cannam@167
|
1 /*
|
cannam@167
|
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
|
cannam@167
|
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
cannam@167
|
4 *
|
cannam@167
|
5 * This program is free software; you can redistribute it and/or modify
|
cannam@167
|
6 * it under the terms of the GNU General Public License as published by
|
cannam@167
|
7 * the Free Software Foundation; either version 2 of the License, or
|
cannam@167
|
8 * (at your option) any later version.
|
cannam@167
|
9 *
|
cannam@167
|
10 * This program is distributed in the hope that it will be useful,
|
cannam@167
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
cannam@167
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
cannam@167
|
13 * GNU General Public License for more details.
|
cannam@167
|
14 *
|
cannam@167
|
15 * You should have received a copy of the GNU General Public License
|
cannam@167
|
16 * along with this program; if not, write to the Free Software
|
cannam@167
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
cannam@167
|
18 *
|
cannam@167
|
19 */
|
cannam@167
|
20
|
cannam@167
|
21
|
cannam@167
|
22
|
cannam@167
|
23 /* Plans for handling vector transform loops. These are *just* the
|
cannam@167
|
24 loops, and rely on child plans for the actual RDFTs.
|
cannam@167
|
25
|
cannam@167
|
26 They form a wrapper around solvers that don't have apply functions
|
cannam@167
|
27 for non-null vectors.
|
cannam@167
|
28
|
cannam@167
|
29 vrank-geq1 plans also recursively handle the case of multi-dimensional
|
cannam@167
|
30 vectors, obviating the need for most solvers to deal with this. We
|
cannam@167
|
31 can also play games here, such as reordering the vector loops.
|
cannam@167
|
32
|
cannam@167
|
33 Each vrank-geq1 plan reduces the vector rank by 1, picking out a
|
cannam@167
|
34 dimension determined by the vecloop_dim field of the solver. */
|
cannam@167
|
35
|
cannam@167
|
36 #include "rdft/rdft.h"
|
cannam@167
|
37
|
cannam@167
|
38 typedef struct {
|
cannam@167
|
39 solver super;
|
cannam@167
|
40 int vecloop_dim;
|
cannam@167
|
41 const int *buddies;
|
cannam@167
|
42 size_t nbuddies;
|
cannam@167
|
43 } S;
|
cannam@167
|
44
|
cannam@167
|
45 typedef struct {
|
cannam@167
|
46 plan_rdft super;
|
cannam@167
|
47
|
cannam@167
|
48 plan *cld;
|
cannam@167
|
49 INT vl;
|
cannam@167
|
50 INT ivs, ovs;
|
cannam@167
|
51 const S *solver;
|
cannam@167
|
52 } P;
|
cannam@167
|
53
|
cannam@167
|
54 static void apply(const plan *ego_, R *I, R *O)
|
cannam@167
|
55 {
|
cannam@167
|
56 const P *ego = (const P *) ego_;
|
cannam@167
|
57 INT i, vl = ego->vl;
|
cannam@167
|
58 INT ivs = ego->ivs, ovs = ego->ovs;
|
cannam@167
|
59 rdftapply cldapply = ((plan_rdft *) ego->cld)->apply;
|
cannam@167
|
60
|
cannam@167
|
61 for (i = 0; i < vl; ++i) {
|
cannam@167
|
62 cldapply(ego->cld, I + i * ivs, O + i * ovs);
|
cannam@167
|
63 }
|
cannam@167
|
64 }
|
cannam@167
|
65
|
cannam@167
|
66 static void awake(plan *ego_, enum wakefulness wakefulness)
|
cannam@167
|
67 {
|
cannam@167
|
68 P *ego = (P *) ego_;
|
cannam@167
|
