annotate src/fftw-3.3.8/rdft/simd/common/hc2cfdftv_10.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents bd3cc4d1df30
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * This program is free software; you can redistribute it and/or modify
cannam@167 6 * it under the terms of the GNU General Public License as published by
cannam@167 7 * the Free Software Foundation; either version 2 of the License, or
cannam@167 8 * (at your option) any later version.
cannam@167 9 *
cannam@167 10 * This program is distributed in the hope that it will be useful,
cannam@167 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 13 * GNU General Public License for more details.
cannam@167 14 *
cannam@167 15 * You should have received a copy of the GNU General Public License
cannam@167 16 * along with this program; if not, write to the Free Software
cannam@167 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 18 *
cannam@167 19 */
cannam@167 20
cannam@167 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@167 22 /* Generated on Thu May 24 08:08:11 EDT 2018 */
cannam@167 23
cannam@167 24 #include "rdft/codelet-rdft.h"
cannam@167 25
cannam@167 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
cannam@167 27
cannam@167 28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 10 -dit -name hc2cfdftv_10 -include rdft/simd/hc2cfv.h */
cannam@167 29
cannam@167 30 /*
cannam@167 31 * This function contains 61 FP additions, 60 FP multiplications,
cannam@167 32 * (or, 33 additions, 32 multiplications, 28 fused multiply/add),
cannam@167 33 * 77 stack variables, 5 constants, and 20 memory accesses
cannam@167 34 */
cannam@167 35 #include "rdft/simd/hc2cfv.h"
cannam@167 36
cannam@167 37 static void hc2cfdftv_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@167 38 {
cannam@167 39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
cannam@167 40 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
cannam@167 41 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
cannam@167 42 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
cannam@167 43 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@167 44 {
cannam@167 45 INT m;
cannam@167 46 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 18)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(40, rs)) {
cannam@167 47 V T8, T11, T12, TG, TH, TP, Tp, TA, TB, TS, TV, TW, TC, TX, TI;
cannam@167 48 V TM, TF, TL, TD, TE, TJ, TO, TK, TN, T13, T17, T10, T16, TY, TZ;
cannam@167 49 V T14, T19, T15, T18;
cannam@167 50 {
cannam@167 51 V T3, To, TU, Th, TT, TR, Tz, Tu, TQ, T7, T1, T2, Tw, T5, T6;
cannam@167 52 V Tr, Tc, Tj, Tg, Ty, Tn, Tt, Tv, Tq, Ta, Tb, T9, Ti, Te, Tf;
cannam@167 53 V Td, Tx, Tl, Tm, Tk, Ts, T4;
cannam@167 54 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
cannam@167 55 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
