annotate src/fftw-3.3.8/rdft/simd/common/hc2cbdftv_16.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents bd3cc4d1df30
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * This program is free software; you can redistribute it and/or modify
cannam@167 6 * it under the terms of the GNU General Public License as published by
cannam@167 7 * the Free Software Foundation; either version 2 of the License, or
cannam@167 8 * (at your option) any later version.
cannam@167 9 *
cannam@167 10 * This program is distributed in the hope that it will be useful,
cannam@167 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 13 * GNU General Public License for more details.
cannam@167 14 *
cannam@167 15 * You should have received a copy of the GNU General Public License
cannam@167 16 * along with this program; if not, write to the Free Software
cannam@167 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 18 *
cannam@167 19 */
cannam@167 20
cannam@167 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@167 22 /* Generated on Thu May 24 08:08:12 EDT 2018 */
cannam@167 23
cannam@167 24 #include "rdft/codelet-rdft.h"
cannam@167 25
cannam@167 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
cannam@167 27
cannam@167 28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 16 -dif -sign 1 -name hc2cbdftv_16 -include rdft/simd/hc2cbv.h */
cannam@167 29
cannam@167 30 /*
cannam@167 31 * This function contains 103 FP additions, 80 FP multiplications,
cannam@167 32 * (or, 53 additions, 30 multiplications, 50 fused multiply/add),
cannam@167 33 * 79 stack variables, 3 constants, and 32 memory accesses
cannam@167 34 */
cannam@167 35 #include "rdft/simd/hc2cbv.h"
cannam@167 36
cannam@167 37 static void hc2cbdftv_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@167 38 {
cannam@167 39 DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
cannam@167 40 DVK(KP414213562, +0.414213562373095048801688724209698078569671875);
cannam@167 41 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@167 42 {
cannam@167 43 INT m;
cannam@167 44 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 30)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 30), MAKE_VOLATILE_STRIDE(64, rs)) {
cannam@167 45 V T8, Tv, TE, T1t, TP, T1w, T10, T1p, Tn, Tw, T13, T1q, TL, T1x, TS;
cannam@167 46 V T1u;
cannam@167 47 {
cannam@167 48 V T4, TA, Tu, TC, T7, TN, Tr, TB, T2, T3, Ts, Tt, T5, T6, Tp;
cannam@167 49 V Tq, TD, TO, TY, TZ, Tb, TF, Tl, TJ, Te, TG, Ti, TI, T9, Ta;
cannam@167 50 V Tj, Tk, Tc, Td, Tg, Th, Tf, Tm, T11, T12, TH, TK, TQ, TR;
cannam@167 51 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
cannam@167 52 T3 = LD(&(Rm[WS(rs, 7)]), -ms, &(Rm[WS(rs, 1)]));
cannam@167 53 T4 = VFMACONJ(T3, T2);
cannam@167 54 TA = VFNMSCONJ(T3, T2);
cannam@167 55 Ts = LD(&(Rp[WS(rs, 6)]), ms, &(Rp[0]));
