cannam@167
|
1 /*
|
cannam@167
|
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
|
cannam@167
|
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
cannam@167
|
4 *
|
cannam@167
|
5 * This program is free software; you can redistribute it and/or modify
|
cannam@167
|
6 * it under the terms of the GNU General Public License as published by
|
cannam@167
|
7 * the Free Software Foundation; either version 2 of the License, or
|
cannam@167
|
8 * (at your option) any later version.
|
cannam@167
|
9 *
|
cannam@167
|
10 * This program is distributed in the hope that it will be useful,
|
cannam@167
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
cannam@167
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
cannam@167
|
13 * GNU General Public License for more details.
|
cannam@167
|
14 *
|
cannam@167
|
15 * You should have received a copy of the GNU General Public License
|
cannam@167
|
16 * along with this program; if not, write to the Free Software
|
cannam@167
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
cannam@167
|
18 *
|
cannam@167
|
19 */
|
cannam@167
|
20
|
cannam@167
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
cannam@167
|
22 /* Generated on Thu May 24 08:08:11 EDT 2018 */
|
cannam@167
|
23
|
cannam@167
|
24 #include "rdft/codelet-rdft.h"
|
cannam@167
|
25
|
cannam@167
|
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
cannam@167
|
27
|
cannam@167
|
28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 12 -dit -name hc2cfdftv_12 -include rdft/simd/hc2cfv.h */
|
cannam@167
|
29
|
cannam@167
|
30 /*
|
cannam@167
|
31 * This function contains 71 FP additions, 66 FP multiplications,
|
cannam@167
|
32 * (or, 41 additions, 36 multiplications, 30 fused multiply/add),
|
cannam@167
|
33 * 86 stack variables, 2 constants, and 24 memory accesses
|
cannam@167
|
34 */
|
cannam@167
|
35 #include "rdft/simd/hc2cfv.h"
|
cannam@167
|
36
|
cannam@167
|
37 static void hc2cfdftv_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
cannam@167
|
38 {
|
cannam@167
|
39 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
cannam@167
|
40 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
cannam@167
|
41 {
|
cannam@167
|
42 INT m;
|
cannam@167
|
43 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 22)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(48, rs)) {
|
cannam@167
|
44 V Td, TQ, Tr, TR, TI, TY, TA, TX, T12, T1e, TV, T1d, TK, TL, Ts;
|
cannam@167
|
45 V TJ, TO, TP, TM, TN, TW, T16, T13, T17, TS, TZ, T14, T19, T15, T18;
|
cannam@167
|
46 V T1f, T1j, T1c, T1i, T1a, T1b, T1g, T1l, T1h, T1k;
|
cannam@167
|
47 {
|
cannam@167
|
48 V T3, Tu, T7, Tw, Tp, TH, Tl, TE, Th, TC, Tb, Tz, T1, T2, Tt;
|
cannam@167
|
49 V T5, T6, T4, Tv, Tn, To, Tm, TG, Tj, Tk, Ti, TD, Tf, Tg, Te;
|
cannam@167
|
50 V TB, T9, Ta, T8, Ty, Tc, Tq, TF, Tx, T10, T11, TT, TU;
|
