annotate src/fftw-3.3.8/rdft/simd/common/hc2cbdftv_8.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents bd3cc4d1df30
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * This program is free software; you can redistribute it and/or modify
cannam@167 6 * it under the terms of the GNU General Public License as published by
cannam@167 7 * the Free Software Foundation; either version 2 of the License, or
cannam@167 8 * (at your option) any later version.
cannam@167 9 *
cannam@167 10 * This program is distributed in the hope that it will be useful,
cannam@167 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 13 * GNU General Public License for more details.
cannam@167 14 *
cannam@167 15 * You should have received a copy of the GNU General Public License
cannam@167 16 * along with this program; if not, write to the Free Software
cannam@167 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 18 *
cannam@167 19 */
cannam@167 20
cannam@167 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@167 22 /* Generated on Thu May 24 08:08:11 EDT 2018 */
cannam@167 23
cannam@167 24 #include "rdft/codelet-rdft.h"
cannam@167 25
cannam@167 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
cannam@167 27
cannam@167 28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 8 -dif -sign 1 -name hc2cbdftv_8 -include rdft/simd/hc2cbv.h */
cannam@167 29
cannam@167 30 /*
cannam@167 31 * This function contains 41 FP additions, 32 FP multiplications,
cannam@167 32 * (or, 23 additions, 14 multiplications, 18 fused multiply/add),
cannam@167 33 * 51 stack variables, 1 constants, and 16 memory accesses
cannam@167 34 */
cannam@167 35 #include "rdft/simd/hc2cbv.h"
cannam@167 36
cannam@167 37 static void hc2cbdftv_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@167 38 {
cannam@167 39 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@167 40 {
cannam@167 41 INT m;
cannam@167 42 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 14)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(32, rs)) {
cannam@167 43 V Tm, Tp, TF, TE, Th, Tv, Tc, Tu, T4, Tk, Tf, Tl, T7, Tn, Ta;
cannam@167 44 V To, T2, T3, Td, Te, T5, T6, T8, T9, Tg, Tb, TL, TK, TJ, TM;
cannam@167 45 V TN, TC, TG, TB, TD, TH, TI, Ti, Tq, T1, Tj, Tr, Ts, Tw, Ty;
cannam@167 46 V Tt, Tx, Tz, TA;
cannam@167 47 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
cannam@167 48 T3 = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
cannam@167 49 T4 = VFNMSCONJ(T3, T2);
cannam@167 50 Tk = VFMACONJ(T3, T2);
cannam@167 51 Td = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
cannam@167 52 Te = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
cannam@167 53 Tf = VFNMSCONJ(Te, Td);
cannam@167 54 Tl = VFMACONJ(Te, Td);
cannam@167 55 T5 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
cannam@167 56 T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
cannam@167 57 T7 = VFNMSCONJ(T6, T5);
cannam@167 58 Tn = VFMACONJ(T6, T5);
cannam@167 59 T8 = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
cannam@167 60 T9 = LD(&(Rm[0]), -ms, &(Rm[0]));
cannam@167 61 Ta = VFMSCONJ(T9, T8);
cannam@167 62 To = VFMACONJ(T9, T8);
cannam@167 63 Tm = VSUB(Tk, Tl);
cannam@167 64 Tp = VSUB(Tn, To);
cannam@167 65 TF = VADD(Tn, To);
cannam@167 66 TE = VADD(Tk, Tl);
cannam@167 67 Tg = VSUB(T7, Ta);
cannam@167 68 Th = VFMA(LDK(KP707106781), Tg, Tf);
cannam@167 69 Tv = VFNMS(LDK(KP707106781), Tg, Tf);