cannam@167 56 Tt = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
cannam@167 57 Tu = VFMACONJ(Tt, Ts);
cannam@167 58 TC = VFMSCONJ(Tt, Ts);
cannam@167 59 T5 = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
cannam@167 60 T6 = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
cannam@167 61 T7 = VFMACONJ(T6, T5);
cannam@167 62 TN = VFNMSCONJ(T6, T5);
cannam@167 63 Tp = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
cannam@167 64 Tq = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)]));
cannam@167 65 Tr = VFMACONJ(Tq, Tp);
cannam@167 66 TB = VFNMSCONJ(Tq, Tp);
cannam@167 67 T8 = VSUB(T4, T7);
cannam@167 68 Tv = VSUB(Tr, Tu);
cannam@167 69 TD = VADD(TB, TC);
cannam@167 70 TE = VFMA(LDK(KP707106781), TD, TA);
cannam@167 71 T1t = VFNMS(LDK(KP707106781), TD, TA);
cannam@167 72 TO = VSUB(TB, TC);
cannam@167 73 TP = VFMA(LDK(KP707106781), TO, TN);
cannam@167 74 T1w = VFNMS(LDK(KP707106781), TO, TN);
cannam@167 75 TY = VADD(T4, T7);
cannam@167 76 TZ = VADD(Tr, Tu);
cannam@167 77 T10 = VADD(TY, TZ);
cannam@167 78 T1p = VSUB(TY, TZ);
cannam@167 79 T9 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
cannam@167 80 Ta = LD(&(Rm[WS(rs, 6)]), -ms, &(Rm[0]));
cannam@167 81 Tb = VFMACONJ(Ta, T9);
cannam@167 82 TF = VFNMSCONJ(Ta, T9);
cannam@167 83 Tj = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
cannam@167 84 Tk = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
cannam@167 85 Tl = VFMACONJ(Tk, Tj);
cannam@167 86 TJ = VFNMSCONJ(Tk, Tj);
cannam@167 87 Tc = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)]));
cannam@167 88 Td = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
cannam@167 89 Te = VFMACONJ(Td, Tc);
cannam@167 90 TG = VFNMSCONJ(Td, Tc);
cannam@167 91 Tg = LD(&(Rp[WS(rs, 7)]), ms, &(Rp[WS(rs, 1)]));
cannam@167 92 Th = LD(&(Rm[0]), -ms, &(Rm[0]));
cannam@167 93 Ti = VFMACONJ(Th, Tg);
cannam@167 94 TI = VFMSCONJ(Th, Tg);
cannam@167 95 Tf = VSUB(Tb, Te);
cannam@167 96 Tm = VSUB(Ti, Tl);
cannam@167 97 Tn = VADD(Tf, Tm);
cannam@167 98 Tw = VSUB(Tf, Tm);
cannam@167 99 T11 = VADD(Tb, Te);
cannam@167 100 T12 = VADD(Ti, Tl);
cannam@167 101 T13 = VADD(T11, T12);
cannam@167 102 T1q = VSUB(T11, T12);
cannam@167 103 TH = VFNMS(LDK(KP414213562), TG, TF);
cannam@167 104 TK = VFMA(LDK(KP414213562), TJ, TI);
cannam@167 105 TL = VADD(TH, TK);
cannam@167 106 T1x = VSUB(TH, TK);
cannam@167 107 TQ = VFMA(LDK(KP414213562), TF, TG);
cannam@167 108 TR = VFNMS(LDK(KP414213562), TI, TJ);
cannam@167 109 TS = VADD(TQ, TR);
cannam@167 110 T1u = VSUB(TQ, TR);
cannam@167 111 }
cannam@167 112 {
cannam@167 113 V T1j, T1R, T1c, T1J, T1g, T1l, T1N, T1T, T1Q, T1a, T1b, T19, T1I, T1e, T1f;
cannam@167 114 V T1d, T1k, T1L, T1M, T1K, T1S, T1h, T1U, T1V, T1i, T1m, T1O, T1P, T1n, T14;
cannam@167 115 V T1r, Ty, T1D, TU, T16, T1z, T1F, TX, T1o, To, Tx, T1, T1C, TM, TT;