69 X(plan_awake)(ego->cld, wakefulness);
|
cannam@167
|
70 }
|
cannam@167
|
71
|
cannam@167
|
72 static void destroy(plan *ego_)
|
cannam@167
|
73 {
|
cannam@167
|
74 P *ego = (P *) ego_;
|
cannam@167
|
75 X(plan_destroy_internal)(ego->cld);
|
cannam@167
|
76 }
|
cannam@167
|
77
|
cannam@167
|
78 static void print(const plan *ego_, printer *p)
|
cannam@167
|
79 {
|
cannam@167
|
80 const P *ego = (const P *) ego_;
|
cannam@167
|
81 const S *s = ego->solver;
|
cannam@167
|
82 p->print(p, "(rdft-vrank>=1-x%D/%d%(%p%))",
|
cannam@167
|
83 ego->vl, s->vecloop_dim, ego->cld);
|
cannam@167
|
84 }
|
cannam@167
|
85
|
cannam@167
|
86 static int pickdim(const S *ego, const tensor *vecsz, int oop, int *dp)
|
cannam@167
|
87 {
|
cannam@167
|
88 return X(pickdim)(ego->vecloop_dim, ego->buddies, ego->nbuddies,
|
cannam@167
|
89 vecsz, oop, dp);
|
cannam@167
|
90 }
|
cannam@167
|
91
|
cannam@167
|
92 static int applicable0(const solver *ego_, const problem *p_, int *dp)
|
cannam@167
|
93 {
|
cannam@167
|
94 const S *ego = (const S *) ego_;
|
cannam@167
|
95 const problem_rdft *p = (const problem_rdft *) p_;
|
cannam@167
|
96
|
cannam@167
|
97 return (1
|
cannam@167
|
98 && FINITE_RNK(p->vecsz->rnk)
|
cannam@167
|
99 && p->vecsz->rnk > 0
|
cannam@167
|
100
|
cannam@167
|
101 && p->sz->rnk >= 0
|
cannam@167
|
102
|
cannam@167
|
103 && pickdim(ego, p->vecsz, p->I != p->O, dp)
|
cannam@167
|
104 );
|
cannam@167
|
105 }
|
cannam@167
|
106
|
cannam@167
|
107 static int applicable(const solver *ego_, const problem *p_,
|
cannam@167
|
108 const planner *plnr, int *dp)
|
cannam@167
|
109 {
|
cannam@167
|
110 const S *ego = (const S *)ego_;
|
cannam@167
|
111 const problem_rdft *p;
|
cannam@167
|
112
|
cannam@167
|
113 if (!applicable0(ego_, p_, dp)) return 0;
|
cannam@167
|
114
|
cannam@167
|
115 /* fftw2 behavior */
|
cannam@167
|
116 if (NO_VRANK_SPLITSP(plnr) && (ego->vecloop_dim != ego->buddies[0]))
|
cannam@167
|
117 return 0;
|
cannam@167
|
118
|
cannam@167
|
119 p = (const problem_rdft *) p_;
|
cannam@167
|
120
|
cannam@167
|
121 if (NO_UGLYP(plnr)) {
|
cannam@167
|
122 /* the rank-0 solver deals with the general case most of the
|
cannam@167
|
123 time (an exception is loops of non-square transposes) */
|
cannam@167
|
124 if (NO_SLOWP(plnr) && p->sz->rnk == 0)
|
cannam@167
|
125 return 0;
|
cannam@167
|
126
|
cannam@167
|
127 /* Heuristic: if the transform is multi-dimensional, and the
|
cannam@167
|
128 vector stride is less than the transform size, then we
|
cannam@167
|
129 probably want to use a rank>=2 plan first in order to combine
|
cannam@167
|
130 this vector with the transform-dimension vectors. */
|
cannam@167
|
131 {
|
cannam@167
|
132 iodim *d = p->vecsz->dims + *dp;
|
cannam@167
|
133 if (1
|
cannam@167
|
134 && p->sz->rnk > 1
|
cannam@167
|
135 && X(imin)(X(iabs)(d->is), X(iabs)(d->os))
|
cannam@167
|
136 < X(tensor_max_index)(p->sz)
|
cannam@167
|
137 )
|
cannam@167
|
138 return 0;
|
cannam@167
|
139 }
|
cannam@167
|
140
|
cannam@167
|
141 /* prefer threaded version */
|
cannam@167
|
142 if (NO_NONTHREADEDP(plnr)) return 0;
|
