annotate src/fftw-3.3.8/rdft/simd/common/hc2cbdftv_10.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents bd3cc4d1df30
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * This program is free software; you can redistribute it and/or modify
cannam@167 6 * it under the terms of the GNU General Public License as published by
cannam@167 7 * the Free Software Foundation; either version 2 of the License, or
cannam@167 8 * (at your option) any later version.
cannam@167 9 *
cannam@167 10 * This program is distributed in the hope that it will be useful,
cannam@167 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 13 * GNU General Public License for more details.
cannam@167 14 *
cannam@167 15 * You should have received a copy of the GNU General Public License
cannam@167 16 * along with this program; if not, write to the Free Software
cannam@167 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 18 *
cannam@167 19 */
cannam@167 20
cannam@167 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@167 22 /* Generated on Thu May 24 08:08:11 EDT 2018 */
cannam@167 23
cannam@167 24 #include "rdft/codelet-rdft.h"
cannam@167 25
cannam@167 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
cannam@167 27
cannam@167 28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 10 -dif -sign 1 -name hc2cbdftv_10 -include rdft/simd/hc2cbv.h */
cannam@167 29
cannam@167 30 /*
cannam@167 31 * This function contains 61 FP additions, 50 FP multiplications,
cannam@167 32 * (or, 33 additions, 22 multiplications, 28 fused multiply/add),
cannam@167 33 * 76 stack variables, 4 constants, and 20 memory accesses
cannam@167 34 */
cannam@167 35 #include "rdft/simd/hc2cbv.h"
cannam@167 36
cannam@167 37 static void hc2cbdftv_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@167 38 {
cannam@167 39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
cannam@167 40 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
cannam@167 41 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
cannam@167 42 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
cannam@167 43 {
cannam@167 44 INT m;
cannam@167 45 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 18)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(40, rs)) {
cannam@167 46 V T4, Ts, Tl, TB, Tj, Tk, Tz, TA, TF, TV, Tp, TL, Te, Tw, Th;
cannam@167 47 V Tx, Ti, Ty, T7, Tt, Ta, Tu, Tb, Tv, T2, T3, Tc, Td, Tf, Tg;
cannam@167 48 V T5, T6, T8, T9, TD, TE, Tn, To;
cannam@167 49 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
cannam@167 50 T3 = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
cannam@167 51 T4 = VFNMSCONJ(T3, T2);
cannam@167 52 Ts = VFMACONJ(T3, T2);
cannam@167 53 Tc = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
cannam@167 54 Td = LD(&(Rm[0]), -ms, &(Rm[0]));
cannam@167 55 Te = VFNMSCONJ(Td, Tc);
cannam@167 56 Tw = VFMACONJ(Td, Tc);
cannam@167 57 Tf = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
cannam@167 58 Tg = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
cannam@167 59 Th = VFMSCONJ(Tg, Tf);
cannam@167 60 Tx = VFMACONJ(Tg, Tf);
cannam@167 61 Ti = VADD(Te, Th);
cannam@167 62 Ty = VADD(Tw, Tx);
cannam@167 63 T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
cannam@167 64 T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
cannam@167 65 T7 = VFNMSCONJ(T6, T5);
cannam@167 66 Tt = VFMACONJ(T6, T5);
cannam@167 67 T8 = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
