;
cannam@85 1639 y[ 6] = m3;
cannam@85 1640 y[ 8] = a21 - m6;
cannam@85 1641 y[10] = a24 - m1;
cannam@85 1642 y[12] = a12 - 2 * a18;
cannam@85 1643 y[14] = a23 + m0;
cannam@85 1644 y[16] = a22 + m7;
cannam@85 1645 }
cannam@85 1646
cannam@85 1647 static inline
cannam@85 1648 void sdctII(mad_fixed_t const x[18], mad_fixed_t X[18])
cannam@85 1649 {
cannam@85 1650 mad_fixed_t tmp[9];
cannam@85 1651 int i;
cannam@85 1652
cannam@85 1653 /* scale[i] = 2 * cos(PI * (2 * i + 1) / (2 * 18)) */
cannam@85 1654 static mad_fixed_t const scale[9] = {
cannam@85 1655 MAD_F(0x1fe0d3b4), MAD_F(0x1ee8dd47), MAD_F(0x1d007930),
cannam@85 1656 MAD_F(0x1a367e59), MAD_F(0x16a09e66), MAD_F(0x125abcf8),
cannam@85 1657 MAD_F(0x0d8616bc), MAD_F(0x08483ee1), MAD_F(0x02c9fad7)
cannam@85 1658 };
cannam@85 1659
cannam@85 1660 /* divide the 18-point SDCT-II into two 9-point SDCT-IIs */
cannam@85 1661
cannam@85 1662 /* even input butterfly */
cannam@85 1663
cannam@85 1664 for (i = 0; i < 9; i += 3) {
cannam@85 1665 tmp[i + 0] = x[i + 0] + x[18 - (i + 0) - 1];
cannam@85 1666 tmp[i + 1] = x[i + 1] + x[18 - (i + 1) - 1];
cannam@85 1667 tmp[i + 2] = x[i + 2] + x[18 - (i + 2) - 1];
cannam@85 1668 }
cannam@85 1669
cannam@85 1670 fastsdct(tmp, &X[0]);
cannam@85 1671
cannam@85 1672 /* odd input butterfly and scaling */
cannam@85 1673
cannam@85 1674 for (i = 0; i < 9; i += 3) {
cannam@85 1675 tmp[i + 0] = mad_f_mul(x[i + 0] - x[18 - (i + 0) - 1], scale[i + 0]);
cannam@85 1676 tmp[i + 1] = mad_f_mul(x[i + 1] - x[18 - (i + 1) - 1], scale[i + 1]);
cannam@85 1677 tmp[i + 2] = mad_f_mul(x[i + 2] - x[18 - (i + 2) - 1], scale[i + 2]);
cannam@85 1678 }
cannam@85 1679
cannam@85 1680 fastsdct(tmp, &X[1]);
cannam@85 1681
cannam@85 1682 /* output accumulation */
cannam@85 1683
cannam@85 1684 for (i = 3; i < 18; i += 8) {
cannam@85 1685 X[i + 0] -= X[(i + 0) - 2];
cannam@85 1686 X[i + 2] -= X[(i + 2) - 2];
cannam@85 1687 X[i + 4] -= X[(i + 4) - 2];
cannam@85 1688 X[i + 6] -= X[(i + 6) - 2];
cannam@85 1689 }
cannam@85 1690 }
cannam@85 1691
cannam@85 1692 static inline
cannam@85 1693 void dctIV(mad_fixed_t const y[18], mad_fixed_t X[18])
cannam@85 1694 {
cannam@85 1695 mad_fixed_t tmp[18];
cannam@85 1696 int i;
cannam@85 1697
cannam@85 1698 /* scale[i] = 2 * cos(PI * (2 * i + 1) / (4 * 18)) */
cannam@85 1699 static mad_fixed_t const scale[18] = {
cannam@85 1700 MAD_F(0x1ff833fa), MAD_F(0x1fb9ea93), MAD_F(0x1f3dd120),
cannam@85 1701 MAD_F(0x1e84d969), MAD_F(0x1d906bcf), MAD_F(0x1c62648b),
cannam@85 1702 MAD_F(0x1afd100f), MAD_F(0x1963268b), MAD_F(0x1797c6a4),
cannam@85 1703 MAD_F(0x159e6f5b), MAD_F(0x137af940), MAD_F(0x11318ef3),
cannam@85 1704 MAD_F(0x0ec6a507), MAD_F(0x0c3ef153), MAD_F(0x099f61c5),
cannam@85 1705 MAD_F(0x06ed12c5), MAD_F(0x042d4544), MAD_F(0x0165547c)
cannam@85 1706 };
cannam@85 1707
cannam@85 1708 /* scaling */
cannam@85 1709
cannam@85 1710 for (i = 0; i < 18; i += 3) {
cannam@85 1711 tmp[i + 0] = mad_f_mul(y[i + 0], scale[i + 0]);
cannam@85 1712 tmp[i + 1] = mad_f_mul(y[i + 1], scale[i + 1]);
cannam@85 1713 tmp[i + 2] = mad_f_mul(y[i + 2], scale[i + 2]);
cannam@85 1714 }
cannam@85 1715
cannam@85 1716 /* SDCT-II */
cannam@85 1717
cannam@85 1718 sdctII(tmp, X);
cannam@85 1719
cannam@85 1720 /* scale reduction and output accumulation */
cannam@85 1721
cannam@85 1722 X[0] /= 2;
cannam@85 1723 for (i = 1; i < 17; i += 4) {
cannam@85 1724 X[i + 0] = X[i + 0] / 2 - X[(i + 0) - 1];
cannam@85 1725 X[i + 1] = X[i + 1] / 2 - X[(i + 1) - 1];
cannam@85 1726 X[i + 2] = X[i + 2] / 2 - X[(i + 2) - 1];
cannam@85 1727 X[i + 3] = X[i + 3] / 2 - X[(i + 3) - 1];
cannam@85 1728 }
cannam@85 1729 X[17] = X[17] / 2 - X[16];
cannam@85 1730 }
cannam@85 1731
cannam@85 1732 /*
cannam@85 1733 * NAME: imdct36
cannam@85 1734 * DESCRIPTION: perform X[18]->x[36] IMDCT using Szu-Wei Lee's fast algorithm
cannam@85 1735 */
cannam@85 1736 static inline
cannam@85 1737 void imdct36(mad_fixed_t const x[18], mad_fixed_t y[36])
cannam@85 1738 {
cannam@85 1739 mad_fixed_t tmp[18];
cannam@85 1740 int i;
cannam@85 1741
cannam@85 1742 /* DCT-IV */
cannam@85 1743
cannam@85 1744 dctIV(x, tmp);
cannam@85 1745
cannam@85 1746 /* convert 18-point DCT-IV to 36-point IMDCT */
cannam@85 1747
cannam@85 1748 for (i = 0; i < 9; i += 3) {
cannam@85 1749 y[i + 0] = tmp[9 + (i + 0)];
cannam@85 1750 y[i + 1] = tmp[9 + (i + 1)];
cannam@85 1751 y[i + 2] = tmp[9 + (i + 2)];
cannam@85 1752 }
cannam@85 1753 for (i = 9; i < 27; i += 3) {
cannam@85 1754 y[i + 0] = -tmp[36 - (9 + (i + 0)) - 1];
cannam@85 1755 y[i + 1] = -tmp[36 - (9 + (i + 1)) - 1];
cannam@85 1756 y[i + 2] = -tmp[36 - (9 + (i + 2)) - 1];
cannam@85 1757 }
cannam@85 1758 for (i = 27; i < 36; i += 3) {
cannam@85 1759 y[i + 0] = -tmp[(i + 0) - 27];
cannam@85 1760 y[i + 1] = -tmp[(i + 1) - 27];
cannam@85 1761 y[i + 2] = -tmp[(i + 2) - 27];
cannam@85 1762 }
cannam@85 1763 }
cannam@85 1764 # else
cannam@85 1765 /*
cannam@85 1766 * NAME: imdct36
cannam@85 1767 * DESCRIPTION: perform X[18]->x[36] IMDCT
cannam@85 1768 */
cannam@85 1769 static inline
cannam@85 1770 void imdct36(mad_fixed_t const X[18], mad_fixed_t x[36])
cannam@85 1771 {
cannam@85 1772 mad_fixed_t t0, t1, t2, t3, t4, t5, t6, t7;