cannam@167
|
51 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
|
cannam@167
|
52 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
|
cannam@167
|
53 T3 = VFMACONJ(T2, T1);
|
cannam@167
|
54 Tt = LDW(&(W[0]));
|
cannam@167
|
55 Tu = VZMULIJ(Tt, VFNMSCONJ(T2, T1));
|
cannam@167
|
56 T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
|
cannam@167
|
57 T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
|
cannam@167
|
58 T4 = LDW(&(W[TWVL * 6]));
|
cannam@167
|
59 T7 = VZMULJ(T4, VFMACONJ(T6, T5));
|
cannam@167
|
60 Tv = LDW(&(W[TWVL * 8]));
|
cannam@167
|
61 Tw = VZMULIJ(Tv, VFNMSCONJ(T6, T5));
|
cannam@167
|
62 Tn = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
|
cannam@167
|
63 To = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
|
cannam@167
|
64 Tm = LDW(&(W[TWVL * 2]));
|
cannam@167
|
65 Tp = VZMULJ(Tm, VFMACONJ(To, Tn));
|
cannam@167
|
66 TG = LDW(&(W[TWVL * 4]));
|
cannam@167
|
67 TH = VZMULIJ(TG, VFNMSCONJ(To, Tn));
|
cannam@167
|
68 Tj = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)]));
|
cannam@167
|
69 Tk = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)]));
|
cannam@167
|
70 Ti = LDW(&(W[TWVL * 18]));
|
cannam@167
|
71 Tl = VZMULJ(Ti, VFMACONJ(Tk, Tj));
|
cannam@167
|
72 TD = LDW(&(W[TWVL * 20]));
|
cannam@167
|
73 TE = VZMULIJ(TD, VFNMSCONJ(Tk, Tj));
|
cannam@167
|
74 Tf = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
|
cannam@167
|
75 Tg = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
|
cannam@167
|
76 Te = LDW(&(W[TWVL * 10]));
|
cannam@167
|
77 Th = VZMULJ(Te, VFMACONJ(Tg, Tf));
|
cannam@167
|
78 TB = LDW(&(W[TWVL * 12]));
|
cannam@167
|
79 TC = VZMULIJ(TB, VFNMSCONJ(Tg, Tf));
|
cannam@167
|
80 T9 = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
|
cannam@167
|
81 Ta = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
|
cannam@167
|
82 T8 = LDW(&(W[TWVL * 14]));
|
cannam@167
|
83 Tb = VZMULJ(T8, VFMACONJ(Ta, T9));
|
cannam@167
|
84 Ty = LDW(&(W[TWVL * 16]));
|
cannam@167
|
85 Tz = VZMULIJ(Ty, VFNMSCONJ(Ta, T9));
|
cannam@167
|
86 Tc = VADD(T7, Tb);
|
cannam@167
|
87 Td = VADD(T3, Tc);
|
cannam@167
|
88 TQ = VFNMS(LDK(KP500000000), Tc, T3);
|
cannam@167
|
89 Tq = VADD(Tl, Tp);
|
cannam@167
|
90 Tr = VADD(Th, Tq);
|
cannam@167
|
91 TR = VFNMS(LDK(KP500000000), Tq, Th);
|
cannam@167
|
92 TF = VADD(TC, TE);
|
cannam@167
|
93 TI = VADD(TF, TH);
|
cannam@167
|
94 TY = VFNMS(LDK(KP500000000), TF, TH);
|
cannam@167
|
95 Tx = VADD(Tu, Tw);
|
cannam@167
|
96 TA = VADD(Tx, Tz);
|
cannam@167
|
97 TX = VFNMS(LDK(KP500000000), Tx, Tz);
|
cannam@167
|
98 T10 = VSUB(Tb, T7);
|
cannam@167
|
99 T11 = VSUB(Tp, Tl);
|
cannam@167
|
100 T12 = VSUB(T10, T11);
|
cannam@167
|
101 T1e = VADD(T10, T11);
|
cannam@167
|
102 TT = VSUB(TC, TE);
|
cannam@167
|
103 TU = VSUB(Tu, Tw);
|
cannam@167
|
104 TV = VSUB(TT, TU);
|
cannam@167
|