cannam@167 116 V Tz, T15, T1v, T1y, T1s, T1E, TV, T1G, T1H, TW, T17, T1A, T1B, T18;
cannam@167 117 T1j = VADD(T10, T13);
cannam@167 118 T1Q = LDW(&(W[TWVL * 22]));
cannam@167 119 T1R = VZMUL(T1Q, VFNMSI(T1q, T1p));
cannam@167 120 T1a = VFMA(LDK(KP707106781), Tn, T8);
cannam@167 121 T1b = VFMA(LDK(KP707106781), Tw, Tv);
cannam@167 122 T19 = LDW(&(W[TWVL * 26]));
cannam@167 123 T1c = VZMUL(T19, VFNMSI(T1b, T1a));
cannam@167 124 T1I = LDW(&(W[TWVL * 2]));
cannam@167 125 T1J = VZMUL(T1I, VFMAI(T1b, T1a));
cannam@167 126 T1e = VFMA(LDK(KP923879532), TL, TE);
cannam@167 127 T1f = VFMA(LDK(KP923879532), TS, TP);
cannam@167 128 T1d = LDW(&(W[TWVL * 28]));
cannam@167 129 T1g = VZMULI(T1d, VFNMSI(T1f, T1e));
cannam@167 130 T1k = LDW(&(W[0]));
cannam@167 131 T1l = VZMULI(T1k, VFMAI(T1f, T1e));
cannam@167 132 T1L = VFMA(LDK(KP923879532), T1u, T1t);
cannam@167 133 T1M = VFNMS(LDK(KP923879532), T1x, T1w);
cannam@167 134 T1K = LDW(&(W[TWVL * 4]));
cannam@167 135 T1N = VZMULI(T1K, VFNMSI(T1M, T1L));
cannam@167 136 T1S = LDW(&(W[TWVL * 24]));
cannam@167 137 T1T = VZMULI(T1S, VFMAI(T1M, T1L));
cannam@167 138 T1h = VCONJ(VSUB(T1c, T1g));
cannam@167 139 ST(&(Rm[WS(rs, 7)]), T1h, -ms, &(Rm[WS(rs, 1)]));
cannam@167 140 T1U = VCONJ(VSUB(T1R, T1T));
cannam@167 141 ST(&(Rm[WS(rs, 6)]), T1U, -ms, &(Rm[0]));
cannam@167 142 T1V = VADD(T1R, T1T);
cannam@167 143 ST(&(Rp[WS(rs, 6)]), T1V, ms, &(Rp[0]));
cannam@167 144 T1i = VADD(T1c, T1g);
cannam@167 145 ST(&(Rp[WS(rs, 7)]), T1i, ms, &(Rp[WS(rs, 1)]));
cannam@167 146 T1m = VCONJ(VSUB(T1j, T1l));
cannam@167 147 ST(&(Rm[0]), T1m, -ms, &(Rm[0]));
cannam@167 148 T1O = VCONJ(VSUB(T1J, T1N));
cannam@167 149 ST(&(Rm[WS(rs, 1)]), T1O, -ms, &(Rm[WS(rs, 1)]));
cannam@167 150 T1P = VADD(T1J, T1N);
cannam@167 151 ST(&(Rp[WS(rs, 1)]), T1P, ms, &(Rp[WS(rs, 1)]));
cannam@167 152 T1n = VADD(T1j, T1l);
cannam@167 153 ST(&(Rp[0]), T1n, ms, &(Rp[0]));
cannam@167 154 TX = LDW(&(W[TWVL * 14]));
cannam@167 155 T14 = VZMUL(TX, VSUB(T10, T13));
cannam@167 156 T1o = LDW(&(W[TWVL * 6]));
cannam@167 157 T1r = VZMUL(T1o, VFMAI(T1q, T1p));
cannam@167 158 To = VFNMS(LDK(KP707106781), Tn, T8);
cannam@167 159 Tx = VFNMS(LDK(KP707106781), Tw, Tv);
cannam@167 160 T1 = LDW(&(W[TWVL * 10]));
cannam@167 161 Ty = VZMUL(T1, VFNMSI(Tx, To));
cannam@167 162 T1C = LDW(&(W[TWVL * 18]));
cannam@167 163 T1D = VZMUL(T1C, VFMAI(Tx, To));
cannam@167 164 TM = VFNMS(LDK(KP923879532), TL, TE);
cannam@167 165 TT = VFNMS(LDK(KP923879532), TS, TP);
cannam@167 166 Tz = LDW(&(W[TWVL * 12]));
cannam@167 167 TU = VZMULI(Tz, VFNMSI(TT, TM));
cannam@167 168 T15 = LDW(&(W[TWVL * 16]));
cannam@167 169 T16 = VZMULI(T15, VFMAI(TT, TM));
cannam@167 170 T1v = VFNMS(LDK(KP923879532), T1u, T1t);
cannam@167 171 T1y = VFMA(LDK(KP923879532), T1x, T1w);
cannam@167 172 T1s = LDW(&(W[TWVL * 8]));