cannam@167 56 Tv = LDW(&(W[0]));
cannam@167 57 Tw = VZMULIJ(Tv, VFNMSCONJ(T2, T1));
cannam@167 58 T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
cannam@167 59 T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
cannam@167 60 Tq = LDW(&(W[TWVL * 6]));
cannam@167 61 Tr = VZMULJ(Tq, VFMACONJ(T6, T5));
cannam@167 62 Ta = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
cannam@167 63 Tb = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
cannam@167 64 T9 = LDW(&(W[TWVL * 2]));
cannam@167 65 Tc = VZMULJ(T9, VFMACONJ(Tb, Ta));
cannam@167 66 Ti = LDW(&(W[TWVL * 4]));
cannam@167 67 Tj = VZMULIJ(Ti, VFNMSCONJ(Tb, Ta));
cannam@167 68 Te = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
cannam@167 69 Tf = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
cannam@167 70 Td = LDW(&(W[TWVL * 12]));
cannam@167 71 Tg = VZMULIJ(Td, VFNMSCONJ(Tf, Te));
cannam@167 72 Tx = LDW(&(W[TWVL * 10]));
cannam@167 73 Ty = VZMULJ(Tx, VFMACONJ(Tf, Te));
cannam@167 74 Tl = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
cannam@167 75 Tm = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
cannam@167 76 Tk = LDW(&(W[TWVL * 14]));
cannam@167 77 Tn = VZMULJ(Tk, VFMACONJ(Tm, Tl));
cannam@167 78 Ts = LDW(&(W[TWVL * 16]));
cannam@167 79 Tt = VZMULIJ(Ts, VFNMSCONJ(Tm, Tl));
cannam@167 80 T3 = VFMACONJ(T2, T1);
cannam@167 81 To = VSUB(Tj, Tn);
cannam@167 82 TU = VADD(Tr, Tt);
cannam@167 83 Th = VSUB(Tc, Tg);
cannam@167 84 TT = VADD(Tw, Ty);
cannam@167 85 TR = VADD(Tj, Tn);
cannam@167 86 Tz = VSUB(Tw, Ty);
cannam@167 87 Tu = VSUB(Tr, Tt);
cannam@167 88 TQ = VADD(Tc, Tg);
cannam@167 89 T4 = LDW(&(W[TWVL * 8]));
cannam@167 90 T7 = VZMULIJ(T4, VFNMSCONJ(T6, T5));
cannam@167 91 T8 = VSUB(T3, T7);
cannam@167 92 T11 = VSUB(TQ, TR);
cannam@167 93 T12 = VSUB(TU, TT);
cannam@167 94 TG = VADD(Tz, Tu);
cannam@167 95 TH = VADD(Th, To);
cannam@167 96 TP = VADD(T3, T7);
cannam@167 97 Tp = VSUB(Th, To);
cannam@167 98 TA = VSUB(Tu, Tz);
cannam@167 99 TB = VADD(Tp, TA);
cannam@167 100 TS = VADD(TQ, TR);
cannam@167 101 TV = VADD(TT, TU);
cannam@167 102 TW = VADD(TS, TV);
cannam@167 103 }
cannam@167 104 TC = VMUL(LDK(KP500000000), VADD(T8, TB));
cannam@167 105 ST(&(Rp[0]), TC, ms, &(Rp[0]));
cannam@167 106 TX = VCONJ(VMUL(LDK(KP500000000), VADD(TP, TW)));
cannam@167 107 ST(&(Rm[WS(rs, 4)]), TX, -ms, &(Rm[0]));
cannam@167 108 TI = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TH, TG));
cannam@167 109 TM = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TG, TH));
cannam@167 110 TD = VFNMS(LDK(KP250000000), TB, T8);
cannam@167 111 TE = VSUB(Tp, TA);
cannam@167 112 TF = VFNMS(LDK(KP559016994), TE, TD);
cannam@167 113 TL = VFMA(LDK(KP559016994), TE, TD);
cannam@167 114 TJ = VCONJ(VMUL(LDK(KP500000000), VFNMSI(TI, TF)));
cannam@167 115 ST(&(Rm[WS(rs, 1)]), TJ, -ms, &(Rm[WS(rs, 1)]));
cannam@167 116 TO = VMUL(LDK(KP500000000), VFMAI(TM, TL));