105 T1d = VADD(TU, TT);
|
cannam@167
|
106 }
|
cannam@167
|
107 Ts = VSUB(Td, Tr);
|
cannam@167
|
108 TJ = VSUB(TA, TI);
|
cannam@167
|
109 TK = VMUL(LDK(KP500000000), VFMAI(TJ, Ts));
|
cannam@167
|
110 TL = VCONJ(VMUL(LDK(KP500000000), VFNMSI(TJ, Ts)));
|
cannam@167
|
111 ST(&(Rp[WS(rs, 3)]), TK, ms, &(Rp[WS(rs, 1)]));
|
cannam@167
|
112 ST(&(Rm[WS(rs, 2)]), TL, -ms, &(Rm[0]));
|
cannam@167
|
113 TM = VADD(Td, Tr);
|
cannam@167
|
114 TN = VADD(TA, TI);
|
cannam@167
|
115 TO = VMUL(LDK(KP500000000), VSUB(TM, TN));
|
cannam@167
|
116 TP = VCONJ(VMUL(LDK(KP500000000), VADD(TN, TM)));
|
cannam@167
|
117 ST(&(Rp[0]), TO, ms, &(Rp[0]));
|
cannam@167
|
118 ST(&(Rm[WS(rs, 5)]), TP, -ms, &(Rm[WS(rs, 1)]));
|
cannam@167
|
119 TS = VSUB(TQ, TR);
|
cannam@167
|
120 TW = VFMA(LDK(KP866025403), TV, TS);
|
cannam@167
|
121 T16 = VFNMS(LDK(KP866025403), TV, TS);
|
cannam@167
|
122 TZ = VSUB(TX, TY);
|
cannam@167
|
123 T13 = VFNMS(LDK(KP866025403), T12, TZ);
|
cannam@167
|
124 T17 = VFMA(LDK(KP866025403), T12, TZ);
|
cannam@167
|
125 T14 = VMUL(LDK(KP500000000), VFNMSI(T13, TW));
|
cannam@167
|
126 ST(&(Rp[WS(rs, 1)]), T14, ms, &(Rp[WS(rs, 1)]));
|
cannam@167
|
127 T19 = VCONJ(VMUL(LDK(KP500000000), VFMAI(T17, T16)));
|
cannam@167
|
128 ST(&(Rm[WS(rs, 4)]), T19, -ms, &(Rm[0]));
|
cannam@167
|
129 T15 = VCONJ(VMUL(LDK(KP500000000), VFMAI(T13, TW)));
|
cannam@167
|
130 ST(&(Rm[0]), T15, -ms, &(Rm[0]));
|
cannam@167
|
131 T18 = VMUL(LDK(KP500000000), VFNMSI(T17, T16));
|
cannam@167
|
132 ST(&(Rp[WS(rs, 5)]), T18, ms, &(Rp[WS(rs, 1)]));
|
cannam@167
|
133 T1f = VMUL(LDK(KP866025403), VSUB(T1d, T1e));
|
cannam@167
|
134 T1j = VMUL(LDK(KP866025403), VADD(T1d, T1e));
|
cannam@167
|
135 T1a = VADD(TX, TY);
|
cannam@167
|
136 T1b = VADD(TQ, TR);
|
cannam@167
|
137 T1c = VADD(T1a, T1b);
|
cannam@167
|
138 T1i = VSUB(T1b, T1a);
|
cannam@167
|
139 T1g = VCONJ(VMUL(LDK(KP500000000), VFNMSI(T1f, T1c)));
|
cannam@167
|
140 ST(&(Rm[WS(rs, 1)]), T1g, -ms, &(Rm[WS(rs, 1)]));
|
cannam@167
|
141 T1l = VMUL(LDK(KP500000000), VFMAI(T1j, T1i));
|
cannam@167
|
142 ST(&(Rp[WS(rs, 4)]), T1l, ms, &(Rp[0]));
|
cannam@167
|
143 T1h = VMUL(LDK(KP500000000), VFMAI(T1f, T1c));
|
cannam@167
|
144 ST(&(Rp[WS(rs, 2)]), T1h, ms, &(Rp[0]));
|
cannam@167
|
145 T1k = VCONJ(VMUL(LDK(KP500000000), VFNMSI(T1j, T1i)));
|
cannam@167
|
146 ST(&(Rm[WS(rs, 3)]), T1k, -ms, &(Rm[WS(rs, 1)]));
|
cannam@167
|
147 }
|
cannam@167
|
148 }
|
cannam@167
|
149 VLEAVE();
|
cannam@167
|
150 }
|
cannam@167
|
151
|
cannam@167
|
152 static const tw_instr twinstr[] = {
|
cannam@167
|
153 VTW(1, 1),
|
cannam@167
|
154 VTW(1, 2),
|
cannam@167
|
155 VTW(1, 3),
|
cannam@167
|
156 VTW(1, 4),
|
cannam@167
|
157 VTW(1, 5),
|
cannam@167
|
158 VTW(1, 6),
|
cannam@167
|
159 VTW(1, 7),
|
cannam@167
|
160 VTW(1, 8),
|
cannam@167
|
161 VTW(1, 9),
|
cannam@167
|
162 VTW(1, 10),