cannam@167 173 T1z = VZMULI(T1s, VFMAI(T1y, T1v));
cannam@167 174 T1E = LDW(&(W[TWVL * 20]));
cannam@167 175 T1F = VZMULI(T1E, VFNMSI(T1y, T1v));
cannam@167 176 TV = VCONJ(VSUB(Ty, TU));
cannam@167 177 ST(&(Rm[WS(rs, 3)]), TV, -ms, &(Rm[WS(rs, 1)]));
cannam@167 178 T1G = VCONJ(VSUB(T1D, T1F));
cannam@167 179 ST(&(Rm[WS(rs, 5)]), T1G, -ms, &(Rm[WS(rs, 1)]));
cannam@167 180 T1H = VADD(T1D, T1F);
cannam@167 181 ST(&(Rp[WS(rs, 5)]), T1H, ms, &(Rp[WS(rs, 1)]));
cannam@167 182 TW = VADD(Ty, TU);
cannam@167 183 ST(&(Rp[WS(rs, 3)]), TW, ms, &(Rp[WS(rs, 1)]));
cannam@167 184 T17 = VCONJ(VSUB(T14, T16));
cannam@167 185 ST(&(Rm[WS(rs, 4)]), T17, -ms, &(Rm[0]));
cannam@167 186 T1A = VCONJ(VSUB(T1r, T1z));
cannam@167 187 ST(&(Rm[WS(rs, 2)]), T1A, -ms, &(Rm[0]));
cannam@167 188 T1B = VADD(T1r, T1z);
cannam@167 189 ST(&(Rp[WS(rs, 2)]), T1B, ms, &(Rp[0]));
cannam@167 190 T18 = VADD(T14, T16);
cannam@167 191 ST(&(Rp[WS(rs, 4)]), T18, ms, &(Rp[0]));
cannam@167 192 }
cannam@167 193 }
cannam@167 194 }
cannam@167 195 VLEAVE();
cannam@167 196 }
cannam@167 197
cannam@167 198 static const tw_instr twinstr[] = {
cannam@167 199 VTW(1, 1),
cannam@167 200 VTW(1, 2),
cannam@167 201 VTW(1, 3),
cannam@167 202 VTW(1, 4),
cannam@167 203 VTW(1, 5),
cannam@167 204 VTW(1, 6),
cannam@167 205 VTW(1, 7),
cannam@167 206 VTW(1, 8),
cannam@167 207 VTW(1, 9),
cannam@167 208 VTW(1, 10),
cannam@167 209 VTW(1, 11),
cannam@167 210 VTW(1, 12),
cannam@167 211 VTW(1, 13),
cannam@167 212 VTW(1, 14),
cannam@167 213 VTW(1, 15),
cannam@167 214 {TW_NEXT, VL, 0}
cannam@167 215 };
cannam@167 216
cannam@167 217 static const hc2c_desc desc = { 16, XSIMD_STRING("hc2cbdftv_16"), twinstr, &GENUS, {53, 30, 50, 0} };
cannam@167 218
cannam@167 219 void XSIMD(codelet_hc2cbdftv_16) (planner *p) {
cannam@167 220 X(khc2c_register) (p, hc2cbdftv_16, &desc, HC2C_VIA_DFT);
cannam@167 221 }
cannam@167 222 #else
cannam@167 223
cannam@167 224 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 16 -dif -sign 1 -name hc2cbdftv_16 -include rdft/simd/hc2cbv.h */
cannam@167 225
cannam@167 226 /*
cannam@167 227 * This function contains 103 FP additions, 42 FP multiplications,
cannam@167 228 * (or, 99 additions, 38 multiplications, 4 fused multiply/add),
cannam@167 229 * 83 stack variables, 3 constants, and 32 memory accesses
cannam@167 230 */
cannam@167 231 #include "rdft/simd/hc2cbv.h"
cannam@167 232
cannam@167 233 static void hc2cbdftv_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@167 234 {
cannam@167 235 DVK(KP382683432, +0.382683432365089771728459984030398866761344562);
cannam@167 236 DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
cannam@167 237 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@167 238 {
cannam@167 239 INT m;