cannam@85 1773 mad_fixed_t t8, t9, t10, t11, t12, t13, t14, t15;
cannam@85 1774 register mad_fixed64hi_t hi;
cannam@85 1775 register mad_fixed64lo_t lo;
cannam@85 1776
cannam@85 1777 MAD_F_ML0(hi, lo, X[4], MAD_F(0x0ec835e8));
cannam@85 1778 MAD_F_MLA(hi, lo, X[13], MAD_F(0x061f78aa));
cannam@85 1779
cannam@85 1780 t6 = MAD_F_MLZ(hi, lo);
cannam@85 1781
cannam@85 1782 MAD_F_MLA(hi, lo, (t14 = X[1] - X[10]), -MAD_F(0x061f78aa));
cannam@85 1783 MAD_F_MLA(hi, lo, (t15 = X[7] + X[16]), -MAD_F(0x0ec835e8));
cannam@85 1784
cannam@85 1785 t0 = MAD_F_MLZ(hi, lo);
cannam@85 1786
cannam@85 1787 MAD_F_MLA(hi, lo, (t8 = X[0] - X[11] - X[12]), MAD_F(0x0216a2a2));
cannam@85 1788 MAD_F_MLA(hi, lo, (t9 = X[2] - X[9] - X[14]), MAD_F(0x09bd7ca0));
cannam@85 1789 MAD_F_MLA(hi, lo, (t10 = X[3] - X[8] - X[15]), -MAD_F(0x0cb19346));
cannam@85 1790 MAD_F_MLA(hi, lo, (t11 = X[5] - X[6] - X[17]), -MAD_F(0x0fdcf549));
cannam@85 1791
cannam@85 1792 x[7] = MAD_F_MLZ(hi, lo);
cannam@85 1793 x[10] = -x[7];
cannam@85 1794
cannam@85 1795 MAD_F_ML0(hi, lo, t8, -MAD_F(0x0cb19346));
cannam@85 1796 MAD_F_MLA(hi, lo, t9, MAD_F(0x0fdcf549));
cannam@85 1797 MAD_F_MLA(hi, lo, t10, MAD_F(0x0216a2a2));
cannam@85 1798 MAD_F_MLA(hi, lo, t11, -MAD_F(0x09bd7ca0));
cannam@85 1799
cannam@85 1800 x[19] = x[34] = MAD_F_MLZ(hi, lo) - t0;
cannam@85 1801
cannam@85 1802 t12 = X[0] - X[3] + X[8] - X[11] - X[12] + X[15];
cannam@85 1803 t13 = X[2] + X[5] - X[6] - X[9] - X[14] - X[17];
cannam@85 1804
cannam@85 1805 MAD_F_ML0(hi, lo, t12, -MAD_F(0x0ec835e8));
cannam@85 1806 MAD_F_MLA(hi, lo, t13, MAD_F(0x061f78aa));
cannam@85 1807
cannam@85 1808 x[22] = x[31] = MAD_F_MLZ(hi, lo) + t0;
cannam@85 1809
cannam@85 1810 MAD_F_ML0(hi, lo, X[1], -MAD_F(0x09bd7ca0));
cannam@85 1811 MAD_F_MLA(hi, lo, X[7], MAD_F(0x0216a2a2));
cannam@85 1812 MAD_F_MLA(hi, lo, X[10], -MAD_F(0x0fdcf549));
cannam@85 1813 MAD_F_MLA(hi, lo, X[16], MAD_F(0x0cb19346));
cannam@85 1814
cannam@85 1815 t1 = MAD_F_MLZ(hi, lo) + t6;
cannam@85 1816
cannam@85 1817 MAD_F_ML0(hi, lo, X[0], MAD_F(0x03768962));
cannam@85 1818 MAD_F_MLA(hi, lo, X[2], MAD_F(0x0e313245));
cannam@85 1819 MAD_F_MLA(hi, lo, X[3], -MAD_F(0x0ffc19fd));
cannam@85 1820 MAD_F_MLA(hi, lo, X[5], -MAD_F(0x0acf37ad));
cannam@85 1821 MAD_F_MLA(hi, lo, X[6], MAD_F(0x04cfb0e2));
cannam@85 1822 MAD_F_MLA(hi, lo, X[8], -MAD_F(0x0898c779));
cannam@85 1823 MAD_F_MLA(hi, lo, X[9], MAD_F(0x0d7e8807));
cannam@85 1824 MAD_F_MLA(hi, lo, X[11], MAD_F(0x0f426cb5));
cannam@85 1825 MAD_F_MLA(hi, lo, X[12], -MAD_F(0x0bcbe352));
cannam@85 1826 MAD_F_MLA(hi, lo, X[14], MAD_F(0x00b2aa3e));
cannam@85 1827 MAD_F_MLA(hi, lo, X[15], -MAD_F(0x07635284));
cannam@85 1828 MAD_F_MLA(hi, lo, X[17], -MAD_F(0x0f9ee890));
cannam@85 1829
cannam@85 1830 x[6] = MAD_F_MLZ(hi, lo) + t1;
cannam@85 1831 x[11] = -x[6];
cannam@85 1832
cannam@85 1833 MAD_F_ML0(hi, lo, X[0], -MAD_F(0x0f426cb5));
cannam@85 1834 MAD_F_MLA(hi, lo, X[2], -MAD_F(0x00b2aa3e));
cannam@85 1835 MAD_F_MLA(hi, lo, X[3], MAD_F(0x0898c779));
cannam@85 1836 MAD_F_MLA(hi, lo, X[5], MAD_F(0x0f9ee890));
cannam@85 1837 MAD_F_MLA(hi, lo, X[6], MAD_F(0x0acf37ad));
cannam@85 1838 MAD_F_MLA(hi, lo, X[8], -MAD_F(0x07635284));
cannam@85 1839 MAD_F_MLA(hi, lo, X[9], -MAD_F(0x0e313245));
cannam@85 1840 MAD_F_MLA(hi, lo, X[11], -MAD_F(0x0bcbe352));
cannam@85 1841 MAD_F_MLA(hi, lo, X[12], -MAD_F(0x03768962));
cannam@85 1842 MAD_F_MLA(hi, lo, X[14], MAD_F(0x0d7e8807));
cannam@85 1843 MAD_F_MLA(hi, lo, X[15], MAD_F(0x0ffc19fd));
cannam@85 1844 MAD_F_MLA(hi, lo, X[17], MAD_F(0x04cfb0e2));
cannam@85 1845
cannam@85 1846 x[23] = x[30] = MAD_F_MLZ(hi, lo) + t1;
cannam@85 1847
cannam@85 1848 MAD_F_ML0(hi, lo, X[0], -MAD_F(0x0bcbe352));
cannam@85 1849 MAD_F_MLA(hi, lo, X[2], MAD_F(0x0d7e8807));
cannam@85 1850 MAD_F_MLA(hi, lo, X[3], -MAD_F(0x07635284));
cannam@85 1851 MAD_F_MLA(hi, lo, X[5], MAD_F(0x04cfb0e2));
cannam@85 1852 MAD_F_MLA(hi, lo, X[6], MAD_F(0x0f9ee890));
cannam@85 1853 MAD_F_MLA(hi, lo, X[8], -MAD_F(0x0ffc19fd));
cannam@85 1854 MAD_F_MLA(hi, lo, X[9], -MAD_F(0x00b2aa3e));
cannam@85 1855 MAD_F_MLA(hi, lo, X[11], MAD_F(0x03768962));
cannam@85 1856 MAD_F_MLA(hi, lo, X[12], -MAD_F(0x0f426cb5));
cannam@85 1857 MAD_F_MLA(hi, lo, X[14], MAD_F(0x0e313245));
cannam@85 1858 MAD_F_MLA(hi, lo, X[15], MAD_F(0x0898c779));
cannam@85 1859 MAD_F_MLA(hi, lo, X[17], -MAD_F(0x0acf37ad));
cannam@85 1860
cannam@85 1861 x[18] = x[35] = MAD_F_MLZ(hi, lo) - t1;
cannam@85 1862
cannam@85 1863 MAD_F_ML0(hi, lo, X[4], MAD_F(0x061f78aa));
cannam@85 1864 MAD_F_MLA(hi, lo, X[13], -MAD_F(0x0ec835e8));
cannam@85 1865
cannam@85 1866 t7 = MAD_F_MLZ(hi, lo);
cannam@85 1867
cannam@85 1868 MAD_F_MLA(hi, lo, X[1], -MAD_F(0x0cb19346));
cannam@85 1869 MAD_F_MLA(hi, lo, X[7], MAD_F(0x0fdcf549));
cannam@85 1870 MAD_F_MLA(hi, lo, X[10], MAD_F(0x0216a2a2));
cannam@85 1871 MAD_F_MLA(hi, lo, X[16], -MAD_F(0x09bd7ca0));
cannam@85 1872
cannam@85 1873 t2 = MAD_F_MLZ(hi, lo);
cannam@85 1874
cannam@85 1875 MAD_F_MLA(hi, lo, X[0], MAD_F(0x04cfb0e2));
cannam@85 1876 MAD_F_MLA(hi, lo, X[2], MAD_F(0x0ffc19fd));
cannam@85 1877 MAD_F_MLA(hi, lo, X[3], -MAD_F(0x0d7e8807));
cannam@85 1878 MAD_F_MLA(hi, lo, X[5], MAD_F(0x03768962));