cannam@167 68 T9 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
cannam@167 69 Ta = VFMSCONJ(T9, T8);
cannam@167 70 Tu = VFMACONJ(T9, T8);
cannam@167 71 Tb = VADD(T7, Ta);
cannam@167 72 Tv = VADD(Tt, Tu);
cannam@167 73 Tl = VSUB(Tb, Ti);
cannam@167 74 TB = VSUB(Tv, Ty);
cannam@167 75 Tj = VADD(Tb, Ti);
cannam@167 76 Tk = VFNMS(LDK(KP250000000), Tj, T4);
cannam@167 77 Tz = VADD(Tv, Ty);
cannam@167 78 TA = VFNMS(LDK(KP250000000), Tz, Ts);
cannam@167 79 TD = VSUB(Tw, Tx);
cannam@167 80 TE = VSUB(Tt, Tu);
cannam@167 81 TF = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TE, TD));
cannam@167 82 TV = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TD, TE));
cannam@167 83 Tn = VSUB(Te, Th);
cannam@167 84 To = VSUB(T7, Ta);
cannam@167 85 Tp = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), To, Tn));
cannam@167 86 TL = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tn, To));
cannam@167 87 {
cannam@167 88 V T17, TS, Tq, T10, TW, T12, TM, T16, TG, TO, TR, Tm, T1, TZ, TU;
cannam@167 89 V TT, T11, TK, TJ, T15, TC, Tr, TN, TH, TP, T19, TI, T18, T14, TY;
cannam@167 90 V TQ, T13, TX;
cannam@167 91 T17 = VADD(Ts, Tz);
cannam@167 92 TR = LDW(&(W[TWVL * 8]));
cannam@167 93 TS = VZMULI(TR, VADD(T4, Tj));
cannam@167 94 Tm = VFNMS(LDK(KP559016994), Tl, Tk);
cannam@167 95 T1 = LDW(&(W[TWVL * 4]));
cannam@167 96 Tq = VZMULI(T1, VFMAI(Tp, Tm));
cannam@167 97 TZ = LDW(&(W[TWVL * 12]));
cannam@167 98 T10 = VZMULI(TZ, VFNMSI(Tp, Tm));
cannam@167 99 TU = VFMA(LDK(KP559016994), TB, TA);
cannam@167 100 TT = LDW(&(W[TWVL * 6]));
cannam@167 101 TW = VZMUL(TT, VFNMSI(TV, TU));
cannam@167 102 T11 = LDW(&(W[TWVL * 10]));
cannam@167 103 T12 = VZMUL(T11, VFMAI(TV, TU));
cannam@167 104 TK = VFMA(LDK(KP559016994), Tl, Tk);
cannam@167 105 TJ = LDW(&(W[TWVL * 16]));
cannam@167 106 TM = VZMULI(TJ, VFNMSI(TL, TK));
cannam@167 107 T15 = LDW(&(W[0]));
cannam@167 108 T16 = VZMULI(T15, VFMAI(TL, TK));
cannam@167 109 TC = VFNMS(LDK(KP559016994), TB, TA);
cannam@167 110 Tr = LDW(&(W[TWVL * 2]));
cannam@167 111 TG = VZMUL(Tr, VFNMSI(TF, TC));
cannam@167 112 TN = LDW(&(W[TWVL * 14]));
cannam@167 113 TO = VZMUL(TN, VFMAI(TF, TC));
cannam@167 114 TH = VADD(Tq, TG);
cannam@167 115 ST(&(Rp[WS(rs, 1)]), TH, ms, &(Rp[WS(rs, 1)]));
cannam@167 116 TP = VADD(TM, TO);
cannam@167 117 ST(&(Rp[WS(rs, 4)]), TP, ms, &(Rp[0]));
cannam@167 118 T19 = VCONJ(VSUB(T17, T16));
cannam@167 119 ST(&(Rm[0]), T19, -ms, &(Rm[0]));
cannam@167 120 TI = VCONJ(VSUB(TG, Tq));
cannam@167 121 ST(&(Rm[WS(rs, 1)]), TI, -ms, &(Rm[WS(rs, 1)]));
cannam@167 122 T18 = VADD(T16, T17);
cannam@167 123 ST(&(Rp[0]), T18, ms, &(Rp[0]));
cannam@167 124 T14 = VCONJ(VSUB(T12, T10));
cannam@167 125 ST(&(Rm[WS(rs, 3)]), T14, -ms, &(Rm[WS(rs, 1)]));
cannam@167 126 TY = VCONJ(VSUB(TW, TS));
cannam@167 127 ST(&(Rm[WS(rs, 2)]), TY, -ms, &(Rm[0]));
cannam@167 128 TQ = VCONJ(VSUB(TO, TM));
cannam@167 129 ST(&(Rm[WS(rs, 4)]), TQ, -ms, &(Rm[0]));
cannam@167 130 T13 = VADD(T10, T12);
cannam@167 131 ST(&(Rp[WS(rs, 3)]), T13, ms, &(Rp[WS(rs, 1)]));
cannam@167 132 TX = VADD(TS, TW);
cannam@167 133 ST(&(Rp[WS(rs, 2)]), TX, ms, &(Rp[0]));
cannam@167 134 }
cannam@167 135 }
cannam@167 136 }
cannam@167 137 VLEAVE();
cannam@167 138 }
cannam@167 139
cannam@167 140 static const tw_instr twinstr[] = {
cannam@167 141 VTW(1, 1),
cannam@167 142 VTW(1, 2),
cannam@167 143 VTW(1, 3),
cannam@167 144 VTW(1, 4),