cannam@167 70 Tb = VADD(T7, Ta);
cannam@167 71 Tc = VFMA(LDK(KP707106781), Tb, T4);
cannam@167 72 Tu = VFNMS(LDK(KP707106781), Tb, T4);
cannam@167 73 TL = VADD(TE, TF);
cannam@167 74 TJ = LDW(&(W[0]));
cannam@167 75 TK = VZMULI(TJ, VFMAI(Th, Tc));
cannam@167 76 TM = VADD(TK, TL);
cannam@167 77 ST(&(Rp[0]), TM, ms, &(Rp[0]));
cannam@167 78 TN = VCONJ(VSUB(TL, TK));
cannam@167 79 ST(&(Rm[0]), TN, -ms, &(Rm[0]));
cannam@167 80 TB = LDW(&(W[TWVL * 8]));
cannam@167 81 TC = VZMULI(TB, VFMAI(Tv, Tu));
cannam@167 82 TD = LDW(&(W[TWVL * 6]));
cannam@167 83 TG = VZMUL(TD, VSUB(TE, TF));
cannam@167 84 TH = VADD(TC, TG);
cannam@167 85 ST(&(Rp[WS(rs, 2)]), TH, ms, &(Rp[0]));
cannam@167 86 TI = VCONJ(VSUB(TG, TC));
cannam@167 87 ST(&(Rm[WS(rs, 2)]), TI, -ms, &(Rm[0]));
cannam@167 88 T1 = LDW(&(W[TWVL * 12]));
cannam@167 89 Ti = VZMULI(T1, VFNMSI(Th, Tc));
cannam@167 90 Tj = LDW(&(W[TWVL * 10]));
cannam@167 91 Tq = VZMUL(Tj, VFNMSI(Tp, Tm));
cannam@167 92 Tr = VADD(Ti, Tq);
cannam@167 93 ST(&(Rp[WS(rs, 3)]), Tr, ms, &(Rp[WS(rs, 1)]));
cannam@167 94 Ts = VCONJ(VSUB(Tq, Ti));
cannam@167 95 ST(&(Rm[WS(rs, 3)]), Ts, -ms, &(Rm[WS(rs, 1)]));
cannam@167 96 Tt = LDW(&(W[TWVL * 4]));
cannam@167 97 Tw = VZMULI(Tt, VFNMSI(Tv, Tu));
cannam@167 98 Tx = LDW(&(W[TWVL * 2]));
cannam@167 99 Ty = VZMUL(Tx, VFMAI(Tp, Tm));
cannam@167 100 Tz = VADD(Tw, Ty);
cannam@167 101 ST(&(Rp[WS(rs, 1)]), Tz, ms, &(Rp[WS(rs, 1)]));
cannam@167 102 TA = VCONJ(VSUB(Ty, Tw));
cannam@167 103 ST(&(Rm[WS(rs, 1)]), TA, -ms, &(Rm[WS(rs, 1)]));
cannam@167 104 }
cannam@167 105 }
cannam@167 106 VLEAVE();
cannam@167 107 }
cannam@167 108
cannam@167 109 static const tw_instr twinstr[] = {
cannam@167 110 VTW(1, 1),
cannam@167 111 VTW(1, 2),
cannam@167 112 VTW(1, 3),
cannam@167 113 VTW(1, 4),
cannam@167 114 VTW(1, 5),
cannam@167 115 VTW(1, 6),
cannam@167 116 VTW(1, 7),
cannam@167 117 {TW_NEXT, VL, 0}
cannam@167 118 };
cannam@167 119
cannam@167 120 static const hc2c_desc desc = { 8, XSIMD_STRING("hc2cbdftv_8"), twinstr, &GENUS, {23, 14, 18, 0} };
cannam@167 121
cannam@167 122 void XSIMD(codelet_hc2cbdftv_8) (planner *p) {
cannam@167 123 X(khc2c_register) (p, hc2cbdftv_8, &desc, HC2C_VIA_DFT);
cannam@167 124 }
cannam@167 125 #else
cannam@167 126
cannam@167 127 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 8 -dif -sign 1 -name hc2cbdftv_8 -include rdft/simd/hc2cbv.h */
cannam@167 128
cannam@167 129 /*
cannam@167 130 * This function contains 41 FP additions, 16 FP multiplications,
cannam@167 131 * (or, 41 additions, 16 multiplications, 0 fused multiply/add),
cannam@167 132 * 55 stack variables, 1 constants, and 16 memory accesses
cannam@167 133 */
cannam@167 134 #include "rdft/simd/hc2cbv.h"
cannam@167 135
cannam@167 136 static void hc2cbdftv_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@167 137 {
cannam@167 138 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@167 139 {
cannam@167 140 INT m;
cannam@167 141 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 14)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(32, rs)) {
cannam@167 142 V T5, Tj, Tq, TI, Te, Tk, Tt, TJ, T2, Tg, T4, Ti, T3, Th, To;
cannam@167 143 V Tp, T6, Tc, T8, Tb, T7, Ta, T9, Td, Tr, Ts, TP, Tu, Tm, TO;
cannam@167 144 V Tn, Tf, Tl, T1, TN, Tv, TR, Tw, TQ, TC, TK, TA, TG, TB, TH;
cannam@167 145 V Ty, Tz, Tx, TF, TD, TM, TE, TL;
cannam@167 146 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