cannam@85 1879 MAD_F_MLA(hi, lo, X[6], -MAD_F(0x0bcbe352));
cannam@85 1880 MAD_F_MLA(hi, lo, X[8], -MAD_F(0x0e313245));
cannam@85 1881 MAD_F_MLA(hi, lo, X[9], MAD_F(0x07635284));
cannam@85 1882 MAD_F_MLA(hi, lo, X[11], -MAD_F(0x0acf37ad));
cannam@85 1883 MAD_F_MLA(hi, lo, X[12], MAD_F(0x0f9ee890));
cannam@85 1884 MAD_F_MLA(hi, lo, X[14], MAD_F(0x0898c779));
cannam@85 1885 MAD_F_MLA(hi, lo, X[15], MAD_F(0x00b2aa3e));
cannam@85 1886 MAD_F_MLA(hi, lo, X[17], MAD_F(0x0f426cb5));
cannam@85 1887
cannam@85 1888 x[5] = MAD_F_MLZ(hi, lo);
cannam@85 1889 x[12] = -x[5];
cannam@85 1890
cannam@85 1891 MAD_F_ML0(hi, lo, X[0], MAD_F(0x0acf37ad));
cannam@85 1892 MAD_F_MLA(hi, lo, X[2], -MAD_F(0x0898c779));
cannam@85 1893 MAD_F_MLA(hi, lo, X[3], MAD_F(0x0e313245));
cannam@85 1894 MAD_F_MLA(hi, lo, X[5], -MAD_F(0x0f426cb5));
cannam@85 1895 MAD_F_MLA(hi, lo, X[6], -MAD_F(0x03768962));
cannam@85 1896 MAD_F_MLA(hi, lo, X[8], MAD_F(0x00b2aa3e));
cannam@85 1897 MAD_F_MLA(hi, lo, X[9], -MAD_F(0x0ffc19fd));
cannam@85 1898 MAD_F_MLA(hi, lo, X[11], MAD_F(0x0f9ee890));
cannam@85 1899 MAD_F_MLA(hi, lo, X[12], -MAD_F(0x04cfb0e2));
cannam@85 1900 MAD_F_MLA(hi, lo, X[14], MAD_F(0x07635284));
cannam@85 1901 MAD_F_MLA(hi, lo, X[15], MAD_F(0x0d7e8807));
cannam@85 1902 MAD_F_MLA(hi, lo, X[17], -MAD_F(0x0bcbe352));
cannam@85 1903
cannam@85 1904 x[0] = MAD_F_MLZ(hi, lo) + t2;
cannam@85 1905 x[17] = -x[0];
cannam@85 1906
cannam@85 1907 MAD_F_ML0(hi, lo, X[0], -MAD_F(0x0f9ee890));
cannam@85 1908 MAD_F_MLA(hi, lo, X[2], -MAD_F(0x07635284));
cannam@85 1909 MAD_F_MLA(hi, lo, X[3], -MAD_F(0x00b2aa3e));
cannam@85 1910 MAD_F_MLA(hi, lo, X[5], MAD_F(0x0bcbe352));
cannam@85 1911 MAD_F_MLA(hi, lo, X[6], MAD_F(0x0f426cb5));
cannam@85 1912 MAD_F_MLA(hi, lo, X[8], MAD_F(0x0d7e8807));
cannam@85 1913 MAD_F_MLA(hi, lo, X[9], MAD_F(0x0898c779));
cannam@85 1914 MAD_F_MLA(hi, lo, X[11], -MAD_F(0x04cfb0e2));
cannam@85 1915 MAD_F_MLA(hi, lo, X[12], -MAD_F(0x0acf37ad));
cannam@85 1916 MAD_F_MLA(hi, lo, X[14], -MAD_F(0x0ffc19fd));
cannam@85 1917 MAD_F_MLA(hi, lo, X[15], -MAD_F(0x0e313245));
cannam@85 1918 MAD_F_MLA(hi, lo, X[17], -MAD_F(0x03768962));
cannam@85 1919
cannam@85 1920 x[24] = x[29] = MAD_F_MLZ(hi, lo) + t2;
cannam@85 1921
cannam@85 1922 MAD_F_ML0(hi, lo, X[1], -MAD_F(0x0216a2a2));
cannam@85 1923 MAD_F_MLA(hi, lo, X[7], -MAD_F(0x09bd7ca0));
cannam@85 1924 MAD_F_MLA(hi, lo, X[10], MAD_F(0x0cb19346));
cannam@85 1925 MAD_F_MLA(hi, lo, X[16], MAD_F(0x0fdcf549));
cannam@85 1926
cannam@85 1927 t3 = MAD_F_MLZ(hi, lo) + t7;
cannam@85 1928
cannam@85 1929 MAD_F_ML0(hi, lo, X[0], MAD_F(0x00b2aa3e));
cannam@85 1930 MAD_F_MLA(hi, lo, X[2], MAD_F(0x03768962));
cannam@85 1931 MAD_F_MLA(hi, lo, X[3], -MAD_F(0x04cfb0e2));
cannam@85 1932 MAD_F_MLA(hi, lo, X[5], -MAD_F(0x07635284));
cannam@85 1933 MAD_F_MLA(hi, lo, X[6], MAD_F(0x0898c779));
cannam@85 1934 MAD_F_MLA(hi, lo, X[8], MAD_F(0x0acf37ad));
cannam@85 1935 MAD_F_MLA(hi, lo, X[9], -MAD_F(0x0bcbe352));
cannam@85 1936 MAD_F_MLA(hi, lo, X[11], -MAD_F(0x0d7e8807));
cannam@85 1937 MAD_F_MLA(hi, lo, X[12], MAD_F(0x0e313245));
cannam@85 1938 MAD_F_MLA(hi, lo, X[14], MAD_F(0x0f426cb5));
cannam@85 1939 MAD_F_MLA(hi, lo, X[15], -MAD_F(0x0f9ee890));
cannam@85 1940 MAD_F_MLA(hi, lo, X[17], -MAD_F(0x0ffc19fd));
cannam@85 1941
cannam@85 1942 x[8] = MAD_F_MLZ(hi, lo) + t3;
cannam@85 1943 x[9] = -x[8];
cannam@85 1944
cannam@85 1945 MAD_F_ML0(hi, lo, X[0], -MAD_F(0x0e313245));
cannam@85 1946 MAD_F_MLA(hi, lo, X[2], MAD_F(0x0bcbe352));
cannam@85 1947 MAD_F_MLA(hi, lo, X[3], MAD_F(0x0f9ee890));
cannam@85 1948 MAD_F_MLA(hi, lo, X[5], -MAD_F(0x0898c779));
cannam@85 1949 MAD_F_MLA(hi, lo, X[6], -MAD_F(0x0ffc19fd));
cannam@85 1950 MAD_F_MLA(hi, lo, X[8], MAD_F(0x04cfb0e2));
cannam@85 1951 MAD_F_MLA(hi, lo, X[9], MAD_F(0x0f426cb5));
cannam@85 1952 MAD_F_MLA(hi, lo, X[11], -MAD_F(0x00b2aa3e));
cannam@85 1953 MAD_F_MLA(hi, lo, X[12], -MAD_F(0x0d7e8807));
cannam@85 1954 MAD_F_MLA(hi, lo, X[14], -MAD_F(0x03768962));
cannam@85 1955 MAD_F_MLA(hi, lo, X[15], MAD_F(0x0acf37ad));
cannam@85 1956 MAD_F_MLA(hi, lo, X[17], MAD_F(0x07635284));
cannam@85 1957
cannam@85 1958 x[21] = x[32] = MAD_F_MLZ(hi, lo) + t3;
cannam@85 1959
cannam@85 1960 MAD_F_ML0(hi, lo, X[0], -MAD_F(0x0d7e8807));
cannam@85 1961 MAD_F_MLA(hi, lo, X[2], MAD_F(0x0f426cb5));
cannam@85 1962 MAD_F_MLA(hi, lo, X[3], MAD_F(0x0acf37ad));
cannam@85 1963 MAD_F_MLA(hi, lo, X[5], -MAD_F(0x0ffc19fd));
cannam@85 1964 MAD_F_MLA(hi, lo, X[6], -MAD_F(0x07635284));
cannam@85 1965 MAD_F_MLA(hi, lo, X[8], MAD_F(0x0f9ee890));
cannam@85 1966 MAD_F_MLA(hi, lo, X[9], MAD_F(0x03768962));
cannam@85 1967 MAD_F_MLA(hi, lo, X[11], -MAD_F(0x0e313245));
cannam@85 1968 MAD_F_MLA(hi, lo, X[12], MAD_F(0x00b2aa3e));
cannam@85 1969 MAD_F_MLA(hi, lo, X[14], MAD_F(0x0bcbe352));
cannam@85 1970 MAD_F_MLA(hi, lo, X[15], -MAD_F(0x04cfb0e2));
cannam@85 1971 MAD_F_MLA(hi, lo, X[17], -MAD_F(0x0898c779));
cannam@85 1972
cannam@85 1973 x[20] = x[33] = MAD_F_MLZ(hi, lo) - t3;
cannam@85 1974
cannam@85 1975 MAD_F_ML0(hi, lo, t14, -MAD_F(0x0ec835e8));
cannam@85 1976 MAD_F_MLA(hi, lo, t15, MAD_F(0x061f78aa));
cannam@85 1977
cannam@85 1978 t4 = MAD_F_MLZ(hi, lo) - t7;
cannam@85 1979
