annotate src/fftw-3.3.8/threads/ct.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents bd3cc4d1df30
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * This program is free software; you can redistribute it and/or modify
cannam@167 6 * it under the terms of the GNU General Public License as published by
cannam@167 7 * the Free Software Foundation; either version 2 of the License, or
cannam@167 8 * (at your option) any later version.
cannam@167 9 *
cannam@167 10 * This program is distributed in the hope that it will be useful,
cannam@167 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 13 * GNU General Public License for more details.
cannam@167 14 *
cannam@167 15 * You should have received a copy of the GNU General Public License
cannam@167 16 * along with this program; if not, write to the Free Software
cannam@167 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 18 *
cannam@167 19 */
cannam@167 20
cannam@167 21
cannam@167 22 #include "threads/threads.h"
cannam@167 23
cannam@167 24 typedef struct {
cannam@167 25 plan_dft super;
cannam@167 26 plan *cld;
cannam@167 27 plan **cldws;
cannam@167 28 int nthr;
cannam@167 29 INT r;
cannam@167 30 } P;
cannam@167 31
cannam@167 32 typedef struct {
cannam@167 33 plan **cldws;
cannam@167 34 R *r, *i;
cannam@167 35 } PD;
cannam@167 36
cannam@167 37 static void *spawn_apply(spawn_data *d)
cannam@167 38 {
cannam@167 39 PD *ego = (PD *) d->data;
cannam@167 40 INT thr_num = d->thr_num;
cannam@167 41
cannam@167 42 plan_dftw *cldw = (plan_dftw *) (ego->cldws[thr_num]);
cannam@167 43 cldw->apply((plan *) cldw, ego->r, ego->i);
cannam@167 44 return 0;
cannam@167 45 }
cannam@167 46
cannam@167 47 static void apply_dit(const plan *ego_, R *ri, R *ii, R *ro, R *io)
cannam@167 48 {
cannam@167 49 const P *ego = (const P *) ego_;
cannam@167 50 plan_dft *cld;
cannam@167 51
cannam@167 52 cld = (plan_dft *) ego->cld;
cannam@167 53 cld->apply(ego->cld, ri, ii, ro, io);
cannam@167 54
cannam@167 55 {
cannam@167 56 PD d;
cannam@167 57
cannam@167 58 d.r = ro; d.i = io;
cannam@167 59 d.cldws = ego->cldws;
cannam@167 60
cannam@167 61 X(spawn_loop)(ego->nthr, ego->nthr, spawn_apply, (void*)&d);
cannam@167 62 }
cannam@167 63 }
cannam@167 64
cannam@167 65 static void apply_dif(const plan *ego_, R *ri, R *ii, R *ro, R *io)
cannam@167 66 {
cannam@167 67 const P *ego = (const P *) ego_;
cannam@167 68 plan_dft *cld;
cannam@167 69
cannam@167 70 {
cannam@167 71 PD d;
cannam@167 72
cannam@167 73 d.r = ri; d.i = ii;
cannam@167 74 d.cldws = ego->cldws;
cannam@167 75
cannam@167 76 X(spawn_loop)(ego->nthr, ego->nthr, spawn_apply, (void*)&d);
cannam@167 77 }
cannam@167 78
cannam@167 79 cld = (plan_dft *) ego->cld;
cannam@167 80 cld->apply(ego->cld, ri, ii, ro, io);
cannam@167 81 }
cannam@167 82
cannam@167 83 static void awake(plan *ego_, enum wakefulness wakefulness)
cannam@167 84 {