cannam@167 117 ST(&(Rp[WS(rs, 4)]), TO, ms, &(Rp[0]));
cannam@167 118 TK = VMUL(LDK(KP500000000), VFMAI(TI, TF));
cannam@167 119 ST(&(Rp[WS(rs, 2)]), TK, ms, &(Rp[0]));
cannam@167 120 TN = VCONJ(VMUL(LDK(KP500000000), VFNMSI(TM, TL)));
cannam@167 121 ST(&(Rm[WS(rs, 3)]), TN, -ms, &(Rm[WS(rs, 1)]));
cannam@167 122 T13 = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T12, T11));
cannam@167 123 T17 = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T11, T12));
cannam@167 124 TY = VFNMS(LDK(KP250000000), TW, TP);
cannam@167 125 TZ = VSUB(TS, TV);
cannam@167 126 T10 = VFMA(LDK(KP559016994), TZ, TY);
cannam@167 127 T16 = VFNMS(LDK(KP559016994), TZ, TY);
cannam@167 128 T14 = VMUL(LDK(KP500000000), VFNMSI(T13, T10));
cannam@167 129 ST(&(Rp[WS(rs, 1)]), T14, ms, &(Rp[WS(rs, 1)]));
cannam@167 130 T19 = VCONJ(VMUL(LDK(KP500000000), VFMAI(T17, T16)));
cannam@167 131 ST(&(Rm[WS(rs, 2)]), T19, -ms, &(Rm[0]));
cannam@167 132 T15 = VCONJ(VMUL(LDK(KP500000000), VFMAI(T13, T10)));
cannam@167 133 ST(&(Rm[0]), T15, -ms, &(Rm[0]));
cannam@167 134 T18 = VMUL(LDK(KP500000000), VFNMSI(T17, T16));
cannam@167 135 ST(&(Rp[WS(rs, 3)]), T18, ms, &(Rp[WS(rs, 1)]));
cannam@167 136 }
cannam@167 137 }
cannam@167 138 VLEAVE();
cannam@167 139 }
cannam@167 140
cannam@167 141 static const tw_instr twinstr[] = {
cannam@167 142 VTW(1, 1),
cannam@167 143 VTW(1, 2),
cannam@167 144 VTW(1, 3),
cannam@167 145 VTW(1, 4),
cannam@167 146 VTW(1, 5),
cannam@167 147 VTW(1, 6),
cannam@167 148 VTW(1, 7),
cannam@167 149 VTW(1, 8),
cannam@167 150 VTW(1, 9),
cannam@167 151 {TW_NEXT, VL, 0}
cannam@167 152 };
cannam@167 153
cannam@167 154 static const hc2c_desc desc = { 10, XSIMD_STRING("hc2cfdftv_10"), twinstr, &GENUS, {33, 32, 28, 0} };
cannam@167 155
cannam@167 156 void XSIMD(codelet_hc2cfdftv_10) (planner *p) {
cannam@167 157 X(khc2c_register) (p, hc2cfdftv_10, &desc, HC2C_VIA_DFT);
cannam@167 158 }
cannam@167 159 #else
cannam@167 160
cannam@167 161 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 10 -dit -name hc2cfdftv_10 -include rdft/simd/hc2cfv.h */
cannam@167 162
cannam@167 163 /*
cannam@167 164 * This function contains 61 FP additions, 38 FP multiplications,
cannam@167 165 * (or, 55 additions, 32 multiplications, 6 fused multiply/add),
cannam@167 166 * 82 stack variables, 5 constants, and 20 memory accesses
cannam@167 167 */
cannam@167 168 #include "rdft/simd/hc2cfv.h"
cannam@167 169
cannam@167 170 static void hc2cfdftv_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@167 171 {
cannam@167 172 DVK(KP125000000, +0.125000000000000000000000000000000000000000000);
cannam@167 173 DVK(KP279508497, +0.279508497187473712051146708591409529430077295);
cannam@167 174 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
cannam@167 175 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
