annotate src/fftw-3.3.8/rdft/simd/common/hc2cbdftv_4.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents bd3cc4d1df30
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * This program is free software; you can redistribute it and/or modify
cannam@167 6 * it under the terms of the GNU General Public License as published by
cannam@167 7 * the Free Software Foundation; either version 2 of the License, or
cannam@167 8 * (at your option) any later version.
cannam@167 9 *
cannam@167 10 * This program is distributed in the hope that it will be useful,
cannam@167 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 13 * GNU General Public License for more details.
cannam@167 14 *
cannam@167 15 * You should have received a copy of the GNU General Public License
cannam@167 16 * along with this program; if not, write to the Free Software
cannam@167 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 18 *
cannam@167 19 */
cannam@167 20
cannam@167 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@167 22 /* Generated on Thu May 24 08:08:11 EDT 2018 */
cannam@167 23
cannam@167 24 #include "rdft/codelet-rdft.h"
cannam@167 25
cannam@167 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
cannam@167 27
cannam@167 28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 4 -dif -sign 1 -name hc2cbdftv_4 -include rdft/simd/hc2cbv.h */
cannam@167 29
cannam@167 30 /*
cannam@167 31 * This function contains 15 FP additions, 12 FP multiplications,
cannam@167 32 * (or, 9 additions, 6 multiplications, 6 fused multiply/add),
cannam@167 33 * 20 stack variables, 0 constants, and 8 memory accesses
cannam@167 34 */
cannam@167 35 #include "rdft/simd/hc2cbv.h"
cannam@167 36
cannam@167 37 static void hc2cbdftv_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@167 38 {
cannam@167 39 {
cannam@167 40 INT m;
cannam@167 41 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 6)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(16, rs)) {
cannam@167 42 V Th, Tg, T8, Tc, T4, Ta, T7, Tb, T2, T3, T5, T6, Tf, T1, T9;
cannam@167 43 V Td, Tj, Te, Ti;
cannam@167 44 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
cannam@167 45 T3 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
cannam@167 46 T4 = VFNMSCONJ(T3, T2);
cannam@167 47 Ta = VFMACONJ(T3, T2);
cannam@167 48 T5 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
cannam@167 49 T6 = LD(&(Rm[0]), -ms, &(Rm[0]));
cannam@167 50 T7 = VFNMSCONJ(T6, T5);
cannam@167 51 Tb = VFMACONJ(T6, T5);
cannam@167 52 Th = VADD(Ta, Tb);
cannam@167 53 Tf = LDW(&(W[0]));
cannam@167 54 Tg = VZMULI(Tf, VFMAI(T7, T4));
cannam@167 55 T1 = LDW(&(W[TWVL * 4]));
cannam@167 56 T8 = VZMULI(T1, VFNMSI(T7, T4));
cannam@167 57 T9 = LDW(&(W[TWVL * 2]));
cannam@167 58 Tc = VZMUL(T9, VSUB(Ta, Tb));
cannam@167 59 Td = VADD(T8, Tc);
cannam@167 60 ST(&(Rp[WS(rs, 1)]), Td, ms, &(Rp[WS(rs, 1)]));
cannam@167 61 Tj = VCONJ(VSUB(Th, Tg));
cannam@167 62 ST(&(Rm[0]), Tj, -ms, &(Rm[0]));
cannam@167 63 Te = VCONJ(VSUB(Tc, T8));
cannam@167 64 ST(&(Rm[WS(rs, 1)]), Te, -ms, &(Rm[WS(rs, 1)]));
cannam@167 65 Ti = VADD(Tg, Th);
cannam@167 66 ST(&(Rp[0]), Ti, ms, &(Rp[0]));
cannam@167 67 }