|
cannam@167
|
163 VTW(1, 11),
|
cannam@167
|
164 {TW_NEXT, VL, 0}
|
cannam@167
|
165 };
|
cannam@167
|
166
|
cannam@167
|
167 static const hc2c_desc desc = { 12, XSIMD_STRING("hc2cfdftv_12"), twinstr, &GENUS, {41, 36, 30, 0} };
|
cannam@167
|
168
|
cannam@167
|
169 void XSIMD(codelet_hc2cfdftv_12) (planner *p) {
|
cannam@167
|
170 X(khc2c_register) (p, hc2cfdftv_12, &desc, HC2C_VIA_DFT);
|
cannam@167
|
171 }
|
cannam@167
|
172 #else
|
cannam@167
|
173
|
cannam@167
|
174 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 12 -dit -name hc2cfdftv_12 -include rdft/simd/hc2cfv.h */
|
cannam@167
|
175
|
cannam@167
|
176 /*
|
cannam@167
|
177 * This function contains 71 FP additions, 41 FP multiplications,
|
cannam@167
|
178 * (or, 67 additions, 37 multiplications, 4 fused multiply/add),
|
cannam@167
|
179 * 58 stack variables, 4 constants, and 24 memory accesses
|
cannam@167
|
180 */
|
cannam@167
|
181 #include "rdft/simd/hc2cfv.h"
|
cannam@167
|
182
|
cannam@167
|
183 static void hc2cfdftv_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
cannam@167
|
184 {
|
cannam@167
|
185 DVK(KP433012701, +0.433012701892219323381861585376468091735701313);
|
cannam@167
|
186 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
cannam@167
|
187 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
cannam@167
|
188 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
cannam@167
|
189 {
|
cannam@167
|
190 INT m;
|
cannam@167
|
191 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 22)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(48, rs)) {
|
cannam@167
|
192 V TX, T13, T4, Tf, TZ, TD, TF, T17, TW, T14, Tw, Tl, T10, TL, TN;
|
cannam@167
|
193 V T16;
|
cannam@167
|
194 {
|
cannam@167
|
195 V T1, T3, TA, Tb, Td, Te, T9, TC, T2, Tz, Tc, Ta, T6, T8, T7;
|
cannam@167
|
196 V T5, TB, TE, Ti, Tk, TI, Ts, Tu, Tv, Tq, TK, Tj, TH, Tt, Tr;
|
cannam@167
|
197 V Tn, Tp, To, Tm, TJ, Th, TM;
|
cannam@167
|
198 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
|
cannam@167
|
199 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
|
cannam@167
|
200 T3 = VCONJ(T2);
|
cannam@167
|
201 Tz = LDW(&(W[0]));
|
cannam@167
|
202 TA = VZMULIJ(Tz, VSUB(T3, T1));
|
cannam@167
|
203 Tb = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
|
cannam@167
|
204 Tc = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
|
cannam@167
|
205 Td = VCONJ(Tc);
|
cannam@167
|
206 Ta = LDW(&(W[TWVL * 14]));
|
cannam@167
|
207 Te = VZMULJ(Ta, VADD(Tb, Td));
|
cannam@167
|
208 T6 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
|
cannam@167
|
209 T7 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
|
cannam@167
|
210 T8 = VCONJ(T7);
|
cannam@167
|
211 T5 = LDW(&(W[TWVL * 6]));
|
cannam@167
|
212 T9 = VZMULJ(T5, VADD(T6, T8));
|
cannam@167
|
213 TB = LDW(&(W[TWVL * 8]));
|
cannam@167
|