cannam@167 145 VTW(1, 5),
cannam@167 146 VTW(1, 6),
cannam@167 147 VTW(1, 7),
cannam@167 148 VTW(1, 8),
cannam@167 149 VTW(1, 9),
cannam@167 150 {TW_NEXT, VL, 0}
cannam@167 151 };
cannam@167 152
cannam@167 153 static const hc2c_desc desc = { 10, XSIMD_STRING("hc2cbdftv_10"), twinstr, &GENUS, {33, 22, 28, 0} };
cannam@167 154
cannam@167 155 void XSIMD(codelet_hc2cbdftv_10) (planner *p) {
cannam@167 156 X(khc2c_register) (p, hc2cbdftv_10, &desc, HC2C_VIA_DFT);
cannam@167 157 }
cannam@167 158 #else
cannam@167 159
cannam@167 160 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 10 -dif -sign 1 -name hc2cbdftv_10 -include rdft/simd/hc2cbv.h */
cannam@167 161
cannam@167 162 /*
cannam@167 163 * This function contains 61 FP additions, 30 FP multiplications,
cannam@167 164 * (or, 55 additions, 24 multiplications, 6 fused multiply/add),
cannam@167 165 * 81 stack variables, 4 constants, and 20 memory accesses
cannam@167 166 */
cannam@167 167 #include "rdft/simd/hc2cbv.h"
cannam@167 168
cannam@167 169 static void hc2cbdftv_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@167 170 {
cannam@167 171 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
cannam@167 172 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
cannam@167 173 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
cannam@167 174 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
cannam@167 175 {
cannam@167 176 INT m;
cannam@167 177 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 18)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(40, rs)) {
cannam@167 178 V T5, TE, Ts, Tt, TC, Tz, TH, TJ, To, Tq, T2, T4, T3, T9, Tx;
cannam@167 179 V Tm, TB, Td, Ty, Ti, TA, T6, T8, T7, Tl, Tk, Tj, Tc, Tb, Ta;
cannam@167 180 V Tf, Th, Tg, TF, TG, Te, Tn;
cannam@167 181 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
cannam@167 182 T3 = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
cannam@167 183 T4 = VCONJ(T3);
cannam@167 184 T5 = VSUB(T2, T4);
cannam@167 185 TE = VADD(T2, T4);
cannam@167 186 T6 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
cannam@167 187 T7 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
cannam@167 188 T8 = VCONJ(T7);
cannam@167 189 T9 = VSUB(T6, T8);
cannam@167 190 Tx = VADD(T6, T8);
cannam@167 191 Tl = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
cannam@167 192 Tj = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
cannam@167 193 Tk = VCONJ(Tj);
cannam@167 194 Tm = VSUB(Tk, Tl);
cannam@167 195 TB = VADD(Tk, Tl);
cannam@167 196 Tc = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
cannam@167 197 Ta = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
cannam@167 198 Tb = VCONJ(Ta);
cannam@167 199 Td = VSUB(Tb, Tc);
cannam@167 200 Ty = VADD(Tb, Tc);
cannam@167 201 Tf = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
cannam@167 202 Tg = LD(&(Rm[0]), -ms, &(Rm[0]));
cannam@167 203 Th = VCONJ(Tg);
cannam@167 204 Ti = VSUB(Tf, Th);
cannam@167 205 TA = VADD(Tf, Th);
cannam@167 206 Ts = VSUB(T9, Td);
cannam@167 207 Tt = VSUB(Ti, Tm);
cannam@167 208 TC = VSUB(TA, TB);
cannam@167 209 Tz = VSUB(Tx, Ty);
cannam@167 210 TF = VADD(Tx, Ty);
cannam@167 211 TG = VADD(TA, TB);
cannam@167 212 TH = VADD(TF, TG);
cannam@167 213 TJ = VMUL(LDK(KP559016994), VSUB(TF, TG));
cannam@167 214 Te = VADD(T9, Td);
cannam@167 215 Tn = VADD(Ti, Tm);
cannam@167 216 To = VADD(Te, Tn);
cannam@167 217 Tq = VMUL(LDK(KP559016994), VSUB(Te, Tn));