cannam@167 147 Tg = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
cannam@167 148 T3 = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
cannam@167 149 T4 = VCONJ(T3);
cannam@167 150 Th = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
cannam@167 151 Ti = VCONJ(Th);
cannam@167 152 T5 = VSUB(T2, T4);
cannam@167 153 Tj = VSUB(Tg, Ti);
cannam@167 154 To = VADD(T2, T4);
cannam@167 155 Tp = VADD(Tg, Ti);
cannam@167 156 Tq = VSUB(To, Tp);
cannam@167 157 TI = VADD(To, Tp);
cannam@167 158 T6 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
cannam@167 159 Tc = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
cannam@167 160 T7 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
cannam@167 161 T8 = VCONJ(T7);
cannam@167 162 Ta = LD(&(Rm[0]), -ms, &(Rm[0]));
cannam@167 163 Tb = VCONJ(Ta);
cannam@167 164 T9 = VSUB(T6, T8);
cannam@167 165 Td = VSUB(Tb, Tc);
cannam@167 166 Te = VMUL(LDK(KP707106781), VADD(T9, Td));
cannam@167 167 Tk = VMUL(LDK(KP707106781), VSUB(T9, Td));
cannam@167 168 Tr = VADD(T6, T8);
cannam@167 169 Ts = VADD(Tb, Tc);
cannam@167 170 Tt = VBYI(VSUB(Tr, Ts));
cannam@167 171 TJ = VADD(Tr, Ts);
cannam@167 172 TP = VADD(TI, TJ);
cannam@167 173 Tn = LDW(&(W[TWVL * 10]));
cannam@167 174 Tu = VZMUL(Tn, VSUB(Tq, Tt));
cannam@167 175 Tf = VADD(T5, Te);
cannam@167 176 Tl = VBYI(VADD(Tj, Tk));
cannam@167 177 T1 = LDW(&(W[TWVL * 12]));
cannam@167 178 Tm = VZMULI(T1, VSUB(Tf, Tl));
cannam@167 179 TN = LDW(&(W[0]));
cannam@167 180 TO = VZMULI(TN, VADD(Tl, Tf));
cannam@167 181 Tv = VADD(Tm, Tu);
cannam@167 182 ST(&(Rp[WS(rs, 3)]), Tv, ms, &(Rp[WS(rs, 1)]));
cannam@167 183 TR = VCONJ(VSUB(TP, TO));
cannam@167 184 ST(&(Rm[0]), TR, -ms, &(Rm[0]));
cannam@167 185 Tw = VCONJ(VSUB(Tu, Tm));
cannam@167 186 ST(&(Rm[WS(rs, 3)]), Tw, -ms, &(Rm[WS(rs, 1)]));
cannam@167 187 TQ = VADD(TO, TP);
cannam@167 188 ST(&(Rp[0]), TQ, ms, &(Rp[0]));
cannam@167 189 TB = LDW(&(W[TWVL * 2]));
cannam@167 190 TC = VZMUL(TB, VADD(Tq, Tt));
cannam@167 191 TH = LDW(&(W[TWVL * 6]));
cannam@167 192 TK = VZMUL(TH, VSUB(TI, TJ));
cannam@167 193 Ty = VBYI(VSUB(Tk, Tj));
cannam@167 194 Tz = VSUB(T5, Te);
cannam@167 195 Tx = LDW(&(W[TWVL * 4]));
cannam@167 196 TA = VZMULI(Tx, VADD(Ty, Tz));
cannam@167 197 TF = LDW(&(W[TWVL * 8]));
cannam@167 198 TG = VZMULI(TF, VSUB(Tz, Ty));
cannam@167 199 TD = VADD(TA, TC);
cannam@167 200 ST(&(Rp[WS(rs, 1)]), TD, ms, &(Rp[WS(rs, 1)]));
cannam@167 201 TM = VCONJ(VSUB(TK, TG));
cannam@167 202 ST(&(Rm[WS(rs, 2)]), TM, -ms, &(Rm[0]));
cannam@167 203 TE = VCONJ(VSUB(TC, TA));
cannam@167 204 ST(&(Rm[WS(rs, 1)]), TE, -ms, &(Rm[WS(rs, 1)]));
cannam@167 205 TL = VADD(TG, TK);
cannam@167 206 ST(&(Rp[WS(rs, 2)]), TL, ms, &(Rp[0]));
cannam@167 207 }
cannam@167 208 }
cannam@167 209 VLEAVE();
cannam@167 210 }
cannam@167 211
cannam@167 212 static const tw_instr twinstr[] = {
cannam@167 213 VTW(1, 1),
cannam@167 214 VTW(1, 2),
cannam@167 215 VTW(1, 3),
cannam@167 216 VTW(1, 4),
cannam@167 217 VTW(1, 5),
cannam@167 218 VTW(1, 6),
cannam@167 219 VTW(1, 7),
cannam@167 220 {TW_NEXT, VL, 0}
cannam@167 221 };
cannam@167 222
cannam@167 223 static const hc2c_desc desc = { 8, XSIMD_STRING("hc2cbdftv_8"), twinstr, &GENUS, {41, 16, 0, 0} };
cannam@167 224
cannam@167 225 void XSIMD(codelet_hc2cbdftv_8) (planner *p) {
cannam@167 226 X(khc2c_register) (p, hc2cbdftv_8, &desc, HC2C_VIA_DFT);
cannam@167 227 }
cannam@167 228 #endif