cannam@85 1980 MAD_F_ML0(hi, lo, t12, MAD_F(0x061f78aa));
cannam@85 1981 MAD_F_MLA(hi, lo, t13, MAD_F(0x0ec835e8));
cannam@85 1982
cannam@85 1983 x[4] = MAD_F_MLZ(hi, lo) + t4;
cannam@85 1984 x[13] = -x[4];
cannam@85 1985
cannam@85 1986 MAD_F_ML0(hi, lo, t8, MAD_F(0x09bd7ca0));
cannam@85 1987 MAD_F_MLA(hi, lo, t9, -MAD_F(0x0216a2a2));
cannam@85 1988 MAD_F_MLA(hi, lo, t10, MAD_F(0x0fdcf549));
cannam@85 1989 MAD_F_MLA(hi, lo, t11, -MAD_F(0x0cb19346));
cannam@85 1990
cannam@85 1991 x[1] = MAD_F_MLZ(hi, lo) + t4;
cannam@85 1992 x[16] = -x[1];
cannam@85 1993
cannam@85 1994 MAD_F_ML0(hi, lo, t8, -MAD_F(0x0fdcf549));
cannam@85 1995 MAD_F_MLA(hi, lo, t9, -MAD_F(0x0cb19346));
cannam@85 1996 MAD_F_MLA(hi, lo, t10, -MAD_F(0x09bd7ca0));
cannam@85 1997 MAD_F_MLA(hi, lo, t11, -MAD_F(0x0216a2a2));
cannam@85 1998
cannam@85 1999 x[25] = x[28] = MAD_F_MLZ(hi, lo) + t4;
cannam@85 2000
cannam@85 2001 MAD_F_ML0(hi, lo, X[1], -MAD_F(0x0fdcf549));
cannam@85 2002 MAD_F_MLA(hi, lo, X[7], -MAD_F(0x0cb19346));
cannam@85 2003 MAD_F_MLA(hi, lo, X[10], -MAD_F(0x09bd7ca0));
cannam@85 2004 MAD_F_MLA(hi, lo, X[16], -MAD_F(0x0216a2a2));
cannam@85 2005
cannam@85 2006 t5 = MAD_F_MLZ(hi, lo) - t6;
cannam@85 2007
cannam@85 2008 MAD_F_ML0(hi, lo, X[0], MAD_F(0x0898c779));
cannam@85 2009 MAD_F_MLA(hi, lo, X[2], MAD_F(0x04cfb0e2));
cannam@85 2010 MAD_F_MLA(hi, lo, X[3], MAD_F(0x0bcbe352));
cannam@85 2011 MAD_F_MLA(hi, lo, X[5], MAD_F(0x00b2aa3e));
cannam@85 2012 MAD_F_MLA(hi, lo, X[6], MAD_F(0x0e313245));
cannam@85 2013 MAD_F_MLA(hi, lo, X[8], -MAD_F(0x03768962));
cannam@85 2014 MAD_F_MLA(hi, lo, X[9], MAD_F(0x0f9ee890));
cannam@85 2015 MAD_F_MLA(hi, lo, X[11], -MAD_F(0x07635284));
cannam@85 2016 MAD_F_MLA(hi, lo, X[12], MAD_F(0x0ffc19fd));
cannam@85 2017 MAD_F_MLA(hi, lo, X[14], -MAD_F(0x0acf37ad));
cannam@85 2018 MAD_F_MLA(hi, lo, X[15], MAD_F(0x0f426cb5));
cannam@85 2019 MAD_F_MLA(hi, lo, X[17], -MAD_F(0x0d7e8807));
cannam@85 2020
cannam@85 2021 x[2] = MAD_F_MLZ(hi, lo) + t5;
cannam@85 2022 x[15] = -x[2];
cannam@85 2023
cannam@85 2024 MAD_F_ML0(hi, lo, X[0], MAD_F(0x07635284));
cannam@85 2025 MAD_F_MLA(hi, lo, X[2], MAD_F(0x0acf37ad));
cannam@85 2026 MAD_F_MLA(hi, lo, X[3], MAD_F(0x03768962));
cannam@85 2027 MAD_F_MLA(hi, lo, X[5], MAD_F(0x0d7e8807));
cannam@85 2028 MAD_F_MLA(hi, lo, X[6], -MAD_F(0x00b2aa3e));
cannam@85 2029 MAD_F_MLA(hi, lo, X[8], MAD_F(0x0f426cb5));
cannam@85 2030 MAD_F_MLA(hi, lo, X[9], -MAD_F(0x04cfb0e2));
cannam@85 2031 MAD_F_MLA(hi, lo, X[11], MAD_F(0x0ffc19fd));
cannam@85 2032 MAD_F_MLA(hi, lo, X[12], -MAD_F(0x0898c779));
cannam@85 2033 MAD_F_MLA(hi, lo, X[14], MAD_F(0x0f9ee890));
cannam@85 2034 MAD_F_MLA(hi, lo, X[15], -MAD_F(0x0bcbe352));
cannam@85 2035 MAD_F_MLA(hi, lo, X[17], MAD_F(0x0e313245));
cannam@85 2036
cannam@85 2037 x[3] = MAD_F_MLZ(hi, lo) + t5;
cannam@85 2038 x[14] = -x[3];
cannam@85 2039
cannam@85 2040 MAD_F_ML0(hi, lo, X[0], -MAD_F(0x0ffc19fd));
cannam@85 2041 MAD_F_MLA(hi, lo, X[2], -MAD_F(0x0f9ee890));
cannam@85 2042 MAD_F_MLA(hi, lo, X[3], -MAD_F(0x0f426cb5));
cannam@85 2043 MAD_F_MLA(hi, lo, X[5], -MAD_F(0x0e313245));
cannam@85 2044 MAD_F_MLA(hi, lo, X[6], -MAD_F(0x0d7e8807));
cannam@85 2045 MAD_F_MLA(hi, lo, X[8], -MAD_F(0x0bcbe352));
cannam@85 2046 MAD_F_MLA(hi, lo, X[9], -MAD_F(0x0acf37ad));
cannam@85 2047 MAD_F_MLA(hi, lo, X[11], -MAD_F(0x0898c779));
cannam@85 2048 MAD_F_MLA(hi, lo, X[12], -MAD_F(0x07635284));
cannam@85 2049 MAD_F_MLA(hi, lo, X[14], -MAD_F(0x04cfb0e2));
cannam@85 2050 MAD_F_MLA(hi, lo, X[15], -MAD_F(0x03768962));
cannam@85 2051 MAD_F_MLA(hi, lo, X[17], -MAD_F(0x00b2aa3e));
cannam@85 2052
cannam@85 2053 x[26] = x[27] = MAD_F_MLZ(hi, lo) + t5;
cannam@85 2054 }
cannam@85 2055 # endif
cannam@85 2056
cannam@85 2057 /*
cannam@85 2058 * NAME: III_imdct_l()
cannam@85 2059 * DESCRIPTION: perform IMDCT and windowing for long blocks
cannam@85 2060 */
cannam@85 2061 static
cannam@85 2062 void III_imdct_l(mad_fixed_t const X[18], mad_fixed_t z[36],
cannam@85 2063 unsigned int block_type)
cannam@85 2064 {
cannam@85 2065 unsigned int i;
cannam@85 2066
cannam@85 2067 /* IMDCT */
cannam@85 2068
cannam@85 2069 imdct36(X, z);
cannam@85 2070
cannam@85 2071 /* windowing */
cannam@85 2072
cannam@85 2073 switch (block_type) {
cannam@85 2074 case 0: /* normal window */
cannam@85 2075 # if defined(ASO_INTERLEAVE1)
cannam@85 2076 {
cannam@85 2077 register mad_fixed_t tmp1, tmp2;
cannam@85 2078
cannam@85 2079 tmp1 = window_l[0];
cannam@85 2080 tmp2 = window_l[1];
cannam@85 2081
cannam@85 2082 for (i = 0; i < 34; i += 2) {
cannam@85 2083 z[i + 0] = mad_f_mul(z[i + 0], tmp1);
cannam@85 2084 tmp1 = window_l[i + 2];
cannam@85 2085 z[i + 1] = mad_f_mul(z[i + 1], tmp2);
cannam@85 2086 tmp2 = window_l[i + 3];
cannam@85 2087 }
cannam@85 2088
cannam@85 2089 z[34] = mad_f_mul(z[34], tmp1);
cannam@85 2090 z[35] = mad_f_mul(z[35], tmp2);
cannam@85 2091 }
cannam@85 2092 # elif defined(ASO_INTERLEAVE2)
cannam@85 2093 {
cannam@85 2094 register mad_fixed_t tmp1, tmp2;
cannam@85 2095
cannam@85 2096 tmp1 = z[0];
cannam@85 2097 tmp2 = window_l[0];
cannam@85 2098
cannam@85 2099 for (i = 0; i < 35; ++i) {
cannam@85 2100 z[i] = mad_f_mul(tmp1, tmp2);
cannam@85 2101 tmp1 = z[i + 1];