cannam@167 176 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@167 177 {
cannam@167 178 INT m;
cannam@167 179 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 18)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(40, rs)) {
cannam@167 180 V Tl, Tt, Tu, TY, TZ, T10, Tz, TE, TF, TV, TW, TX, Ta, TU, TN;
cannam@167 181 V TR, TH, TQ, TK, TL, TM, TI, TG, TJ, TT, TO, TP, TS, T18, T1c;
cannam@167 182 V T12, T1b, T15, T16, T17, T14, T11, T13, T1e, T19, T1a, T1d;
cannam@167 183 {
cannam@167 184 V T1, T3, Ty, T8, T7, TB, Tf, Ts, Tk, Tw, Tq, TD, T2, Tx, T6;
cannam@167 185 V TA, Tc, Te, Td, Tb, Tr, Tj, Ti, Th, Tg, Tv, Tn, Tp, To, Tm;
cannam@167 186 V TC, T4, T9, T5;
cannam@167 187 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
cannam@167 188 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
cannam@167 189 T3 = VCONJ(T2);
cannam@167 190 Tx = LDW(&(W[0]));
cannam@167 191 Ty = VZMULIJ(Tx, VSUB(T3, T1));
cannam@167 192 T8 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
cannam@167 193 T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
cannam@167 194 T7 = VCONJ(T6);
cannam@167 195 TA = LDW(&(W[TWVL * 6]));
cannam@167 196 TB = VZMULJ(TA, VADD(T7, T8));
cannam@167 197 Tc = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
cannam@167 198 Td = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
cannam@167 199 Te = VCONJ(Td);
cannam@167 200 Tb = LDW(&(W[TWVL * 2]));
cannam@167 201 Tf = VZMULJ(Tb, VADD(Tc, Te));
cannam@167 202 Tr = LDW(&(W[TWVL * 4]));
cannam@167 203 Ts = VZMULIJ(Tr, VSUB(Te, Tc));
cannam@167 204 Tj = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
cannam@167 205 Th = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
cannam@167 206 Ti = VCONJ(Th);
cannam@167 207 Tg = LDW(&(W[TWVL * 12]));
cannam@167 208 Tk = VZMULIJ(Tg, VSUB(Ti, Tj));
cannam@167 209 Tv = LDW(&(W[TWVL * 10]));
cannam@167 210 Tw = VZMULJ(Tv, VADD(Ti, Tj));
cannam@167 211 Tn = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
cannam@167 212 To = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
cannam@167 213 Tp = VCONJ(To);
cannam@167 214 Tm = LDW(&(W[TWVL * 14]));
cannam@167 215 Tq = VZMULJ(Tm, VADD(Tn, Tp));
cannam@167 216 TC = LDW(&(W[TWVL * 16]));
cannam@167 217 TD = VZMULIJ(TC, VSUB(Tp, Tn));
cannam@167 218 Tl = VSUB(Tf, Tk);
cannam@167 219 Tt = VSUB(Tq, Ts);
cannam@167 220 Tu = VADD(Tl, Tt);
cannam@167 221 TY = VADD(Ty, Tw);
cannam@167 222 TZ = VADD(TB, TD);
cannam@167 223 T10 = VADD(TY, TZ);
cannam@167 224 Tz = VSUB(Tw, Ty);
cannam@167 225 TE = VSUB(TB, TD);
cannam@167 226 TF = VADD(Tz, TE);
cannam@167 227 TV = VADD(Tf, Tk);
cannam@167 228 TW = VADD(Ts, Tq);
cannam@167 229 TX = VADD(TV, TW);
cannam@167 230 T4 = VADD(T1, T3);
cannam@167 231 T5 = LDW(&(W[TWVL * 8]));
cannam@167 232 T9 = VZMULIJ(T5, VSUB(T7, T8));
cannam@167 233 Ta = VSUB(T4, T9);
cannam@167 234 TU = VADD(T4, T9);