cannam@167
|
143
|
cannam@167
|
144 /* exploit built-in vecloops of (ugly) r{e,o}dft solvers */
|
cannam@167
|
145 if (p->vecsz->rnk == 1 && p->sz->rnk == 1
|
cannam@167
|
146 && REODFT_KINDP(p->kind[0]))
|
cannam@167
|
147 return 0;
|
cannam@167
|
148 }
|
cannam@167
|
149
|
cannam@167
|
150 return 1;
|
cannam@167
|
151 }
|
cannam@167
|
152
|
cannam@167
|
153 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
|
cannam@167
|
154 {
|
cannam@167
|
155 const S *ego = (const S *) ego_;
|
cannam@167
|
156 const problem_rdft *p;
|
cannam@167
|
157 P *pln;
|
cannam@167
|
158 plan *cld;
|
cannam@167
|
159 int vdim;
|
cannam@167
|
160 iodim *d;
|
cannam@167
|
161
|
cannam@167
|
162 static const plan_adt padt = {
|
cannam@167
|
163 X(rdft_solve), awake, print, destroy
|
cannam@167
|
164 };
|
cannam@167
|
165
|
cannam@167
|
166 if (!applicable(ego_, p_, plnr, &vdim))
|
cannam@167
|
167 return (plan *) 0;
|
cannam@167
|
168 p = (const problem_rdft *) p_;
|
cannam@167
|
169
|
cannam@167
|
170 d = p->vecsz->dims + vdim;
|
cannam@167
|
171
|
cannam@167
|
172 A(d->n > 1);
|
cannam@167
|
173
|
cannam@167
|
174 cld = X(mkplan_d)(plnr,
|
cannam@167
|
175 X(mkproblem_rdft_d)(
|
cannam@167
|
176 X(tensor_copy)(p->sz),
|
cannam@167
|
177 X(tensor_copy_except)(p->vecsz, vdim),
|
cannam@167
|
178 TAINT(p->I, d->is), TAINT(p->O, d->os),
|
cannam@167
|
179 p->kind));
|
cannam@167
|
180 if (!cld) return (plan *) 0;
|
cannam@167
|
181
|
cannam@167
|
182 pln = MKPLAN_RDFT(P, &padt, apply);
|
cannam@167
|
183
|
cannam@167
|
184 pln->cld = cld;
|
cannam@167
|
185 pln->vl = d->n;
|
cannam@167
|
186 pln->ivs = d->is;
|
cannam@167
|
187 pln->ovs = d->os;
|
cannam@167
|
188
|
cannam@167
|
189 pln->solver = ego;
|
cannam@167
|
190 X(ops_zero)(&pln->super.super.ops);
|
cannam@167
|
191 pln->super.super.ops.other = 3.14159; /* magic to prefer codelet loops */
|
cannam@167
|
192 X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops);
|
cannam@167
|
193
|
cannam@167
|
194 if (p->sz->rnk != 1 || (p->sz->dims[0].n > 128))
|
cannam@167
|
195 pln->super.super.pcost = pln->vl * cld->pcost;
|
cannam@167
|
196
|
cannam@167
|
197 return &(pln->super.super);
|
cannam@167
|
198 }
|
cannam@167
|
199
|
cannam@167
|
200 static solver *mksolver(int vecloop_dim, const int *buddies, size_t nbuddies)
|
cannam@167
|
201 {
|
cannam@167
|
202 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
|
cannam@167
|
203 S *slv = MKSOLVER(S, &sadt);
|
cannam@167
|
204 slv->vecloop_dim = vecloop_dim;
|
cannam@167
|
205 slv->buddies = buddies;
|
cannam@167
|
206 slv->nbuddies = nbuddies;
|
cannam@167
|
207 return &(slv->super);
|
cannam@167
|
208 }
|
cannam@167
|
209
|
cannam@167
|
210 void X(rdft_vrank_geq1_register)(planner *p)
|
cannam@167
|
211 {
|
cannam@167
|
212 /* FIXME: Should we try other vecloop_dim values? */
|
cannam@167
|
213 static const int buddies[] = { 1, -1 };
|
cannam@167
|
214 size_t i;
|
cannam@167
|
215
|
cannam@167
|
216 for (i = 0; i < NELEM(buddies); ++i)
|
cannam@167
|
217 REGISTER_SOLVER(p, mksolver(buddies[i], buddies, NELEM(buddies)));
|
cannam@167
|
218 }
|