annotate src/fftw-3.3.8/rdft/simd/common/hc2cfdftv_12.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents bd3cc4d1df30
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * This program is free software; you can redistribute it and/or modify
cannam@167 6 * it under the terms of the GNU General Public License as published by
cannam@167 7 * the Free Software Foundation; either version 2 of the License, or
cannam@167 8 * (at your option) any later version.
cannam@167 9 *
cannam@167 10 * This program is distributed in the hope that it will be useful,
cannam@167 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 13 * GNU General Public License for more details.
cannam@167 14 *
cannam@167 15 * You should have received a copy of the GNU General Public License
cannam@167 16 * along with this program; if not, write to the Free Software
cannam@167 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 18 *
cannam@167 19 */
cannam@167 20
cannam@167 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@167 22 /* Generated on Thu May 24 08:08:11 EDT 2018 */
cannam@167 23
cannam@167 24 #include "rdft/codelet-rdft.h"
cannam@167 25
cannam@167 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
cannam@167 27
cannam@167 28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 12 -dit -name hc2cfdftv_12 -include rdft/simd/hc2cfv.h */
cannam@167 29
cannam@167 30 /*
cannam@167 31 * This function contains 71 FP additions, 66 FP multiplications,
cannam@167 32 * (or, 41 additions, 36 multiplications, 30 fused multiply/add),
cannam@167 33 * 86 stack variables, 2 constants, and 24 memory accesses
cannam@167 34 */
cannam@167 35 #include "rdft/simd/hc2cfv.h"
cannam@167 36
cannam@167 37 static void hc2cfdftv_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@167 38 {
cannam@167 39 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@167 40 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@167 41 {
cannam@167 42 INT m;
cannam@167 43 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 22)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(48, rs)) {
cannam@167 44 V Td, TQ, Tr, TR, TI, TY, TA, TX, T12, T1e, TV, T1d, TK, TL, Ts;
cannam@167 45 V TJ, TO, TP, TM, TN, TW, T16, T13, T17, TS, TZ, T14, T19, T15, T18;
cannam@167 46 V T1f, T1j, T1c, T1i, T1a, T1b, T1g, T1l, T1h, T1k;
cannam@167 47 {
cannam@167 48 V T3, Tu, T7, Tw, Tp, TH, Tl, TE, Th, TC, Tb, Tz, T1, T2, Tt;
cannam@167 49 V T5, T6, T4, Tv, Tn, To, Tm, TG, Tj, Tk, Ti, TD, Tf, Tg, Te;
cannam@167 50 V TB, T9, Ta, T8, Ty, Tc, Tq, TF, Tx, T10, T11, TT, TU;
cannam@167 51 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
cannam@167 52 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
cannam@167 53 T3 = VFMACONJ(T2, T1);
cannam@167 54 Tt = LDW(&(W[0]));
cannam@167 55 Tu = VZMULIJ(Tt, VFNMSCONJ(T2, T1));
cannam@167 56 T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
cannam@167 57 T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
cannam@167 58 T4 = LDW(&(W[TWVL * 6]));
cannam@167 59 T7 = VZMULJ(T4, VFMACONJ(T6, T5));
cannam@167 60 Tv = LDW(&(W[TWVL * 8]));
cannam@167 61 Tw = VZMULIJ(Tv, VFNMSCONJ(T6, T5));