cannam@167 235 }
cannam@167 236 TL = VSUB(Tl, Tt);
cannam@167 237 TM = VSUB(TE, Tz);
cannam@167 238 TN = VMUL(LDK(KP500000000), VBYI(VFMA(LDK(KP951056516), TL, VMUL(LDK(KP587785252), TM))));
cannam@167 239 TR = VMUL(LDK(KP500000000), VBYI(VFNMS(LDK(KP587785252), TL, VMUL(LDK(KP951056516), TM))));
cannam@167 240 TI = VMUL(LDK(KP279508497), VSUB(Tu, TF));
cannam@167 241 TG = VADD(Tu, TF);
cannam@167 242 TJ = VFNMS(LDK(KP125000000), TG, VMUL(LDK(KP500000000), Ta));
cannam@167 243 TH = VCONJ(VMUL(LDK(KP500000000), VADD(Ta, TG)));
cannam@167 244 TQ = VSUB(TJ, TI);
cannam@167 245 TK = VADD(TI, TJ);
cannam@167 246 ST(&(Rm[WS(rs, 4)]), TH, -ms, &(Rm[0]));
cannam@167 247 TT = VCONJ(VADD(TQ, TR));
cannam@167 248 ST(&(Rm[WS(rs, 2)]), TT, -ms, &(Rm[0]));
cannam@167 249 TO = VSUB(TK, TN);
cannam@167 250 ST(&(Rp[WS(rs, 1)]), TO, ms, &(Rp[WS(rs, 1)]));
cannam@167 251 TP = VCONJ(VADD(TK, TN));
cannam@167 252 ST(&(Rm[0]), TP, -ms, &(Rm[0]));
cannam@167 253 TS = VSUB(TQ, TR);
cannam@167 254 ST(&(Rp[WS(rs, 3)]), TS, ms, &(Rp[WS(rs, 1)]));
cannam@167 255 T16 = VSUB(TZ, TY);
cannam@167 256 T17 = VSUB(TV, TW);
cannam@167 257 T18 = VMUL(LDK(KP500000000), VBYI(VFNMS(LDK(KP587785252), T17, VMUL(LDK(KP951056516), T16))));
cannam@167 258 T1c = VMUL(LDK(KP500000000), VBYI(VFMA(LDK(KP951056516), T17, VMUL(LDK(KP587785252), T16))));
cannam@167 259 T14 = VMUL(LDK(KP279508497), VSUB(TX, T10));
cannam@167 260 T11 = VADD(TX, T10);
cannam@167 261 T13 = VFNMS(LDK(KP125000000), T11, VMUL(LDK(KP500000000), TU));
cannam@167 262 T12 = VMUL(LDK(KP500000000), VADD(TU, T11));
cannam@167 263 T1b = VADD(T14, T13);
cannam@167 264 T15 = VSUB(T13, T14);
cannam@167 265 ST(&(Rp[0]), T12, ms, &(Rp[0]));
cannam@167 266 T1e = VADD(T1b, T1c);
cannam@167 267 ST(&(Rp[WS(rs, 4)]), T1e, ms, &(Rp[0]));
cannam@167 268 T19 = VCONJ(VSUB(T15, T18));
cannam@167 269 ST(&(Rm[WS(rs, 1)]), T19, -ms, &(Rm[WS(rs, 1)]));
cannam@167 270 T1a = VADD(T15, T18);
cannam@167 271 ST(&(Rp[WS(rs, 2)]), T1a, ms, &(Rp[0]));
cannam@167 272 T1d = VCONJ(VSUB(T1b, T1c));
cannam@167 273 ST(&(Rm[WS(rs, 3)]), T1d, -ms, &(Rm[WS(rs, 1)]));
cannam@167 274 }
cannam@167 275 }
cannam@167 276 VLEAVE();
cannam@167 277 }
cannam@167 278
cannam@167 279 static const tw_instr twinstr[] = {
cannam@167 280 VTW(1, 1),
cannam@167 281 VTW(1, 2),
cannam@167 282 VTW(1, 3),
cannam@167 283 VTW(1, 4),
cannam@167 284 VTW(1, 5),
cannam@167 285 VTW(1, 6),
cannam@167 286 VTW(1, 7),
cannam@167 287 VTW(1, 8),
cannam@167 288 VTW(1, 9),
cannam@167 289 {TW_NEXT, VL, 0}
cannam@167 290 };
cannam@167 291
cannam@167 292 static const hc2c_desc desc = { 10, XSIMD_STRING("hc2cfdftv_10"), twinstr, &GENUS, {55, 32, 6, 0} };
cannam@167 293
cannam@167 294 void XSIMD(codelet_hc2cfdftv_10) (planner *p) {
cannam@167 295 X(khc2c_register) (p, hc2cfdftv_10, &desc, HC2C_VIA_DFT);
cannam@167 296 }
cannam@167 297 #endif