cannam@85 2102 tmp2 = window_l[i + 1];
cannam@85 2103 }
cannam@85 2104
cannam@85 2105 z[35] = mad_f_mul(tmp1, tmp2);
cannam@85 2106 }
cannam@85 2107 # elif 1
cannam@85 2108 for (i = 0; i < 36; i += 4) {
cannam@85 2109 z[i + 0] = mad_f_mul(z[i + 0], window_l[i + 0]);
cannam@85 2110 z[i + 1] = mad_f_mul(z[i + 1], window_l[i + 1]);
cannam@85 2111 z[i + 2] = mad_f_mul(z[i + 2], window_l[i + 2]);
cannam@85 2112 z[i + 3] = mad_f_mul(z[i + 3], window_l[i + 3]);
cannam@85 2113 }
cannam@85 2114 # else
cannam@85 2115 for (i = 0; i < 36; ++i) z[i] = mad_f_mul(z[i], window_l[i]);
cannam@85 2116 # endif
cannam@85 2117 break;
cannam@85 2118
cannam@85 2119 case 1: /* start block */
cannam@85 2120 for (i = 0; i < 18; i += 3) {
cannam@85 2121 z[i + 0] = mad_f_mul(z[i + 0], window_l[i + 0]);
cannam@85 2122 z[i + 1] = mad_f_mul(z[i + 1], window_l[i + 1]);
cannam@85 2123 z[i + 2] = mad_f_mul(z[i + 2], window_l[i + 2]);
cannam@85 2124 }
cannam@85 2125 /* (i = 18; i < 24; ++i) z[i] unchanged */
cannam@85 2126 for (i = 24; i < 30; ++i) z[i] = mad_f_mul(z[i], window_s[i - 18]);
cannam@85 2127 for (i = 30; i < 36; ++i) z[i] = 0;
cannam@85 2128 break;
cannam@85 2129
cannam@85 2130 case 3: /* stop block */
cannam@85 2131 for (i = 0; i < 6; ++i) z[i] = 0;
cannam@85 2132 for (i = 6; i < 12; ++i) z[i] = mad_f_mul(z[i], window_s[i - 6]);
cannam@85 2133 /* (i = 12; i < 18; ++i) z[i] unchanged */
cannam@85 2134 for (i = 18; i < 36; i += 3) {
cannam@85 2135 z[i + 0] = mad_f_mul(z[i + 0], window_l[i + 0]);
cannam@85 2136 z[i + 1] = mad_f_mul(z[i + 1], window_l[i + 1]);
cannam@85 2137 z[i + 2] = mad_f_mul(z[i + 2], window_l[i + 2]);
cannam@85 2138 }
cannam@85 2139 break;
cannam@85 2140 }
cannam@85 2141 }
cannam@85 2142 # endif /* ASO_IMDCT */
cannam@85 2143
cannam@85 2144 /*
cannam@85 2145 * NAME: III_imdct_s()
cannam@85 2146 * DESCRIPTION: perform IMDCT and windowing for short blocks
cannam@85 2147 */
cannam@85 2148 static
cannam@85 2149 void III_imdct_s(mad_fixed_t const X[18], mad_fixed_t z[36])
cannam@85 2150 {
cannam@85 2151 mad_fixed_t y[36], *yptr;
cannam@85 2152 mad_fixed_t const *wptr;
cannam@85 2153 int w, i;
cannam@85 2154 register mad_fixed64hi_t hi;
cannam@85 2155 register mad_fixed64lo_t lo;
cannam@85 2156
cannam@85 2157 /* IMDCT */
cannam@85 2158
cannam@85 2159 yptr = &y[0];
cannam@85 2160
cannam@85 2161 for (w = 0; w < 3; ++w) {
cannam@85 2162 register mad_fixed_t const (*s)[6];
cannam@85 2163
cannam@85 2164 s = imdct_s;
cannam@85 2165
cannam@85 2166 for (i = 0; i < 3; ++i) {
cannam@85 2167 MAD_F_ML0(hi, lo, X[0], (*s)[0]);
cannam@85 2168 MAD_F_MLA(hi, lo, X[1], (*s)[1]);
cannam@85 2169 MAD_F_MLA(hi, lo, X[2], (*s)[2]);
cannam@85 2170 MAD_F_MLA(hi, lo, X[3], (*s)[3]);
cannam@85 2171 MAD_F_MLA(hi, lo, X[4], (*s)[4]);
cannam@85 2172 MAD_F_MLA(hi, lo, X[5], (*s)[5]);
cannam@85 2173
cannam@85 2174 yptr[i + 0] = MAD_F_MLZ(hi, lo);
cannam@85 2175 yptr[5 - i] = -yptr[i + 0];
cannam@85 2176
cannam@85 2177 ++s;
cannam@85 2178
cannam@85 2179 MAD_F_ML0(hi, lo, X[0], (*s)[0]);
cannam@85 2180 MAD_F_MLA(hi, lo, X[1], (*s)[1]);
cannam@85 2181 MAD_F_MLA(hi, lo, X[2], (*s)[2]);
cannam@85 2182 MAD_F_MLA(hi, lo, X[3], (*s)[3]);
cannam@85 2183 MAD_F_MLA(hi, lo, X[4], (*s)[4]);
cannam@85 2184 MAD_F_MLA(hi, lo, X[5], (*s)[5]);
cannam@85 2185
cannam@85 2186 yptr[ i + 6] = MAD_F_MLZ(hi, lo);
cannam@85 2187 yptr[11 - i] = yptr[i + 6];
cannam@85 2188
cannam@85 2189 ++s;
cannam@85 2190 }
cannam@85 2191
cannam@85 2192 yptr += 12;
cannam@85 2193 X += 6;
cannam@85 2194 }
cannam@85 2195
cannam@85 2196 /* windowing, overlapping and concatenation */
cannam@85 2197
cannam@85 2198 yptr = &y[0];
cannam@85 2199 wptr = &window_s[0];
cannam@85 2200
cannam@85 2201 for (i = 0; i < 6; ++i) {
cannam@85 2202 z[i + 0] = 0;
cannam@85 2203 z[i + 6] = mad_f_mul(yptr[ 0 + 0], wptr[0]);
cannam@85 2204
cannam@85 2205 MAD_F_ML0(hi, lo, yptr[ 0 + 6], wptr[6]);
cannam@85 2206 MAD_F_MLA(hi, lo, yptr[12 + 0], wptr[0]);
cannam@85 2207
cannam@85 2208 z[i + 12] = MAD_F_MLZ(hi, lo);
cannam@85 2209
cannam@85 2210 MAD_F_ML0(hi, lo, yptr[12 + 6], wptr[6]);
cannam@85 2211 MAD_F_MLA(hi, lo, yptr[24 + 0], wptr[0]);
cannam@85 2212
cannam@85 2213 z[i + 18] = MAD_F_MLZ(hi, lo);
cannam@85 2214
cannam@85 2215 z[i + 24] = mad_f_mul(yptr[24 + 6], wptr[6]);
cannam@85 2216 z[i + 30] = 0;
cannam@85 2217
cannam@85 2218 ++yptr;
cannam@85 2219 ++wptr;
cannam@85 2220 }
cannam@85 2221 }
cannam@85 2222
cannam@85 2223 /*
cannam@85 2224 * NAME: III_overlap()
cannam@85 2225 * DESCRIPTION: perform overlap-add of windowed IMDCT outputs
cannam@85 2226 */
cannam@85 2227 static
cannam@85 2228 void III_overlap(mad_fixed_t const output[36], mad_fixed_t overlap[18],
cannam@85 2229 mad_fixed_t sample[18][32], unsigned int sb)
cannam@85 2230 {
cannam@85 2231 unsigned int i;
cannam@85 2232
cannam@85 2233 # if defined(ASO_INTERLEAVE2)
cannam@85 2234 {
cannam@85 2235 register mad_fixed_t tmp1, tmp2;
cannam@85 2236
cannam@85 2237 tmp1 = overlap[0];
cannam@85 2238 tmp2 = overlap[1];
cannam@85 2239
cannam@85 2240 for (i = 0; i < 16; i += 2) {
cannam@85 2241 sample[i + 0][sb] = output[i + 0 + 0] + tmp1;
cannam@85 2242 overlap[i + 0] = output[i + 0 + 18];
cannam@85 2243 tmp1 = overlap[i + 2];