cannam@167 85 P *ego = (P *) ego_;
cannam@167 86 int i;
cannam@167 87 X(plan_awake)(ego->cld, wakefulness);
cannam@167 88 for (i = 0; i < ego->nthr; ++i)
cannam@167 89 X(plan_awake)(ego->cldws[i], wakefulness);
cannam@167 90 }
cannam@167 91
cannam@167 92 static void destroy(plan *ego_)
cannam@167 93 {
cannam@167 94 P *ego = (P *) ego_;
cannam@167 95 int i;
cannam@167 96 X(plan_destroy_internal)(ego->cld);
cannam@167 97 for (i = 0; i < ego->nthr; ++i)
cannam@167 98 X(plan_destroy_internal)(ego->cldws[i]);
cannam@167 99 X(ifree)(ego->cldws);
cannam@167 100 }
cannam@167 101
cannam@167 102 static void print(const plan *ego_, printer *p)
cannam@167 103 {
cannam@167 104 const P *ego = (const P *) ego_;
cannam@167 105 int i;
cannam@167 106 p->print(p, "(dft-thr-ct-%s-x%d/%D",
cannam@167 107 ego->super.apply == apply_dit ? "dit" : "dif",
cannam@167 108 ego->nthr, ego->r);
cannam@167 109 for (i = 0; i < ego->nthr; ++i)
cannam@167 110 if (i == 0 || (ego->cldws[i] != ego->cldws[i-1] &&
cannam@167 111 (i <= 1 || ego->cldws[i] != ego->cldws[i-2])))
cannam@167 112 p->print(p, "%(%p%)", ego->cldws[i]);
cannam@167 113 p->print(p, "%(%p%))", ego->cld);
cannam@167 114 }
cannam@167 115
cannam@167 116 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
cannam@167 117 {
cannam@167 118 const ct_solver *ego = (const ct_solver *) ego_;
cannam@167 119 const problem_dft *p;
cannam@167 120 P *pln = 0;
cannam@167 121 plan *cld = 0, **cldws = 0;
cannam@167 122 INT n, r, m, v, ivs, ovs;
cannam@167 123 INT block_size;
cannam@167 124 int i, nthr, plnr_nthr_save;
cannam@167 125 iodim *d;
cannam@167 126
cannam@167 127 static const plan_adt padt = {
cannam@167 128 X(dft_solve), awake, print, destroy
cannam@167 129 };
cannam@167 130
cannam@167 131 if (plnr->nthr <= 1 || !X(ct_applicable)(ego, p_, plnr))
cannam@167 132 return (plan *) 0;
cannam@167 133
cannam@167 134 p = (const problem_dft *) p_;
cannam@167 135 d = p->sz->dims;
cannam@167 136 n = d[0].n;
cannam@167 137 r = X(choose_radix)(ego->r, n);
cannam@167 138 m = n / r;
cannam@167 139
cannam@167 140 X(tensor_tornk1)(p->vecsz, &v, &ivs, &ovs);
cannam@167 141
cannam@167 142 block_size = (m + plnr->nthr - 1) / plnr->nthr;
cannam@167 143 nthr = (int)((m + block_size - 1) / block_size);
cannam@167 144 plnr_nthr_save = plnr->nthr;
cannam@167 145 plnr->nthr = (plnr->nthr + nthr - 1) / nthr;
cannam@167 146
cannam@167 147 cldws = (plan **) MALLOC(sizeof(plan *) * nthr, PLANS);
cannam@167 148 for (i = 0; i < nthr; ++i) cldws[i] = (plan *) 0;
cannam@167 149
cannam@167 150 switch (ego->dec) {
cannam@167 151 case DECDIT:
cannam@167 152 {
cannam@167 153 for (i = 0; i < nthr; ++i) {
cannam@167 154 cldws[i] = ego->mkcldw(ego,
cannam@167 155 r, m * d[0].os, m * d[0].os,
cannam@167 156 m, d[0].os,
cannam@167 157 v, ovs, ovs,
cannam@167 158 i*block_size,
cannam@167 159 (i == nthr - 1) ?