214 TC = VZMULIJ(TB, VSUB(T8, T6));
|
cannam@167
|
215 TX = VSUB(TC, TA);
|
cannam@167
|
216 T13 = VSUB(Te, T9);
|
cannam@167
|
217 T4 = VADD(T1, T3);
|
cannam@167
|
218 Tf = VADD(T9, Te);
|
cannam@167
|
219 TZ = VFNMS(LDK(KP250000000), Tf, VMUL(LDK(KP500000000), T4));
|
cannam@167
|
220 TD = VADD(TA, TC);
|
cannam@167
|
221 TE = LDW(&(W[TWVL * 16]));
|
cannam@167
|
222 TF = VZMULIJ(TE, VSUB(Td, Tb));
|
cannam@167
|
223 T17 = VFNMS(LDK(KP500000000), TD, TF);
|
cannam@167
|
224 Ti = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
|
cannam@167
|
225 Tj = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
|
cannam@167
|
226 Tk = VCONJ(Tj);
|
cannam@167
|
227 TH = LDW(&(W[TWVL * 12]));
|
cannam@167
|
228 TI = VZMULIJ(TH, VSUB(Tk, Ti));
|
cannam@167
|
229 Ts = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
|
cannam@167
|
230 Tt = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
|
cannam@167
|
231 Tu = VCONJ(Tt);
|
cannam@167
|
232 Tr = LDW(&(W[TWVL * 2]));
|
cannam@167
|
233 Tv = VZMULJ(Tr, VADD(Ts, Tu));
|
cannam@167
|
234 Tn = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)]));
|
cannam@167
|
235 To = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)]));
|
cannam@167
|
236 Tp = VCONJ(To);
|
cannam@167
|
237 Tm = LDW(&(W[TWVL * 18]));
|
cannam@167
|
238 Tq = VZMULJ(Tm, VADD(Tn, Tp));
|
cannam@167
|
239 TJ = LDW(&(W[TWVL * 20]));
|
cannam@167
|
240 TK = VZMULIJ(TJ, VSUB(Tp, Tn));
|
cannam@167
|
241 TW = VSUB(TK, TI);
|
cannam@167
|
242 T14 = VSUB(Tv, Tq);
|
cannam@167
|
243 Tw = VADD(Tq, Tv);
|
cannam@167
|
244 Th = LDW(&(W[TWVL * 10]));
|
cannam@167
|
245 Tl = VZMULJ(Th, VADD(Ti, Tk));
|
cannam@167
|
246 T10 = VFNMS(LDK(KP250000000), Tw, VMUL(LDK(KP500000000), Tl));
|
cannam@167
|
247 TL = VADD(TI, TK);
|
cannam@167
|
248 TM = LDW(&(W[TWVL * 4]));
|
cannam@167
|
249 TN = VZMULIJ(TM, VSUB(Tu, Ts));
|
cannam@167
|
250 T16 = VFNMS(LDK(KP500000000), TL, TN);
|
cannam@167
|
251 }
|
cannam@167
|
252 {
|
cannam@167
|
253 V Ty, TS, TP, TT, Tg, Tx, TG, TO, TQ, TV, TR, TU, T1i, T1o, T1l;
|
cannam@167
|
254 V T1p, T1g, T1h, T1j, T1k, T1m, T1r, T1n, T1q, T12, T1c, T19, T1d, TY, T11;
|
cannam@167
|
255 V T15, T18, T1a, T1f, T1b, T1e;
|
cannam@167
|
256 Tg = VADD(T4, Tf);
|
cannam@167
|
257 Tx = VADD(Tl, Tw);
|
cannam@167
|
258 Ty = VADD(Tg, Tx);
|
cannam@167
|
259 TS = VSUB(Tg, Tx);
|
cannam@167
|
260 TG = VADD(TD, TF);
|
cannam@167
|
261 TO = VADD(TL, TN);
|
cannam@167
|
262 TP = VADD(TG, TO);
|
cannam@167
|
263 TT = VBYI(VSUB(TO, TG));
|
cannam@167
|
264 TQ = VCONJ(VMUL(LDK(KP500000000), VSUB(Ty, TP)));
|
cannam@167
|
265 ST(&(Rm[WS(rs, 5)]), TQ, -ms, &(Rm[WS(rs, 1)]));
|
cannam@167
|
266 TV = VMUL(LDK(KP500000000), VADD(TS, TT));
|
cannam@167
|
267 ST(&(Rp[WS(rs, 3)]), TV, ms, &(Rp[WS(rs, 1)]));
|
cannam@167
|
268 TR = VMUL(LDK(KP500000000), VADD(Ty, TP));
|
cannam@167
|