cannam@167 240 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 30)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 30), MAKE_VOLATILE_STRIDE(64, rs)) {
cannam@167 241 V Tf, T16, TZ, T1C, TI, T1a, TV, T1D, T1F, T1G, Ty, T19, TC, T17, TS;
cannam@167 242 V T10;
cannam@167 243 {
cannam@167 244 V T2, TD, T4, TF, Tc, Tb, Td, T6, T8, T9, T3, TE, Ta, T7, T5;
cannam@167 245 V Te, TX, TY, TG, TH, TT, TU, Tj, TM, Tw, TQ, Tn, TN, Ts, TP;
cannam@167 246 V Tg, Ti, Th, Tt, Tv, Tu, Tk, Tm, Tl, Tr, Tq, Tp, To, Tx, TA;
cannam@167 247 V TB, TO, TR;
cannam@167 248 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
cannam@167 249 TD = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
cannam@167 250 T3 = LD(&(Rm[WS(rs, 7)]), -ms, &(Rm[WS(rs, 1)]));
cannam@167 251 T4 = VCONJ(T3);
cannam@167 252 TE = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
cannam@167 253 TF = VCONJ(TE);
cannam@167 254 Tc = LD(&(Rp[WS(rs, 6)]), ms, &(Rp[0]));
cannam@167 255 Ta = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
cannam@167 256 Tb = VCONJ(Ta);
cannam@167 257 Td = VSUB(Tb, Tc);
cannam@167 258 T6 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
cannam@167 259 T7 = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)]));
cannam@167 260 T8 = VCONJ(T7);
cannam@167 261 T9 = VSUB(T6, T8);
cannam@167 262 T5 = VSUB(T2, T4);
cannam@167 263 Te = VMUL(LDK(KP707106781), VADD(T9, Td));
cannam@167 264 Tf = VADD(T5, Te);
cannam@167 265 T16 = VSUB(T5, Te);
cannam@167 266 TX = VADD(T2, T4);
cannam@167 267 TY = VADD(TD, TF);
cannam@167 268 TZ = VSUB(TX, TY);
cannam@167 269 T1C = VADD(TX, TY);
cannam@167 270 TG = VSUB(TD, TF);
cannam@167 271 TH = VMUL(LDK(KP707106781), VSUB(T9, Td));
cannam@167 272 TI = VADD(TG, TH);
cannam@167 273 T1a = VSUB(TH, TG);
cannam@167 274 TT = VADD(T6, T8);
cannam@167 275 TU = VADD(Tb, Tc);
cannam@167 276 TV = VSUB(TT, TU);
cannam@167 277 T1D = VADD(TT, TU);
cannam@167 278 Tg = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
cannam@167 279 Th = LD(&(Rm[WS(rs, 6)]), -ms, &(Rm[0]));
cannam@167 280 Ti = VCONJ(Th);
cannam@167 281 Tj = VSUB(Tg, Ti);
cannam@167 282 TM = VADD(Tg, Ti);
cannam@167 283 Tt = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
cannam@167 284 Tu = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
cannam@167 285 Tv = VCONJ(Tu);
cannam@167 286 Tw = VSUB(Tt, Tv);
cannam@167 287 TQ = VADD(Tt, Tv);
cannam@167 288 Tk = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)]));
cannam@167 289 Tl = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
cannam@167 290 Tm = VCONJ(Tl);
cannam@167 291 Tn = VSUB(Tk, Tm);
cannam@167 292 TN = VADD(Tk, Tm);
cannam@167 293 Tr = LD(&(Rp[WS(rs, 7)]), ms, &(Rp[WS(rs, 1)]));
cannam@167 294 Tp = LD(&(Rm[0]), -ms, &(Rm[0]));
cannam@167 295 Tq = VCONJ(Tp);
cannam@167 296 Ts = VSUB(Tq, Tr);
cannam@167 297 TP = VADD(Tq, Tr);
cannam@167 298 T1F = VADD(TM, TN);
cannam@167 299 T1G = VADD(TP, TQ);