cannam@167 68 }
cannam@167 69 VLEAVE();
cannam@167 70 }
cannam@167 71
cannam@167 72 static const tw_instr twinstr[] = {
cannam@167 73 VTW(1, 1),
cannam@167 74 VTW(1, 2),
cannam@167 75 VTW(1, 3),
cannam@167 76 {TW_NEXT, VL, 0}
cannam@167 77 };
cannam@167 78
cannam@167 79 static const hc2c_desc desc = { 4, XSIMD_STRING("hc2cbdftv_4"), twinstr, &GENUS, {9, 6, 6, 0} };
cannam@167 80
cannam@167 81 void XSIMD(codelet_hc2cbdftv_4) (planner *p) {
cannam@167 82 X(khc2c_register) (p, hc2cbdftv_4, &desc, HC2C_VIA_DFT);
cannam@167 83 }
cannam@167 84 #else
cannam@167 85
cannam@167 86 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 4 -dif -sign 1 -name hc2cbdftv_4 -include rdft/simd/hc2cbv.h */
cannam@167 87
cannam@167 88 /*
cannam@167 89 * This function contains 15 FP additions, 6 FP multiplications,
cannam@167 90 * (or, 15 additions, 6 multiplications, 0 fused multiply/add),
cannam@167 91 * 22 stack variables, 0 constants, and 8 memory accesses
cannam@167 92 */
cannam@167 93 #include "rdft/simd/hc2cbv.h"
cannam@167 94
cannam@167 95 static void hc2cbdftv_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@167 96 {
cannam@167 97 {
cannam@167 98 INT m;
cannam@167 99 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 6)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(16, rs)) {
cannam@167 100 V T5, Tc, T9, Td, T2, T4, T3, T6, T8, T7, Tj, Ti, Th, Tk, Tl;
cannam@167 101 V Ta, Te, T1, Tb, Tf, Tg;
cannam@167 102 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
cannam@167 103 T3 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
cannam@167 104 T4 = VCONJ(T3);
cannam@167 105 T5 = VSUB(T2, T4);
cannam@167 106 Tc = VADD(T2, T4);
cannam@167 107 T6 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
cannam@167 108 T7 = LD(&(Rm[0]), -ms, &(Rm[0]));
cannam@167 109 T8 = VCONJ(T7);
cannam@167 110 T9 = VBYI(VSUB(T6, T8));
cannam@167 111 Td = VADD(T6, T8);
cannam@167 112 Tj = VADD(Tc, Td);
cannam@167 113 Th = LDW(&(W[0]));
cannam@167 114 Ti = VZMULI(Th, VADD(T5, T9));
cannam@167 115 Tk = VADD(Ti, Tj);
cannam@167 116 ST(&(Rp[0]), Tk, ms, &(Rp[0]));
cannam@167 117 Tl = VCONJ(VSUB(Tj, Ti));
cannam@167 118 ST(&(Rm[0]), Tl, -ms, &(Rm[0]));
cannam@167 119 T1 = LDW(&(W[TWVL * 4]));
cannam@167 120 Ta = VZMULI(T1, VSUB(T5, T9));
cannam@167 121 Tb = LDW(&(W[TWVL * 2]));
cannam@167 122 Te = VZMUL(Tb, VSUB(Tc, Td));
cannam@167 123 Tf = VADD(Ta, Te);
cannam@167 124 ST(&(Rp[WS(rs, 1)]), Tf, ms, &(Rp[WS(rs, 1)]));
cannam@167 125 Tg = VCONJ(VSUB(Te, Ta));
cannam@167 126 ST(&(Rm[WS(rs, 1)]), Tg, -ms, &(Rm[WS(rs, 1)]));
cannam@167 127 }
cannam@167 128 }
cannam@167 129 VLEAVE();
cannam@167 130 }
cannam@167 131
cannam@167 132 static const tw_instr twinstr[] = {
cannam@167 133 VTW(1, 1),
cannam@167 134 VTW(1, 2),
cannam@167 135 VTW(1, 3),
cannam@167 136 {TW_NEXT, VL, 0}
cannam@167 137 };
cannam@167 138
cannam@167 139 static const hc2c_desc desc = { 4, XSIMD_STRING("hc2cbdftv_4"), twinstr, &GENUS, {15, 6, 0, 0} };
cannam@167 140
cannam@167 141 void XSIMD(codelet_hc2cbdftv_4) (planner *p) {
cannam@167 142 X(khc2c_register) (p, hc2cbdftv_4, &desc, HC2C_VIA_DFT);
cannam@167 143 }
cannam@167 144 #endif