269 ST(&(Rp[0]), TR, ms, &(Rp[0]));
|
cannam@167
|
270 TU = VCONJ(VMUL(LDK(KP500000000), VSUB(TS, TT)));
|
cannam@167
|
271 ST(&(Rm[WS(rs, 2)]), TU, -ms, &(Rm[0]));
|
cannam@167
|
272 T1g = VADD(TX, TW);
|
cannam@167
|
273 T1h = VADD(T13, T14);
|
cannam@167
|
274 T1i = VMUL(LDK(KP500000000), VBYI(VMUL(LDK(KP866025403), VSUB(T1g, T1h))));
|
cannam@167
|
275 T1o = VMUL(LDK(KP500000000), VBYI(VMUL(LDK(KP866025403), VADD(T1g, T1h))));
|
cannam@167
|
276 T1j = VADD(TZ, T10);
|
cannam@167
|
277 T1k = VMUL(LDK(KP500000000), VADD(T17, T16));
|
cannam@167
|
278 T1l = VSUB(T1j, T1k);
|
cannam@167
|
279 T1p = VADD(T1j, T1k);
|
cannam@167
|
280 T1m = VADD(T1i, T1l);
|
cannam@167
|
281 ST(&(Rp[WS(rs, 2)]), T1m, ms, &(Rp[0]));
|
cannam@167
|
282 T1r = VCONJ(VSUB(T1p, T1o));
|
cannam@167
|
283 ST(&(Rm[WS(rs, 3)]), T1r, -ms, &(Rm[WS(rs, 1)]));
|
cannam@167
|
284 T1n = VCONJ(VSUB(T1l, T1i));
|
cannam@167
|
285 ST(&(Rm[WS(rs, 1)]), T1n, -ms, &(Rm[WS(rs, 1)]));
|
cannam@167
|
286 T1q = VADD(T1o, T1p);
|
cannam@167
|
287 ST(&(Rp[WS(rs, 4)]), T1q, ms, &(Rp[0]));
|
cannam@167
|
288 TY = VMUL(LDK(KP433012701), VSUB(TW, TX));
|
cannam@167
|
289 T11 = VSUB(TZ, T10);
|
cannam@167
|
290 T12 = VADD(TY, T11);
|
cannam@167
|
291 T1c = VSUB(T11, TY);
|
cannam@167
|
292 T15 = VMUL(LDK(KP866025403), VSUB(T13, T14));
|
cannam@167
|
293 T18 = VSUB(T16, T17);
|
cannam@167
|
294 T19 = VMUL(LDK(KP500000000), VBYI(VSUB(T15, T18)));
|
cannam@167
|
295 T1d = VMUL(LDK(KP500000000), VBYI(VADD(T15, T18)));
|
cannam@167
|
296 T1a = VCONJ(VSUB(T12, T19));
|
cannam@167
|
297 ST(&(Rm[0]), T1a, -ms, &(Rm[0]));
|
cannam@167
|
298 T1f = VCONJ(VADD(T1c, T1d));
|
cannam@167
|
299 ST(&(Rm[WS(rs, 4)]), T1f, -ms, &(Rm[0]));
|
cannam@167
|
300 T1b = VADD(T12, T19);
|
cannam@167
|
301 ST(&(Rp[WS(rs, 1)]), T1b, ms, &(Rp[WS(rs, 1)]));
|
cannam@167
|
302 T1e = VSUB(T1c, T1d);
|
cannam@167
|
303 ST(&(Rp[WS(rs, 5)]), T1e, ms, &(Rp[WS(rs, 1)]));
|
cannam@167
|
304 }
|
cannam@167
|
305 }
|
cannam@167
|
306 }
|
cannam@167
|
307 VLEAVE();
|
cannam@167
|
308 }
|
cannam@167
|
309
|
cannam@167
|
310 static const tw_instr twinstr[] = {
|
cannam@167
|
311 VTW(1, 1),
|
cannam@167
|
312 VTW(1, 2),
|
cannam@167
|
313 VTW(1, 3),
|
cannam@167
|
314 VTW(1, 4),
|
cannam@167
|
315 VTW(1, 5),
|
cannam@167
|
316 VTW(1, 6),
|
cannam@167
|
317 VTW(1, 7),
|
cannam@167
|
318 VTW(1, 8),
|
cannam@167
|
319 VTW(1, 9),
|
cannam@167
|
320 VTW(1, 10),
|
cannam@167
|
321 VTW(1, 11),
|
cannam@167
|
322 {TW_NEXT, VL, 0}
|
cannam@167
|
323 };
|
cannam@167
|
324
|
cannam@167
|
325 static const hc2c_desc desc = { 12, XSIMD_STRING("hc2cfdftv_12"), twinstr, &GENUS, {67, 37, 4, 0} };
|
cannam@167
|
326
|
cannam@167
|
327 void XSIMD(codelet_hc2cfdftv_12) (planner *p) {
|
cannam@167
|
328 X(khc2c_register) (p, hc2cfdftv_12, &desc, HC2C_VIA_DFT);
|
cannam@167
|
329 }
|
cannam@167
|
330 #endif
|