cannam@167 300 To = VFNMS(LDK(KP382683432), Tn, VMUL(LDK(KP923879532), Tj));
cannam@167 301 Tx = VFMA(LDK(KP923879532), Ts, VMUL(LDK(KP382683432), Tw));
cannam@167 302 Ty = VADD(To, Tx);
cannam@167 303 T19 = VSUB(To, Tx);
cannam@167 304 TA = VFMA(LDK(KP382683432), Tj, VMUL(LDK(KP923879532), Tn));
cannam@167 305 TB = VFNMS(LDK(KP382683432), Ts, VMUL(LDK(KP923879532), Tw));
cannam@167 306 TC = VADD(TA, TB);
cannam@167 307 T17 = VSUB(TA, TB);
cannam@167 308 TO = VSUB(TM, TN);
cannam@167 309 TR = VSUB(TP, TQ);
cannam@167 310 TS = VMUL(LDK(KP707106781), VSUB(TO, TR));
cannam@167 311 T10 = VMUL(LDK(KP707106781), VADD(TO, TR));
cannam@167 312 }
cannam@167 313 {
cannam@167 314 V T21, T1W, T1u, T20, T1I, T1O, TK, T1S, T12, T1e, T1k, T1A, T1o, T1w, T1c;
cannam@167 315 V T1M, T1U, T1V, T1T, T1s, T1t, T1r, T1Z, T1E, T1H, T1B, T1N, Tz, TJ, T1;
cannam@167 316 V T1R, TW, T11, TL, T1d, T1i, T1j, T1h, T1z, T1m, T1n, T1l, T1v, T18, T1b;
cannam@167 317 V T15, T1L, T13, T1g, T1X, T23, T14, T1f, T1Y, T22, T1p, T1y, T1J, T1Q, T1q;
cannam@167 318 V T1x, T1K, T1P;
cannam@167 319 T1U = VADD(T1C, T1D);
cannam@167 320 T1V = VADD(T1F, T1G);
cannam@167 321 T21 = VADD(T1U, T1V);
cannam@167 322 T1T = LDW(&(W[TWVL * 14]));
cannam@167 323 T1W = VZMUL(T1T, VSUB(T1U, T1V));
cannam@167 324 T1s = VADD(Tf, Ty);
cannam@167 325 T1t = VBYI(VADD(TI, TC));
cannam@167 326 T1r = LDW(&(W[TWVL * 28]));
cannam@167 327 T1u = VZMULI(T1r, VSUB(T1s, T1t));
cannam@167 328 T1Z = LDW(&(W[0]));
cannam@167 329 T20 = VZMULI(T1Z, VADD(T1s, T1t));
cannam@167 330 T1E = VSUB(T1C, T1D);
cannam@167 331 T1H = VBYI(VSUB(T1F, T1G));
cannam@167 332 T1B = LDW(&(W[TWVL * 22]));
cannam@167 333 T1I = VZMUL(T1B, VSUB(T1E, T1H));
cannam@167 334 T1N = LDW(&(W[TWVL * 6]));
cannam@167 335 T1O = VZMUL(T1N, VADD(T1E, T1H));
cannam@167 336 Tz = VSUB(Tf, Ty);
cannam@167 337 TJ = VBYI(VSUB(TC, TI));
cannam@167 338 T1 = LDW(&(W[TWVL * 12]));
cannam@167 339 TK = VZMULI(T1, VADD(Tz, TJ));
cannam@167 340 T1R = LDW(&(W[TWVL * 16]));
cannam@167 341 T1S = VZMULI(T1R, VSUB(Tz, TJ));
cannam@167 342 TW = VBYI(VSUB(TS, TV));
cannam@167 343 T11 = VSUB(TZ, T10);
cannam@167 344 TL = LDW(&(W[TWVL * 10]));
cannam@167 345 T12 = VZMUL(TL, VADD(TW, T11));
cannam@167 346 T1d = LDW(&(W[TWVL * 18]));
cannam@167 347 T1e = VZMUL(T1d, VSUB(T11, TW));
cannam@167 348 T1i = VBYI(VADD(T1a, T19));
cannam@167 349 T1j = VADD(T16, T17);
cannam@167 350 T1h = LDW(&(W[TWVL * 4]));
cannam@167 351 T1k = VZMULI(T1h, VADD(T1i, T1j));
cannam@167 352 T1z = LDW(&(W[TWVL * 24]));
cannam@167 353 T1A = VZMULI(T1z, VSUB(T1j, T1i));
cannam@167 354 T1m = VBYI(VADD(TV, TS));
cannam@167 355 T1n = VADD(TZ, T10);
cannam@167 356 T1l = LDW(&(W[TWVL * 2]));
cannam@167 357 T1o = VZMUL(T1l, VADD(T1m, T1n));
cannam@167 358 T1v = LDW(&(W[TWVL * 26]));
cannam@167 359 T1w = VZMUL(T1v, VSUB(T1n, T1m));