cannam@167 62 Tn = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
cannam@167 63 To = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
cannam@167 64 Tm = LDW(&(W[TWVL * 2]));
cannam@167 65 Tp = VZMULJ(Tm, VFMACONJ(To, Tn));
cannam@167 66 TG = LDW(&(W[TWVL * 4]));
cannam@167 67 TH = VZMULIJ(TG, VFNMSCONJ(To, Tn));
cannam@167 68 Tj = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)]));
cannam@167 69 Tk = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)]));
cannam@167 70 Ti = LDW(&(W[TWVL * 18]));
cannam@167 71 Tl = VZMULJ(Ti, VFMACONJ(Tk, Tj));
cannam@167 72 TD = LDW(&(W[TWVL * 20]));
cannam@167 73 TE = VZMULIJ(TD, VFNMSCONJ(Tk, Tj));
cannam@167 74 Tf = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
cannam@167 75 Tg = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
cannam@167 76 Te = LDW(&(W[TWVL * 10]));
cannam@167 77 Th = VZMULJ(Te, VFMACONJ(Tg, Tf));
cannam@167 78 TB = LDW(&(W[TWVL * 12]));
cannam@167 79 TC = VZMULIJ(TB, VFNMSCONJ(Tg, Tf));
cannam@167 80 T9 = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
cannam@167 81 Ta = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
cannam@167 82 T8 = LDW(&(W[TWVL * 14]));
cannam@167 83 Tb = VZMULJ(T8, VFMACONJ(Ta, T9));
cannam@167 84 Ty = LDW(&(W[TWVL * 16]));
cannam@167 85 Tz = VZMULIJ(Ty, VFNMSCONJ(Ta, T9));
cannam@167 86 Tc = VADD(T7, Tb);
cannam@167 87 Td = VADD(T3, Tc);
cannam@167 88 TQ = VFNMS(LDK(KP500000000), Tc, T3);
cannam@167 89 Tq = VADD(Tl, Tp);
cannam@167 90 Tr = VADD(Th, Tq);
cannam@167 91 TR = VFNMS(LDK(KP500000000), Tq, Th);
cannam@167 92 TF = VADD(TC, TE);
cannam@167 93 TI = VADD(TF, TH);
cannam@167 94 TY = VFNMS(LDK(KP500000000), TF, TH);
cannam@167 95 Tx = VADD(Tu, Tw);
cannam@167 96 TA = VADD(Tx, Tz);
cannam@167 97 TX = VFNMS(LDK(KP500000000), Tx, Tz);
cannam@167 98 T10 = VSUB(Tb, T7);
cannam@167 99 T11 = VSUB(Tp, Tl);
cannam@167 100 T12 = VSUB(T10, T11);
cannam@167 101 T1e = VADD(T10, T11);
cannam@167 102 TT = VSUB(TC, TE);
cannam@167 103 TU = VSUB(Tu, Tw);
cannam@167 104 TV = VSUB(TT, TU);
cannam@167 105 T1d = VADD(TU, TT);
cannam@167 106 }
cannam@167 107 Ts = VSUB(Td, Tr);
cannam@167 108 TJ = VSUB(TA, TI);
cannam@167 109 TK = VMUL(LDK(KP500000000), VFMAI(TJ, Ts));
cannam@167 110 TL = VCONJ(VMUL(LDK(KP500000000), VFNMSI(TJ, Ts)));
cannam@167 111 ST(&(Rp[WS(rs, 3)]), TK, ms, &(Rp[WS(rs, 1)]));
cannam@167 112 ST(&(Rm[WS(rs, 2)]), TL, -ms, &(Rm[0]));
cannam@167 113 TM = VADD(Td, Tr);
cannam@167 114 TN = VADD(TA, TI);
cannam@167 115 TO = VMUL(LDK(KP500000000), VSUB(TM, TN));
cannam@167 116 TP = VCONJ(VMUL(LDK(KP500000000), VADD(TN, TM)));
cannam@167 117 ST(&(Rp[0]), TO, ms, &(Rp[0]));
cannam@167 118 ST(&(Rm[WS(rs, 5)]), TP, -ms, &(Rm[WS(rs, 1)]));
cannam@167 119 TS = VSUB(TQ, TR);
cannam@167 120 TW = VFMA(LDK(KP866025403), TV, TS);
cannam@167 121 T16 = VFNMS(LDK(KP866025403), TV, TS);
cannam@167 122 TZ = VSUB(TX, TY);
cannam@167 123 T13 = VFNMS(LDK(KP866025403), T12, TZ);
cannam@167 124 T17 = VFMA(LDK(KP866025403), T12, TZ);
cannam@167 125 T14 = VMUL(LDK(KP500000000), VFNMSI(T13, TW));
cannam@167 126 ST(&(Rp[WS(rs, 1)]), T14, ms, &(Rp[WS(rs, 1)]));
