annotate src/fftw-3.3.8/rdft/simd/common/hc2cbdftv_6.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents bd3cc4d1df30
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * This program is free software; you can redistribute it and/or modify
cannam@167 6 * it under the terms of the GNU General Public License as published by
cannam@167 7 * the Free Software Foundation; either version 2 of the License, or
cannam@167 8 * (at your option) any later version.
cannam@167 9 *
cannam@167 10 * This program is distributed in the hope that it will be useful,
cannam@167 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 13 * GNU General Public License for more details.
cannam@167 14 *
cannam@167 15 * You should have received a copy of the GNU General Public License
cannam@167 16 * along with this program; if not, write to the Free Software
cannam@167 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 18 *
cannam@167 19 */
cannam@167 20
cannam@167 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@167 22 /* Generated on Thu May 24 08:08:11 EDT 2018 */
cannam@167 23
cannam@167 24 #include "rdft/codelet-rdft.h"
cannam@167 25
cannam@167 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
cannam@167 27
cannam@167 28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 6 -dif -sign 1 -name hc2cbdftv_6 -include rdft/simd/hc2cbv.h */
cannam@167 29
cannam@167 30 /*
cannam@167 31 * This function contains 29 FP additions, 24 FP multiplications,
cannam@167 32 * (or, 17 additions, 12 multiplications, 12 fused multiply/add),
cannam@167 33 * 38 stack variables, 2 constants, and 12 memory accesses
cannam@167 34 */
cannam@167 35 #include "rdft/simd/hc2cbv.h"
cannam@167 36
cannam@167 37 static void hc2cbdftv_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@167 38 {
cannam@167 39 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@167 40 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@167 41 {
cannam@167 42 INT m;
cannam@167 43 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 10)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(24, rs)) {
cannam@167 44 V T4, Te, Tj, Tp, Tb, To, Th, Ti, Ta, Tg, T7, Tf, T2, T3, T8;
cannam@167 45 V T9, T5, T6, Tx, Tw, Tv, Ty, Tz, Tq, Ts, Tn, Tr, Tt, Tu, Tc;
cannam@167 46 V Tk, T1, Td, Tl, Tm;
cannam@167 47 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
cannam@167 48 T3 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
cannam@167 49 T4 = VFNMSCONJ(T3, T2);
cannam@167 50 Te = VFMACONJ(T3, T2);
cannam@167 51 T8 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
cannam@167 52 T9 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
cannam@167 53 Ta = VFMSCONJ(T9, T8);
cannam@167 54 Tg = VFMACONJ(T9, T8);
cannam@167 55 T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
cannam@167 56 T6 = LD(&(Rm[0]), -ms, &(Rm[0]));
cannam@167 57 T7 = VFNMSCONJ(T6, T5);