cannam@85 2244
cannam@85 2245 sample[i + 1][sb] = output[i + 1 + 0] + tmp2;
cannam@85 2246 overlap[i + 1] = output[i + 1 + 18];
cannam@85 2247 tmp2 = overlap[i + 3];
cannam@85 2248 }
cannam@85 2249
cannam@85 2250 sample[16][sb] = output[16 + 0] + tmp1;
cannam@85 2251 overlap[16] = output[16 + 18];
cannam@85 2252 sample[17][sb] = output[17 + 0] + tmp2;
cannam@85 2253 overlap[17] = output[17 + 18];
cannam@85 2254 }
cannam@85 2255 # elif 0
cannam@85 2256 for (i = 0; i < 18; i += 2) {
cannam@85 2257 sample[i + 0][sb] = output[i + 0 + 0] + overlap[i + 0];
cannam@85 2258 overlap[i + 0] = output[i + 0 + 18];
cannam@85 2259
cannam@85 2260 sample[i + 1][sb] = output[i + 1 + 0] + overlap[i + 1];
cannam@85 2261 overlap[i + 1] = output[i + 1 + 18];
cannam@85 2262 }
cannam@85 2263 # else
cannam@85 2264 for (i = 0; i < 18; ++i) {
cannam@85 2265 sample[i][sb] = output[i + 0] + overlap[i];
cannam@85 2266 overlap[i] = output[i + 18];
cannam@85 2267 }
cannam@85 2268 # endif
cannam@85 2269 }
cannam@85 2270
cannam@85 2271 /*
cannam@85 2272 * NAME: III_overlap_z()
cannam@85 2273 * DESCRIPTION: perform "overlap-add" of zero IMDCT outputs
cannam@85 2274 */
cannam@85 2275 static inline
cannam@85 2276 void III_overlap_z(mad_fixed_t overlap[18],
cannam@85 2277 mad_fixed_t sample[18][32], unsigned int sb)
cannam@85 2278 {
cannam@85 2279 unsigned int i;
cannam@85 2280
cannam@85 2281 # if defined(ASO_INTERLEAVE2)
cannam@85 2282 {
cannam@85 2283 register mad_fixed_t tmp1, tmp2;
cannam@85 2284
cannam@85 2285 tmp1 = overlap[0];
cannam@85 2286 tmp2 = overlap[1];
cannam@85 2287
cannam@85 2288 for (i = 0; i < 16; i += 2) {
cannam@85 2289 sample[i + 0][sb] = tmp1;
cannam@85 2290 overlap[i + 0] = 0;
cannam@85 2291 tmp1 = overlap[i + 2];
cannam@85 2292
cannam@85 2293 sample[i + 1][sb] = tmp2;
cannam@85 2294 overlap[i + 1] = 0;
cannam@85 2295 tmp2 = overlap[i + 3];
cannam@85 2296 }
cannam@85 2297
cannam@85 2298 sample[16][sb] = tmp1;
cannam@85 2299 overlap[16] = 0;
cannam@85 2300 sample[17][sb] = tmp2;
cannam@85 2301 overlap[17] = 0;
cannam@85 2302 }
cannam@85 2303 # else
cannam@85 2304 for (i = 0; i < 18; ++i) {
cannam@85 2305 sample[i][sb] = overlap[i];
cannam@85 2306 overlap[i] = 0;
cannam@85 2307 }
cannam@85 2308 # endif
cannam@85 2309 }
cannam@85 2310
cannam@85 2311 /*
cannam@85 2312 * NAME: III_freqinver()
cannam@85 2313 * DESCRIPTION: perform subband frequency inversion for odd sample lines
cannam@85 2314 */
cannam@85 2315 static
cannam@85 2316 void III_freqinver(mad_fixed_t sample[18][32], unsigned int sb)
cannam@85 2317 {
cannam@85 2318 unsigned int i;
cannam@85 2319
cannam@85 2320 # if 1 || defined(ASO_INTERLEAVE1) || defined(ASO_INTERLEAVE2)
cannam@85 2321 {
cannam@85 2322 register mad_fixed_t tmp1, tmp2;
cannam@85 2323
cannam@85 2324 tmp1 = sample[1][sb];
cannam@85 2325 tmp2 = sample[3][sb];
cannam@85 2326
cannam@85 2327 for (i = 1; i < 13; i += 4) {
cannam@85 2328 sample[i + 0][sb] = -tmp1;
cannam@85 2329 tmp1 = sample[i + 4][sb];
cannam@85 2330 sample[i + 2][sb] = -tmp2;
cannam@85 2331 tmp2 = sample[i + 6][sb];
cannam@85 2332 }
cannam@85 2333
cannam@85 2334 sample[13][sb] = -tmp1;
cannam@85 2335 tmp1 = sample[17][sb];
cannam@85 2336 sample[15][sb] = -tmp2;
cannam@85 2337 sample[17][sb] = -tmp1;
cannam@85 2338 }
cannam@85 2339 # else
cannam@85 2340 for (i = 1; i < 18; i += 2)
cannam@85 2341 sample[i][sb] = -sample[i][sb];
cannam@85 2342 # endif
cannam@85 2343 }
cannam@85 2344
cannam@85 2345 /*
cannam@85 2346 * NAME: III_decode()
cannam@85 2347 * DESCRIPTION: decode frame main_data
cannam@85 2348 */
cannam@85 2349 static
cannam@85 2350 enum mad_error III_decode(struct mad_bitptr *ptr, struct mad_frame *frame,
cannam@85 2351 struct sideinfo *si, unsigned int nch)
cannam@85 2352 {
cannam@85 2353 struct mad_header *header = &frame->header;
cannam@85 2354 unsigned int sfreqi, ngr, gr;
cannam@85 2355
cannam@85 2356 {
cannam@85 2357 unsigned int sfreq;
cannam@85 2358
cannam@85 2359 sfreq = header->samplerate;
cannam@85 2360 if (header->flags & MAD_FLAG_MPEG_2_5_EXT)
cannam@85 2361 sfreq *= 2;
cannam@85 2362
cannam@85 2363 /* 48000 => 0, 44100 => 1, 32000 => 2,
cannam@85 2364 24000 => 3, 22050 => 4, 16000 => 5 */
cannam@85 2365 sfreqi = ((sfreq >> 7) & 0x000f) +
cannam@85 2366 ((sfreq >> 15) & 0x0001) - 8;
cannam@85 2367
cannam@85 2368 if (header->flags & MAD_FLAG_MPEG_2_5_EXT)
cannam@85 2369 sfreqi += 3;
cannam@85 2370 }
cannam@85 2371
cannam@85 2372 /* scalefactors, Huffman decoding, requantization */
cannam@85 2373
cannam@85 2374 ngr = (header->flags & MAD_FLAG_LSF_EXT) ? 1 : 2;
cannam@85 2375
cannam@85 2376 for (gr = 0; gr < ngr; ++gr) {
cannam@85 2377 struct granule *granule = &si->gr[gr];
cannam@85 2378 unsigned char const *sfbwidth[2];
cannam@85 2379 mad_fixed_t xr[2][576];
cannam@85 2380 unsigned int ch;
cannam@85 2381 enum mad_error error;
cannam@85 2382
cannam@85 2383 for (ch = 0; ch < nch; ++ch) {
cannam@85 2384 struct channel *channel = &granule->ch[ch];
cannam@85 2385 unsigned int part2_length;
cannam@85 2386
cannam@85 2387 sfbwidth[ch] = sfbwidth_table[sfreqi].l;
cannam@85 2388 if (channel->block_type == 2) {
cannam@85 2389 sfbwidth[ch] = (channel->flags & mixed_block_flag) ?