cannam@167 360 T18 = VSUB(T16, T17);
cannam@167 361 T1b = VBYI(VSUB(T19, T1a));
cannam@167 362 T15 = LDW(&(W[TWVL * 20]));
cannam@167 363 T1c = VZMULI(T15, VSUB(T18, T1b));
cannam@167 364 T1L = LDW(&(W[TWVL * 8]));
cannam@167 365 T1M = VZMULI(T1L, VADD(T1b, T18));
cannam@167 366 T13 = VADD(TK, T12);
cannam@167 367 ST(&(Rp[WS(rs, 3)]), T13, ms, &(Rp[WS(rs, 1)]));
cannam@167 368 T1g = VCONJ(VSUB(T1e, T1c));
cannam@167 369 ST(&(Rm[WS(rs, 5)]), T1g, -ms, &(Rm[WS(rs, 1)]));
cannam@167 370 T1X = VADD(T1S, T1W);
cannam@167 371 ST(&(Rp[WS(rs, 4)]), T1X, ms, &(Rp[0]));
cannam@167 372 T23 = VCONJ(VSUB(T21, T20));
cannam@167 373 ST(&(Rm[0]), T23, -ms, &(Rm[0]));
cannam@167 374 T14 = VCONJ(VSUB(T12, TK));
cannam@167 375 ST(&(Rm[WS(rs, 3)]), T14, -ms, &(Rm[WS(rs, 1)]));
cannam@167 376 T1f = VADD(T1c, T1e);
cannam@167 377 ST(&(Rp[WS(rs, 5)]), T1f, ms, &(Rp[WS(rs, 1)]));
cannam@167 378 T1Y = VCONJ(VSUB(T1W, T1S));
cannam@167 379 ST(&(Rm[WS(rs, 4)]), T1Y, -ms, &(Rm[0]));
cannam@167 380 T22 = VADD(T20, T21);
cannam@167 381 ST(&(Rp[0]), T22, ms, &(Rp[0]));
cannam@167 382 T1p = VADD(T1k, T1o);
cannam@167 383 ST(&(Rp[WS(rs, 1)]), T1p, ms, &(Rp[WS(rs, 1)]));
cannam@167 384 T1y = VCONJ(VSUB(T1w, T1u));
cannam@167 385 ST(&(Rm[WS(rs, 7)]), T1y, -ms, &(Rm[WS(rs, 1)]));
cannam@167 386 T1J = VADD(T1A, T1I);
cannam@167 387 ST(&(Rp[WS(rs, 6)]), T1J, ms, &(Rp[0]));
cannam@167 388 T1Q = VCONJ(VSUB(T1O, T1M));
cannam@167 389 ST(&(Rm[WS(rs, 2)]), T1Q, -ms, &(Rm[0]));
cannam@167 390 T1q = VCONJ(VSUB(T1o, T1k));
cannam@167 391 ST(&(Rm[WS(rs, 1)]), T1q, -ms, &(Rm[WS(rs, 1)]));
cannam@167 392 T1x = VADD(T1u, T1w);
cannam@167 393 ST(&(Rp[WS(rs, 7)]), T1x, ms, &(Rp[WS(rs, 1)]));
cannam@167 394 T1K = VCONJ(VSUB(T1I, T1A));
cannam@167 395 ST(&(Rm[WS(rs, 6)]), T1K, -ms, &(Rm[0]));
cannam@167 396 T1P = VADD(T1M, T1O);
cannam@167 397 ST(&(Rp[WS(rs, 2)]), T1P, ms, &(Rp[0]));
cannam@167 398 }
cannam@167 399 }
cannam@167 400 }
cannam@167 401 VLEAVE();
cannam@167 402 }
cannam@167 403
cannam@167 404 static const tw_instr twinstr[] = {
cannam@167 405 VTW(1, 1),
cannam@167 406 VTW(1, 2),
cannam@167 407 VTW(1, 3),
cannam@167 408 VTW(1, 4),
cannam@167 409 VTW(1, 5),
cannam@167 410 VTW(1, 6),
cannam@167 411 VTW(1, 7),
cannam@167 412 VTW(1, 8),
cannam@167 413 VTW(1, 9),
cannam@167 414 VTW(1, 10),
cannam@167 415 VTW(1, 11),
cannam@167 416 VTW(1, 12),
cannam@167 417 VTW(1, 13),
cannam@167 418 VTW(1, 14),
cannam@167 419 VTW(1, 15),
cannam@167 420 {TW_NEXT, VL, 0}
cannam@167 421 };
cannam@167 422
cannam@167 423 static const hc2c_desc desc = { 16, XSIMD_STRING("hc2cbdftv_16"), twinstr, &GENUS, {99, 38, 4, 0} };
cannam@167 424
cannam@167 425 void XSIMD(codelet_hc2cbdftv_16) (planner *p) {
cannam@167 426 X(khc2c_register) (p, hc2cbdftv_16, &desc, HC2C_VIA_DFT);
cannam@167 427 }
cannam@167 428 #endif