cannam@167 127 T19 = VCONJ(VMUL(LDK(KP500000000), VFMAI(T17, T16)));
cannam@167 128 ST(&(Rm[WS(rs, 4)]), T19, -ms, &(Rm[0]));
cannam@167 129 T15 = VCONJ(VMUL(LDK(KP500000000), VFMAI(T13, TW)));
cannam@167 130 ST(&(Rm[0]), T15, -ms, &(Rm[0]));
cannam@167 131 T18 = VMUL(LDK(KP500000000), VFNMSI(T17, T16));
cannam@167 132 ST(&(Rp[WS(rs, 5)]), T18, ms, &(Rp[WS(rs, 1)]));
cannam@167 133 T1f = VMUL(LDK(KP866025403), VSUB(T1d, T1e));
cannam@167 134 T1j = VMUL(LDK(KP866025403), VADD(T1d, T1e));
cannam@167 135 T1a = VADD(TX, TY);
cannam@167 136 T1b = VADD(TQ, TR);
cannam@167 137 T1c = VADD(T1a, T1b);
cannam@167 138 T1i = VSUB(T1b, T1a);
cannam@167 139 T1g = VCONJ(VMUL(LDK(KP500000000), VFNMSI(T1f, T1c)));
cannam@167 140 ST(&(Rm[WS(rs, 1)]), T1g, -ms, &(Rm[WS(rs, 1)]));
cannam@167 141 T1l = VMUL(LDK(KP500000000), VFMAI(T1j, T1i));
cannam@167 142 ST(&(Rp[WS(rs, 4)]), T1l, ms, &(Rp[0]));
cannam@167 143 T1h = VMUL(LDK(KP500000000), VFMAI(T1f, T1c));
cannam@167 144 ST(&(Rp[WS(rs, 2)]), T1h, ms, &(Rp[0]));
cannam@167 145 T1k = VCONJ(VMUL(LDK(KP500000000), VFNMSI(T1j, T1i)));
cannam@167 146 ST(&(Rm[WS(rs, 3)]), T1k, -ms, &(Rm[WS(rs, 1)]));
cannam@167 147 }
cannam@167 148 }
cannam@167 149 VLEAVE();
cannam@167 150 }
cannam@167 151
cannam@167 152 static const tw_instr twinstr[] = {
cannam@167 153 VTW(1, 1),
cannam@167 154 VTW(1, 2),
cannam@167 155 VTW(1, 3),
cannam@167 156 VTW(1, 4),
cannam@167 157 VTW(1, 5),
cannam@167 158 VTW(1, 6),
cannam@167 159 VTW(1, 7),
cannam@167 160 VTW(1, 8),
cannam@167 161 VTW(1, 9),
cannam@167 162 VTW(1, 10),
cannam@167 163 VTW(1, 11),
cannam@167 164 {TW_NEXT, VL, 0}
cannam@167 165 };
cannam@167 166
cannam@167 167 static const hc2c_desc desc = { 12, XSIMD_STRING("hc2cfdftv_12"), twinstr, &GENUS, {41, 36, 30, 0} };
cannam@167 168
cannam@167 169 void XSIMD(codelet_hc2cfdftv_12) (planner *p) {
cannam@167 170 X(khc2c_register) (p, hc2cfdftv_12, &desc, HC2C_VIA_DFT);
cannam@167 171 }
cannam@167 172 #else
cannam@167 173
cannam@167 174 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 12 -dit -name hc2cfdftv_12 -include rdft/simd/hc2cfv.h */
cannam@167 175
cannam@167 176 /*
cannam@167 177 * This function contains 71 FP additions, 41 FP multiplications,
cannam@167 178 * (or, 67 additions, 37 multiplications, 4 fused multiply/add),
cannam@167 179 * 58 stack variables, 4 constants, and 24 memory accesses
cannam@167 180 */
cannam@167 181 #include "rdft/simd/hc2cfv.h"
cannam@167 182
cannam@167 183 static void hc2cfdftv_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@167 184 {
cannam@167 185 DVK(KP433012701, +0.433012701892219323381861585376468091735701313);
cannam@167 186 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@167 187 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
cannam@167 188 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@167 189 {
cannam@167 190 INT m;
cannam@167 191 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 22)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(48, rs)) {
cannam@167 192 V TX, T13, T4, Tf, TZ, TD, TF, T17, TW, T14, Tw, Tl, T10, TL, TN;
cannam@167 193 V T16;
cannam@167 194 {