cannam@167 58 Tf = VFMACONJ(T6, T5);
cannam@167 59 Tj = VMUL(LDK(KP866025403), VSUB(Tf, Tg));
cannam@167 60 Tp = VMUL(LDK(KP866025403), VSUB(T7, Ta));
cannam@167 61 Tb = VADD(T7, Ta);
cannam@167 62 To = VFNMS(LDK(KP500000000), Tb, T4);
cannam@167 63 Th = VADD(Tf, Tg);
cannam@167 64 Ti = VFNMS(LDK(KP500000000), Th, Te);
cannam@167 65 Tx = VADD(Te, Th);
cannam@167 66 Tv = LDW(&(W[0]));
cannam@167 67 Tw = VZMULI(Tv, VFMAI(Tp, To));
cannam@167 68 Ty = VADD(Tw, Tx);
cannam@167 69 ST(&(Rp[0]), Ty, ms, &(Rp[0]));
cannam@167 70 Tz = VCONJ(VSUB(Tx, Tw));
cannam@167 71 ST(&(Rm[0]), Tz, -ms, &(Rm[0]));
cannam@167 72 Tn = LDW(&(W[TWVL * 8]));
cannam@167 73 Tq = VZMULI(Tn, VFNMSI(Tp, To));
cannam@167 74 Tr = LDW(&(W[TWVL * 6]));
cannam@167 75 Ts = VZMUL(Tr, VFMAI(Tj, Ti));
cannam@167 76 Tt = VADD(Tq, Ts);
cannam@167 77 ST(&(Rp[WS(rs, 2)]), Tt, ms, &(Rp[0]));
cannam@167 78 Tu = VCONJ(VSUB(Ts, Tq));
cannam@167 79 ST(&(Rm[WS(rs, 2)]), Tu, -ms, &(Rm[0]));
cannam@167 80 T1 = LDW(&(W[TWVL * 4]));
cannam@167 81 Tc = VZMULI(T1, VADD(T4, Tb));
cannam@167 82 Td = LDW(&(W[TWVL * 2]));
cannam@167 83 Tk = VZMUL(Td, VFNMSI(Tj, Ti));
cannam@167 84 Tl = VADD(Tc, Tk);
cannam@167 85 ST(&(Rp[WS(rs, 1)]), Tl, ms, &(Rp[WS(rs, 1)]));
cannam@167 86 Tm = VCONJ(VSUB(Tk, Tc));
cannam@167 87 ST(&(Rm[WS(rs, 1)]), Tm, -ms, &(Rm[WS(rs, 1)]));
cannam@167 88 }
cannam@167 89 }
cannam@167 90 VLEAVE();
cannam@167 91 }
cannam@167 92
cannam@167 93 static const tw_instr twinstr[] = {
cannam@167 94 VTW(1, 1),
cannam@167 95 VTW(1, 2),
cannam@167 96 VTW(1, 3),
cannam@167 97 VTW(1, 4),
cannam@167 98 VTW(1, 5),
cannam@167 99 {TW_NEXT, VL, 0}
cannam@167 100 };
cannam@167 101
cannam@167 102 static const hc2c_desc desc = { 6, XSIMD_STRING("hc2cbdftv_6"), twinstr, &GENUS, {17, 12, 12, 0} };
cannam@167 103
cannam@167 104 void XSIMD(codelet_hc2cbdftv_6) (planner *p) {
cannam@167 105 X(khc2c_register) (p, hc2cbdftv_6, &desc, HC2C_VIA_DFT);
cannam@167 106 }
cannam@167 107 #else
cannam@167 108
cannam@167 109 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 6 -dif -sign 1 -name hc2cbdftv_6 -include rdft/simd/hc2cbv.h */
cannam@167 110
cannam@167 111 /*
cannam@167 112 * This function contains 29 FP additions, 14 FP multiplications,
cannam@167 113 * (or, 27 additions, 12 multiplications, 2 fused multiply/add),
cannam@167 114 * 41 stack variables, 2 constants, and 12 memory accesses
cannam@167 115 */
cannam@167 116 #include "rdft/simd/hc2cbv.h"
cannam@167 117
cannam@167 118 static void hc2cbdftv_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@167 119 {
cannam@167 120 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@167 121 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@167 122 {
cannam@167 123 INT m;
cannam@167 124 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 10)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(24, rs)) {