cannam@85 2390 sfbwidth_table[sfreqi].m : sfbwidth_table[sfreqi].s;
cannam@85 2391 }
cannam@85 2392
cannam@85 2393 if (header->flags & MAD_FLAG_LSF_EXT) {
cannam@85 2394 part2_length = III_scalefactors_lsf(ptr, channel,
cannam@85 2395 ch == 0 ? 0 : &si->gr[1].ch[1],
cannam@85 2396 header->mode_extension);
cannam@85 2397 }
cannam@85 2398 else {
cannam@85 2399 part2_length = III_scalefactors(ptr, channel, &si->gr[0].ch[ch],
cannam@85 2400 gr == 0 ? 0 : si->scfsi[ch]);
cannam@85 2401 }
cannam@85 2402
cannam@85 2403 error = III_huffdecode(ptr, xr[ch], channel, sfbwidth[ch], part2_length);
cannam@85 2404 if (error)
cannam@85 2405 return error;
cannam@85 2406 }
cannam@85 2407
cannam@85 2408 /* joint stereo processing */
cannam@85 2409
cannam@85 2410 if (header->mode == MAD_MODE_JOINT_STEREO && header->mode_extension) {
cannam@85 2411 error = III_stereo(xr, granule, header, sfbwidth[0]);
cannam@85 2412 if (error)
cannam@85 2413 return error;
cannam@85 2414 }
cannam@85 2415
cannam@85 2416 /* reordering, alias reduction, IMDCT, overlap-add, frequency inversion */
cannam@85 2417
cannam@85 2418 for (ch = 0; ch < nch; ++ch) {
cannam@85 2419 struct channel const *channel = &granule->ch[ch];
cannam@85 2420 mad_fixed_t (*sample)[32] = &frame->sbsample[ch][18 * gr];
cannam@85 2421 unsigned int sb, l, i, sblimit;
cannam@85 2422 mad_fixed_t output[36];
cannam@85 2423
cannam@85 2424 if (channel->block_type == 2) {
cannam@85 2425 III_reorder(xr[ch], channel, sfbwidth[ch]);
cannam@85 2426
cannam@85 2427 # if !defined(OPT_STRICT)
cannam@85 2428 /*
cannam@85 2429 * According to ISO/IEC 11172-3, "Alias reduction is not applied for
cannam@85 2430 * granules with block_type == 2 (short block)." However, other
cannam@85 2431 * sources suggest alias reduction should indeed be performed on the
cannam@85 2432 * lower two subbands of mixed blocks. Most other implementations do
cannam@85 2433 * this, so by default we will too.
cannam@85 2434 */
cannam@85 2435 if (channel->flags & mixed_block_flag)
cannam@85 2436 III_aliasreduce(xr[ch], 36);
cannam@85 2437 # endif
cannam@85 2438 }
cannam@85 2439 else
cannam@85 2440 III_aliasreduce(xr[ch], 576);
cannam@85 2441
cannam@85 2442 l = 0;
cannam@85 2443
cannam@85 2444 /* subbands 0-1 */
cannam@85 2445
cannam@85 2446 if (channel->block_type != 2 || (channel->flags & mixed_block_flag)) {
cannam@85 2447 unsigned int block_type;
cannam@85 2448
cannam@85 2449 block_type = channel->block_type;
cannam@85 2450 if (channel->flags & mixed_block_flag)
cannam@85 2451 block_type = 0;
cannam@85 2452
cannam@85 2453 /* long blocks */
cannam@85 2454 for (sb = 0; sb < 2; ++sb, l += 18) {
cannam@85 2455 III_imdct_l(&xr[ch][l], output, block_type);
cannam@85 2456 III_overlap(output, (*frame->overlap)[ch][sb], sample, sb);
cannam@85 2457 }
cannam@85 2458 }
cannam@85 2459 else {
cannam@85 2460 /* short blocks */
cannam@85 2461 for (sb = 0; sb < 2; ++sb, l += 18) {
cannam@85 2462 III_imdct_s(&xr[ch][l], output);
cannam@85 2463 III_overlap(output, (*frame->overlap)[ch][sb], sample, sb);
cannam@85 2464 }
cannam@85 2465 }
cannam@85 2466
cannam@85 2467 III_freqinver(sample, 1);
cannam@85 2468
cannam@85 2469 /* (nonzero) subbands 2-31 */
cannam@85 2470
cannam@85 2471 i = 576;
cannam@85 2472 while (i > 36 && xr[ch][i - 1] == 0)
cannam@85 2473 --i;
cannam@85 2474
cannam@85 2475 sblimit = 32 - (576 - i) / 18;
cannam@85 2476
cannam@85 2477 if (channel->block_type != 2) {
cannam@85 2478 /* long blocks */
cannam@85 2479 for (sb = 2; sb < sblimit; ++sb, l += 18) {
cannam@85 2480 III_imdct_l(&xr[ch][l], output, channel->block_type);
cannam@85 2481 III_overlap(output, (*frame->overlap)[ch][sb], sample, sb);
cannam@85 2482
cannam@85 2483 if (sb & 1)
cannam@85 2484 III_freqinver(sample, sb);
cannam@85 2485 }
cannam@85 2486 }
cannam@85 2487 else {
cannam@85 2488 /* short blocks */
cannam@85 2489 for (sb = 2; sb < sblimit; ++sb, l += 18) {
cannam@85 2490 III_imdct_s(&xr[ch][l], output);
cannam@85 2491 III_overlap(output, (*frame->overlap)[ch][sb], sample, sb);
cannam@85 2492
cannam@85 2493 if (sb & 1)
cannam@85 2494 III_freqinver(sample, sb);
cannam@85 2495 }
cannam@85 2496 }
cannam@85 2497
cannam@85 2498 /* remaining (zero) subbands */
cannam@85 2499
cannam@85 2500 for (sb = sblimit; sb < 32; ++sb) {
cannam@85 2501 III_overlap_z((*frame->overlap)[ch][sb], sample, sb);
cannam@85 2502
cannam@85 2503 if (sb & 1)
cannam@85 2504 III_freqinver(sample, sb);
cannam@85 2505 }
cannam@85 2506 }
cannam@85 2507 }
cannam@85 2508
cannam@85 2509 return MAD_ERROR_NONE;
cannam@85 2510 }
cannam@85 2511
cannam@85 2512 /*
cannam@85 2513 * NAME: layer->III()
cannam@85 2514 * DESCRIPTION: decode a single Layer III frame
cannam@85 2515 */
cannam@85 2516 int mad_layer_III(struct mad_stream *stream, struct mad_frame *frame)
cannam@85 2517 {
cannam@85 2518 struct mad_header *header = &frame->header;
cannam@85 2519 unsigned int nch, priv_bitlen, next_md_begin = 0;
cannam@85 2520 unsigned int si_len, data_bitlen, md_len;
cannam@85 2521 unsigned int frame_space, frame_used, frame_free;
cannam@85 2522 struct mad_bitptr ptr;
cannam@85 2523 struct sideinfo si;
cannam@85 2524 enum mad_error error;
cannam@85 2525 int result = 0;
cannam@85 2526
cannam@85 2527 /* allocate Layer III dynamic structures */
cannam@85 2528
cannam@85 2529 if (stream->main_data == 0) {
cannam@85 2530 stream->main_data = malloc(MAD_BUFFER_MDLEN);
cannam@85 2531 if (stream->main_data == 0) {
cannam@85 2532 stream->error = MAD_ERROR_NOMEM;
cannam@85 2533 return -1;
cannam@85 2534 }
cannam@85 2535 }
cannam@85 2536
cannam@85 2537 if (frame->overlap == 0) {
cannam@85 2538 frame->overlap = calloc(2 * 32 * 18, sizeof(mad_fixed_t));
cannam@85 2539 if (frame->overlap == 0) {
cannam@85 2540 stream->error = MAD_ERROR_NOMEM;
cannam@85 2541 return -1;
cannam@85 2542 }
cannam@85 2543 }
cannam@85 2544
cannam@85 2545 nch = MAD_NCHANNELS(header);
cannam@85 2546 si_len = (header->flags & MAD_FLAG_LSF_EXT) ?