cannam@167 195 V T1, T3, TA, Tb, Td, Te, T9, TC, T2, Tz, Tc, Ta, T6, T8, T7;
cannam@167 196 V T5, TB, TE, Ti, Tk, TI, Ts, Tu, Tv, Tq, TK, Tj, TH, Tt, Tr;
cannam@167 197 V Tn, Tp, To, Tm, TJ, Th, TM;
cannam@167 198 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
cannam@167 199 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
cannam@167 200 T3 = VCONJ(T2);
cannam@167 201 Tz = LDW(&(W[0]));
cannam@167 202 TA = VZMULIJ(Tz, VSUB(T3, T1));
cannam@167 203 Tb = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
cannam@167 204 Tc = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
cannam@167 205 Td = VCONJ(Tc);
cannam@167 206 Ta = LDW(&(W[TWVL * 14]));
cannam@167 207 Te = VZMULJ(Ta, VADD(Tb, Td));
cannam@167 208 T6 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
cannam@167 209 T7 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
cannam@167 210 T8 = VCONJ(T7);
cannam@167 211 T5 = LDW(&(W[TWVL * 6]));
cannam@167 212 T9 = VZMULJ(T5, VADD(T6, T8));
cannam@167 213 TB = LDW(&(W[TWVL * 8]));
cannam@167 214 TC = VZMULIJ(TB, VSUB(T8, T6));
cannam@167 215 TX = VSUB(TC, TA);
cannam@167 216 T13 = VSUB(Te, T9);
cannam@167 217 T4 = VADD(T1, T3);
cannam@167 218 Tf = VADD(T9, Te);
cannam@167 219 TZ = VFNMS(LDK(KP250000000), Tf, VMUL(LDK(KP500000000), T4));
cannam@167 220 TD = VADD(TA, TC);
cannam@167 221 TE = LDW(&(W[TWVL * 16]));
cannam@167 222 TF = VZMULIJ(TE, VSUB(Td, Tb));
cannam@167 223 T17 = VFNMS(LDK(KP500000000), TD, TF);
cannam@167 224 Ti = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
cannam@167 225 Tj = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
cannam@167 226 Tk = VCONJ(Tj);
cannam@167 227 TH = LDW(&(W[TWVL * 12]));
cannam@167 228 TI = VZMULIJ(TH, VSUB(Tk, Ti));
cannam@167 229 Ts = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
cannam@167 230 Tt = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
cannam@167 231 Tu = VCONJ(Tt);
cannam@167 232 Tr = LDW(&(W[TWVL * 2]));
cannam@167 233 Tv = VZMULJ(Tr, VADD(Ts, Tu));
cannam@167 234 Tn = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)]));
cannam@167 235 To = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)]));
cannam@167 236 Tp = VCONJ(To);
cannam@167 237 Tm = LDW(&(W[TWVL * 18]));
cannam@167 238 Tq = VZMULJ(Tm, VADD(Tn, Tp));
cannam@167 239 TJ = LDW(&(W[TWVL * 20]));
cannam@167 240 TK = VZMULIJ(TJ, VSUB(Tp, Tn));
cannam@167 241 TW = VSUB(TK, TI);
cannam@167 242 T14 = VSUB(Tv, Tq);
cannam@167 243 Tw = VADD(Tq, Tv);
cannam@167 244 Th = LDW(&(W[TWVL * 10]));
cannam@167 245 Tl = VZMULJ(Th, VADD(Ti, Tk));
cannam@167 246 T10 = VFNMS(LDK(KP250000000), Tw, VMUL(LDK(KP500000000), Tl));
cannam@167 247 TL = VADD(TI, TK);
cannam@167 248 TM = LDW(&(W[TWVL * 4]));
cannam@167 249 TN = VZMULIJ(TM, VSUB(Tu, Ts));
cannam@167 250 T16 = VFNMS(LDK(KP500000000), TL, TN);
cannam@167 251 }
cannam@167 252 {
cannam@167 253 V Ty, TS, TP, TT, Tg, Tx, TG, TO, TQ, TV, TR, TU, T1i, T1o, T1l;
cannam@167 254 V T1p, T1g, T1h, T1j, T1k, T1m, T1r, T1n, T1q, T12, T1c, T19, T1d, TY, T11;
cannam@167 255 V T15, T18, T1a, T1f, T1b, T1e;
cannam@167 256 Tg = VADD(T4, Tf);
cannam@167 257 Tx = VADD(Tl, Tw);