cannam@167 218 {
cannam@167 219 V T1c, TX, Tv, T1b, TR, T15, TL, T17, TT, T11, TW, Tu, TQ, Tr, TP;
cannam@167 220 V Tp, T1, T1a, TO, T14, TD, T10, TK, TZ, TI, Tw, T16, TS, TY, TM;
cannam@167 221 V TU, T1e, TN, T1d, T19, T13, TV, T18, T12;
cannam@167 222 T1c = VADD(TE, TH);
cannam@167 223 TW = LDW(&(W[TWVL * 8]));
cannam@167 224 TX = VZMULI(TW, VADD(T5, To));
cannam@167 225 Tu = VBYI(VFNMS(LDK(KP951056516), Tt, VMUL(LDK(KP587785252), Ts)));
cannam@167 226 TQ = VBYI(VFMA(LDK(KP951056516), Ts, VMUL(LDK(KP587785252), Tt)));
cannam@167 227 Tp = VFNMS(LDK(KP250000000), To, T5);
cannam@167 228 Tr = VSUB(Tp, Tq);
cannam@167 229 TP = VADD(Tq, Tp);
cannam@167 230 T1 = LDW(&(W[TWVL * 4]));
cannam@167 231 Tv = VZMULI(T1, VSUB(Tr, Tu));
cannam@167 232 T1a = LDW(&(W[0]));
cannam@167 233 T1b = VZMULI(T1a, VADD(TQ, TP));
cannam@167 234 TO = LDW(&(W[TWVL * 16]));
cannam@167 235 TR = VZMULI(TO, VSUB(TP, TQ));
cannam@167 236 T14 = LDW(&(W[TWVL * 12]));
cannam@167 237 T15 = VZMULI(T14, VADD(Tu, Tr));
cannam@167 238 TD = VBYI(VFNMS(LDK(KP951056516), TC, VMUL(LDK(KP587785252), Tz)));
cannam@167 239 T10 = VBYI(VFMA(LDK(KP951056516), Tz, VMUL(LDK(KP587785252), TC)));
cannam@167 240 TI = VFNMS(LDK(KP250000000), TH, TE);
cannam@167 241 TK = VSUB(TI, TJ);
cannam@167 242 TZ = VADD(TJ, TI);
cannam@167 243 Tw = LDW(&(W[TWVL * 2]));
cannam@167 244 TL = VZMUL(Tw, VADD(TD, TK));
cannam@167 245 T16 = LDW(&(W[TWVL * 10]));
cannam@167 246 T17 = VZMUL(T16, VADD(T10, TZ));
cannam@167 247 TS = LDW(&(W[TWVL * 14]));
cannam@167 248 TT = VZMUL(TS, VSUB(TK, TD));
cannam@167 249 TY = LDW(&(W[TWVL * 6]));
cannam@167 250 T11 = VZMUL(TY, VSUB(TZ, T10));
cannam@167 251 TM = VADD(Tv, TL);
cannam@167 252 ST(&(Rp[WS(rs, 1)]), TM, ms, &(Rp[WS(rs, 1)]));
cannam@167 253 TU = VADD(TR, TT);
cannam@167 254 ST(&(Rp[WS(rs, 4)]), TU, ms, &(Rp[0]));
cannam@167 255 T1e = VCONJ(VSUB(T1c, T1b));
cannam@167 256 ST(&(Rm[0]), T1e, -ms, &(Rm[0]));
cannam@167 257 TN = VCONJ(VSUB(TL, Tv));
cannam@167 258 ST(&(Rm[WS(rs, 1)]), TN, -ms, &(Rm[WS(rs, 1)]));
cannam@167 259 T1d = VADD(T1b, T1c);
cannam@167 260 ST(&(Rp[0]), T1d, ms, &(Rp[0]));
cannam@167 261 T19 = VCONJ(VSUB(T17, T15));
cannam@167 262 ST(&(Rm[WS(rs, 3)]), T19, -ms, &(Rm[WS(rs, 1)]));
cannam@167 263 T13 = VCONJ(VSUB(T11, TX));
cannam@167 264 ST(&(Rm[WS(rs, 2)]), T13, -ms, &(Rm[0]));
cannam@167 265 TV = VCONJ(VSUB(TT, TR));
cannam@167 266 ST(&(Rm[WS(rs, 4)]), TV, -ms, &(Rm[0]));
cannam@167 267 T18 = VADD(T15, T17);
cannam@167 268 ST(&(Rp[WS(rs, 3)]), T18, ms, &(Rp[WS(rs, 1)]));
cannam@167 269 T12 = VADD(TX, T11);
cannam@167 270 ST(&(Rp[WS(rs, 2)]), T12, ms, &(Rp[0]));
cannam@167 271 }
cannam@167 272 }
cannam@167 273 }
cannam@167 274 VLEAVE();
cannam@167 275 }
cannam@167 276
cannam@167 277 static const tw_instr twinstr[] = {
cannam@167 278 VTW(1, 1),
cannam@167 279 VTW(1, 2),
cannam@167 280 VTW(1, 3),
cannam@167 281 VTW(1, 4),
cannam@167 282 VTW(1, 5),
cannam@167 283 VTW(1, 6),
cannam@167 284 VTW(1, 7),
cannam@167 285 VTW(1, 8),
cannam@167 286 VTW(1, 9),
cannam@167 287 {TW_NEXT, VL, 0}
cannam@167 288 };
cannam@167 289
cannam@167 290 static const hc2c_desc desc = { 10, XSIMD_STRING("hc2cbdftv_10"), twinstr, &GENUS, {55, 24, 6, 0} };
cannam@167 291
cannam@167 292 void XSIMD(codelet_hc2cbdftv_10) (planner *p) {
cannam@167 293 X(khc2c_register) (p, hc2cbdftv_10, &desc, HC2C_VIA_DFT);
cannam@167 294 }
cannam@167 295 #endif