cannam@85 2547 (nch == 1 ? 9 : 17) : (nch == 1 ? 17 : 32);
cannam@85 2548
cannam@85 2549 /* check frame sanity */
cannam@85 2550
cannam@85 2551 if (stream->next_frame - mad_bit_nextbyte(&stream->ptr) <
cannam@85 2552 (signed int) si_len) {
cannam@85 2553 stream->error = MAD_ERROR_BADFRAMELEN;
cannam@85 2554 stream->md_len = 0;
cannam@85 2555 return -1;
cannam@85 2556 }
cannam@85 2557
cannam@85 2558 /* check CRC word */
cannam@85 2559
cannam@85 2560 if (header->flags & MAD_FLAG_PROTECTION) {
cannam@85 2561 header->crc_check =
cannam@85 2562 mad_bit_crc(stream->ptr, si_len * CHAR_BIT, header->crc_check);
cannam@85 2563
cannam@85 2564 if (header->crc_check != header->crc_target &&
cannam@85 2565 !(frame->options & MAD_OPTION_IGNORECRC)) {
cannam@85 2566 stream->error = MAD_ERROR_BADCRC;
cannam@85 2567 result = -1;
cannam@85 2568 }
cannam@85 2569 }
cannam@85 2570
cannam@85 2571 /* decode frame side information */
cannam@85 2572
cannam@85 2573 error = III_sideinfo(&stream->ptr, nch, header->flags & MAD_FLAG_LSF_EXT,
cannam@85 2574 &si, &data_bitlen, &priv_bitlen);
cannam@85 2575 if (error && result == 0) {
cannam@85 2576 stream->error = error;
cannam@85 2577 result = -1;
cannam@85 2578 }
cannam@85 2579
cannam@85 2580 header->flags |= priv_bitlen;
cannam@85 2581 header->private_bits |= si.private_bits;
cannam@85 2582
cannam@85 2583 /* find main_data of next frame */
cannam@85 2584
cannam@85 2585 {
cannam@85 2586 struct mad_bitptr peek;
cannam@85 2587 unsigned long header;
cannam@85 2588
cannam@85 2589 mad_bit_init(&peek, stream->next_frame);
cannam@85 2590
cannam@85 2591 header = mad_bit_read(&peek, 32);
cannam@85 2592 if ((header & 0xffe60000L) /* syncword | layer */ == 0xffe20000L) {
cannam@85 2593 if (!(header & 0x00010000L)) /* protection_bit */
cannam@85 2594 mad_bit_skip(&peek, 16); /* crc_check */
cannam@85 2595
cannam@85 2596 next_md_begin =
cannam@85 2597 mad_bit_read(&peek, (header & 0x00080000L) /* ID */ ? 9 : 8);
cannam@85 2598 }
cannam@85 2599
cannam@85 2600 mad_bit_finish(&peek);
cannam@85 2601 }
cannam@85 2602
cannam@85 2603 /* find main_data of this frame */
cannam@85 2604
cannam@85 2605 frame_space = stream->next_frame - mad_bit_nextbyte(&stream->ptr);
cannam@85 2606
cannam@85 2607 if (next_md_begin > si.main_data_begin + frame_space)
cannam@85 2608 next_md_begin = 0;
cannam@85 2609
cannam@85 2610 md_len = si.main_data_begin + frame_space - next_md_begin;
cannam@85 2611
cannam@85 2612 frame_used = 0;
cannam@85 2613
cannam@85 2614 if (si.main_data_begin == 0) {
cannam@85 2615 ptr = stream->ptr;
cannam@85 2616 stream->md_len = 0;
cannam@85 2617
cannam@85 2618 frame_used = md_len;
cannam@85 2619 }
cannam@85 2620 else {
cannam@85 2621 if (si.main_data_begin > stream->md_len) {
cannam@85 2622 if (result == 0) {
cannam@85 2623 stream->error = MAD_ERROR_BADDATAPTR;
cannam@85 2624 result = -1;
cannam@85 2625 }
cannam@85 2626 }
cannam@85 2627 else {
cannam@85 2628 mad_bit_init(&ptr,
cannam@85 2629 *stream->main_data + stream->md_len - si.main_data_begin);
cannam@85 2630
cannam@85 2631 if (md_len > si.main_data_begin) {
cannam@85 2632 assert(stream->md_len + md_len -
cannam@85 2633 si.main_data_begin <= MAD_BUFFER_MDLEN);
cannam@85 2634
cannam@85 2635 memcpy(*stream->main_data + stream->md_len,
cannam@85 2636 mad_bit_nextbyte(&stream->ptr),
cannam@85 2637 frame_used = md_len - si.main_data_begin);
cannam@85 2638 stream->md_len += frame_used;
cannam@85 2639 }
cannam@85 2640 }
cannam@85 2641 }
cannam@85 2642
cannam@85 2643 frame_free = frame_space - frame_used;
cannam@85 2644
cannam@85 2645 /* decode main_data */
cannam@85 2646
cannam@85 2647 if (result == 0) {
cannam@85 2648 error = III_decode(&ptr, frame, &si, nch);
cannam@85 2649 if (error) {
cannam@85 2650 stream->error = error;
cannam@85 2651 result = -1;
cannam@85 2652 }
cannam@85 2653
cannam@85 2654 /* designate ancillary bits */
cannam@85 2655
cannam@85 2656 stream->anc_ptr = ptr;
cannam@85 2657 stream->anc_bitlen = md_len * CHAR_BIT - data_bitlen;
cannam@85 2658 }
cannam@85 2659
cannam@85 2660 # if 0 && defined(DEBUG)
cannam@85 2661 fprintf(stderr,
cannam@85 2662 "main_data_begin:%u, md_len:%u, frame_free:%u, "
cannam@85 2663 "data_bitlen:%u, anc_bitlen: %u\n",
cannam@85 2664 si.main_data_begin, md_len, frame_free,
cannam@85 2665 data_bitlen, stream->anc_bitlen);
cannam@85 2666 # endif
cannam@85 2667
cannam@85 2668 /* preload main_data buffer with up to 511 bytes for next frame(s) */
cannam@85 2669
cannam@85 2670 if (frame_free >= next_md_begin) {
cannam@85 2671 memcpy(*stream->main_data,
cannam@85 2672 stream->next_frame - next_md_begin, next_md_begin);
cannam@85 2673 stream->md_len = next_md_begin;
cannam@85 2674 }
cannam@85 2675 else {
cannam@85 2676 if (md_len < si.main_data_begin) {
cannam@85 2677 unsigned int extra;
cannam@85 2678
cannam@85 2679 extra = si.main_data_begin - md_len;
cannam@85 2680 if (extra + frame_free > next_md_begin)
cannam@85 2681 extra = next_md_begin - frame_free;
cannam@85 2682
cannam@85 2683 if (extra < stream->md_len) {
cannam@85 2684 memmove(*stream->main_data,
cannam@85 2685 *stream->main_data + stream->md_len - extra, extra);
cannam@85 2686 stream->md_len = extra;
cannam@85 2687 }
cannam@85 2688 }
cannam@85 2689 else
cannam@85 2690 stream->md_len = 0;
cannam@85 2691
cannam@85 2692 memcpy(*stream->main_data + stream->md_len,
cannam@85 2693 stream->next_frame - frame_free, frame_free);
cannam@85 2694 stream->md_len += frame_free;
cannam@85 2695 }
cannam@85 2696
cannam@85 2697 return result;
cannam@85 2698 }