cannam@167 258 Ty = VADD(Tg, Tx);
cannam@167 259 TS = VSUB(Tg, Tx);
cannam@167 260 TG = VADD(TD, TF);
cannam@167 261 TO = VADD(TL, TN);
cannam@167 262 TP = VADD(TG, TO);
cannam@167 263 TT = VBYI(VSUB(TO, TG));
cannam@167 264 TQ = VCONJ(VMUL(LDK(KP500000000), VSUB(Ty, TP)));
cannam@167 265 ST(&(Rm[WS(rs, 5)]), TQ, -ms, &(Rm[WS(rs, 1)]));
cannam@167 266 TV = VMUL(LDK(KP500000000), VADD(TS, TT));
cannam@167 267 ST(&(Rp[WS(rs, 3)]), TV, ms, &(Rp[WS(rs, 1)]));
cannam@167 268 TR = VMUL(LDK(KP500000000), VADD(Ty, TP));
cannam@167 269 ST(&(Rp[0]), TR, ms, &(Rp[0]));
cannam@167 270 TU = VCONJ(VMUL(LDK(KP500000000), VSUB(TS, TT)));
cannam@167 271 ST(&(Rm[WS(rs, 2)]), TU, -ms, &(Rm[0]));
cannam@167 272 T1g = VADD(TX, TW);
cannam@167 273 T1h = VADD(T13, T14);
cannam@167 274 T1i = VMUL(LDK(KP500000000), VBYI(VMUL(LDK(KP866025403), VSUB(T1g, T1h))));
cannam@167 275 T1o = VMUL(LDK(KP500000000), VBYI(VMUL(LDK(KP866025403), VADD(T1g, T1h))));
cannam@167 276 T1j = VADD(TZ, T10);
cannam@167 277 T1k = VMUL(LDK(KP500000000), VADD(T17, T16));
cannam@167 278 T1l = VSUB(T1j, T1k);
cannam@167 279 T1p = VADD(T1j, T1k);
cannam@167 280 T1m = VADD(T1i, T1l);
cannam@167 281 ST(&(Rp[WS(rs, 2)]), T1m, ms, &(Rp[0]));
cannam@167 282 T1r = VCONJ(VSUB(T1p, T1o));
cannam@167 283 ST(&(Rm[WS(rs, 3)]), T1r, -ms, &(Rm[WS(rs, 1)]));
cannam@167 284 T1n = VCONJ(VSUB(T1l, T1i));
cannam@167 285 ST(&(Rm[WS(rs, 1)]), T1n, -ms, &(Rm[WS(rs, 1)]));
cannam@167 286 T1q = VADD(T1o, T1p);
cannam@167 287 ST(&(Rp[WS(rs, 4)]), T1q, ms, &(Rp[0]));
cannam@167 288 TY = VMUL(LDK(KP433012701), VSUB(TW, TX));
cannam@167 289 T11 = VSUB(TZ, T10);
cannam@167 290 T12 = VADD(TY, T11);
cannam@167 291 T1c = VSUB(T11, TY);
cannam@167 292 T15 = VMUL(LDK(KP866025403), VSUB(T13, T14));
cannam@167 293 T18 = VSUB(T16, T17);
cannam@167 294 T19 = VMUL(LDK(KP500000000), VBYI(VSUB(T15, T18)));
cannam@167 295 T1d = VMUL(LDK(KP500000000), VBYI(VADD(T15, T18)));
cannam@167 296 T1a = VCONJ(VSUB(T12, T19));
cannam@167 297 ST(&(Rm[0]), T1a, -ms, &(Rm[0]));
cannam@167 298 T1f = VCONJ(VADD(T1c, T1d));
cannam@167 299 ST(&(Rm[WS(rs, 4)]), T1f, -ms, &(Rm[0]));
cannam@167 300 T1b = VADD(T12, T19);
cannam@167 301 ST(&(Rp[WS(rs, 1)]), T1b, ms, &(Rp[WS(rs, 1)]));
cannam@167 302 T1e = VSUB(T1c, T1d);
cannam@167 303 ST(&(Rp[WS(rs, 5)]), T1e, ms, &(Rp[WS(rs, 1)]));
cannam@167 304 }
cannam@167 305 }
cannam@167 306 }
cannam@167 307 VLEAVE();
cannam@167 308 }
cannam@167 309
cannam@167 310 static const tw_instr twinstr[] = {
cannam@167 311 VTW(1, 1),
cannam@167 312 VTW(1, 2),
cannam@167 313 VTW(1, 3),
cannam@167 314 VTW(1, 4),
cannam@167 315 VTW(1, 5),
cannam@167 316 VTW(1, 6),
cannam@167 317 VTW(1, 7),
cannam@167 318 VTW(1, 8),
cannam@167 319 VTW(1, 9),
cannam@167 320 VTW(1, 10),
cannam@167 321 VTW(1, 11),
cannam@167 322 {TW_NEXT, VL, 0}
cannam@167 323 };
cannam@167 324
cannam@167 325 static const hc2c_desc desc = { 12, XSIMD_STRING("hc2cfdftv_12"), twinstr, &GENUS, {67, 37, 4, 0} };
cannam@167 326
cannam@167 327 void XSIMD(codelet_hc2cfdftv_12) (planner *p) {
cannam@167 328 X(khc2c_register) (p, hc2cfdftv_12, &desc, HC2C_VIA_DFT);
cannam@167 329 }
cannam@167 330 #endif