cannam@167 125 V T5, Th, Te, Ts, Tk, Tm, T2, T4, T3, T6, Tc, T8, Tb, T7, Ta;
cannam@167 126 V T9, Td, Ti, Tj, TA, Tf, Tn, Tv, Tt, Tz, T1, Tl, Tg, Tu, Tr;
cannam@167 127 V Tq, Ty, To, Tp, TC, TB, Tx, Tw;
cannam@167 128 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
cannam@167 129 T3 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
cannam@167 130 T4 = VCONJ(T3);
cannam@167 131 T5 = VSUB(T2, T4);
cannam@167 132 Th = VADD(T2, T4);
cannam@167 133 T6 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
cannam@167 134 Tc = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
cannam@167 135 T7 = LD(&(Rm[0]), -ms, &(Rm[0]));
cannam@167 136 T8 = VCONJ(T7);
cannam@167 137 Ta = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
cannam@167 138 Tb = VCONJ(Ta);
cannam@167 139 T9 = VSUB(T6, T8);
cannam@167 140 Td = VSUB(Tb, Tc);
cannam@167 141 Te = VADD(T9, Td);
cannam@167 142 Ts = VBYI(VMUL(LDK(KP866025403), VSUB(T9, Td)));
cannam@167 143 Ti = VADD(T6, T8);
cannam@167 144 Tj = VADD(Tb, Tc);
cannam@167 145 Tk = VADD(Ti, Tj);
cannam@167 146 Tm = VBYI(VMUL(LDK(KP866025403), VSUB(Ti, Tj)));
cannam@167 147 TA = VADD(Th, Tk);
cannam@167 148 T1 = LDW(&(W[TWVL * 4]));
cannam@167 149 Tf = VZMULI(T1, VADD(T5, Te));
cannam@167 150 Tl = VFNMS(LDK(KP500000000), Tk, Th);
cannam@167 151 Tg = LDW(&(W[TWVL * 2]));
cannam@167 152 Tn = VZMUL(Tg, VSUB(Tl, Tm));
cannam@167 153 Tu = LDW(&(W[TWVL * 6]));
cannam@167 154 Tv = VZMUL(Tu, VADD(Tm, Tl));
cannam@167 155 Tr = VFNMS(LDK(KP500000000), Te, T5);
cannam@167 156 Tq = LDW(&(W[TWVL * 8]));
cannam@167 157 Tt = VZMULI(Tq, VSUB(Tr, Ts));
cannam@167 158 Ty = LDW(&(W[0]));
cannam@167 159 Tz = VZMULI(Ty, VADD(Ts, Tr));
cannam@167 160 To = VADD(Tf, Tn);
cannam@167 161 ST(&(Rp[WS(rs, 1)]), To, ms, &(Rp[WS(rs, 1)]));
cannam@167 162 Tp = VCONJ(VSUB(Tn, Tf));
cannam@167 163 ST(&(Rm[WS(rs, 1)]), Tp, -ms, &(Rm[WS(rs, 1)]));
cannam@167 164 TC = VCONJ(VSUB(TA, Tz));
cannam@167 165 ST(&(Rm[0]), TC, -ms, &(Rm[0]));
cannam@167 166 TB = VADD(Tz, TA);
cannam@167 167 ST(&(Rp[0]), TB, ms, &(Rp[0]));
cannam@167 168 Tx = VCONJ(VSUB(Tv, Tt));
cannam@167 169 ST(&(Rm[WS(rs, 2)]), Tx, -ms, &(Rm[0]));
cannam@167 170 Tw = VADD(Tt, Tv);
cannam@167 171 ST(&(Rp[WS(rs, 2)]), Tw, ms, &(Rp[0]));
cannam@167 172 }
cannam@167 173 }
cannam@167 174 VLEAVE();
cannam@167 175 }
cannam@167 176
cannam@167 177 static const tw_instr twinstr[] = {
cannam@167 178 VTW(1, 1),
cannam@167 179 VTW(1, 2),
cannam@167 180 VTW(1, 3),
cannam@167 181 VTW(1, 4),
cannam@167 182 VTW(1, 5),
cannam@167 183 {TW_NEXT, VL, 0}
cannam@167 184 };
cannam@167 185
cannam@167 186 static const hc2c_desc desc = { 6, XSIMD_STRING("hc2cbdftv_6"), twinstr, &GENUS, {27, 12, 2, 0} };
cannam@167 187
cannam@167 188 void XSIMD(codelet_hc2cbdftv_6) (planner *p) {
cannam@167 189 X(khc2c_register) (p, hc2cbdftv_6, &desc, HC2C_VIA_DFT);
cannam@167 190 }
cannam@167 191 #endif