cannam@167 160 (m - i*block_size) : block_size,
cannam@167 161 p->ro, p->io, plnr);
cannam@167 162 if (!cldws[i]) goto nada;
cannam@167 163 }
cannam@167 164
cannam@167 165 plnr->nthr = plnr_nthr_save;
cannam@167 166
cannam@167 167 cld = X(mkplan_d)(plnr,
cannam@167 168 X(mkproblem_dft_d)(
cannam@167 169 X(mktensor_1d)(m, r * d[0].is, d[0].os),
cannam@167 170 X(mktensor_2d)(r, d[0].is, m * d[0].os,
cannam@167 171 v, ivs, ovs),
cannam@167 172 p->ri, p->ii, p->ro, p->io)
cannam@167 173 );
cannam@167 174 if (!cld) goto nada;
cannam@167 175
cannam@167 176 pln = MKPLAN_DFT(P, &padt, apply_dit);
cannam@167 177 break;
cannam@167 178 }
cannam@167 179 case DECDIF:
cannam@167 180 case DECDIF+TRANSPOSE:
cannam@167 181 {
cannam@167 182 INT cors, covs; /* cldw ors, ovs */
cannam@167 183 if (ego->dec == DECDIF+TRANSPOSE) {
cannam@167 184 cors = ivs;
cannam@167 185 covs = m * d[0].is;
cannam@167 186 /* ensure that we generate well-formed dftw subproblems */
cannam@167 187 /* FIXME: too conservative */
cannam@167 188 if (!(1
cannam@167 189 && r == v
cannam@167 190 && d[0].is == r * cors))
cannam@167 191 goto nada;
cannam@167 192
cannam@167 193 /* FIXME: allow in-place only for now, like in
cannam@167 194 fftw-3.[01] */
cannam@167 195 if (!(1
cannam@167 196 && p->ri == p->ro
cannam@167 197 && d[0].is == r * d[0].os
cannam@167 198 && cors == d[0].os
cannam@167 199 && covs == ovs
cannam@167 200 ))
cannam@167 201 goto nada;
cannam@167 202 } else {
cannam@167 203 cors = m * d[0].is;
cannam@167 204 covs = ivs;
cannam@167 205 }
cannam@167 206
cannam@167 207 for (i = 0; i < nthr; ++i) {
cannam@167 208 cldws[i] = ego->mkcldw(ego,
cannam@167 209 r, m * d[0].is, cors,
cannam@167 210 m, d[0].is,
cannam@167 211 v, ivs, covs,
cannam@167 212 i*block_size,
cannam@167 213 (i == nthr - 1) ?
cannam@167 214 (m - i*block_size) : block_size,
cannam@167 215 p->ri, p->ii, plnr);
cannam@167 216 if (!cldws[i]) goto nada;
cannam@167 217 }
cannam@167 218
cannam@167 219 plnr->nthr = plnr_nthr_save;
cannam@167 220
cannam@167 221 cld = X(mkplan_d)(plnr,
cannam@167 222 X(mkproblem_dft_d)(
cannam@167 223 X(mktensor_1d)(m, d[0].is, r * d[0].os),
cannam@167 224 X(mktensor_2d)(r, cors, d[0].os,
cannam@167 225 v, covs, ovs),
cannam@167 226 p->ri, p->ii, p->ro, p->io)
cannam@167 227 );
cannam@167 228 if (!cld) goto nada;
cannam@167 229
cannam@167 230 pln = MKPLAN_DFT(P, &padt, apply_dif);
cannam@167 231 break;
cannam@167 232 }
cannam@167 233
cannam@167 234 default: A(0);
cannam@167 235
cannam@167 236 }
cannam@167 237
cannam@167 238 pln->cld = cld;
cannam@167 239 pln->cldws = cldws;
cannam@167 240 pln->nthr = nthr;
cannam@167 241 pln->r = r;
cannam@167 242 X(ops_zero)(&pln->super.super.ops);
cannam@167 243 for (i = 0; i < nthr; ++i) {
cannam@167 244 X(ops_add2)(&cldws[i]->ops, &pln->super.super.ops);
cannam@167 245 pln->super.super.could_prune_now_p |= cldws[i]->could_prune_now_p;
cannam@167 246 }
cannam@167 247 X(ops_add2)(&cld->ops, &pln->super.super.ops);
cannam@167 248 return &(pln->super.super);
cannam@167 249
cannam@167 250 nada:
cannam@167 251 if (cldws) {
cannam@167 252 for (i = 0; i < nthr; ++i)
cannam@167 253 X(plan_destroy_internal)(cldws[i]);
cannam@167 254 X(ifree)(cldws);
cannam@167 255 }
cannam@167 256 X(plan_destroy_internal)(cld);
cannam@167 257 return (plan *) 0;
cannam@167 258 }
cannam@167 259
cannam@167 260 ct_solver *X(mksolver_ct_threads)(size_t size, INT r, int dec,
cannam@167 261 ct_mkinferior mkcldw,
cannam@167 262 ct_force_vrecursion force_vrecursionp)
cannam@167 263 {
cannam@167 264 static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
cannam@167 265 ct_solver *slv = (ct_solver *) X(mksolver)(size, &sadt);
cannam@167 266 slv->r = r;
cannam@167 267 slv->dec = dec;
cannam@167 268 slv->mkcldw = mkcldw;
cannam@167 269 slv->force_vrecursionp = force_vrecursionp;
cannam@167 270 return slv;
cannam@167 271 }