annotate src/fftw-3.3.8/rdft/scalar/r2cb/r2cb_10.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents bd3cc4d1df30
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * This program is free software; you can redistribute it and/or modify
cannam@167 6 * it under the terms of the GNU General Public License as published by
cannam@167 7 * the Free Software Foundation; either version 2 of the License, or
cannam@167 8 * (at your option) any later version.
cannam@167 9 *
cannam@167 10 * This program is distributed in the hope that it will be useful,
cannam@167 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 13 * GNU General Public License for more details.
cannam@167 14 *
cannam@167 15 * You should have received a copy of the GNU General Public License
cannam@167 16 * along with this program; if not, write to the Free Software
cannam@167 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 18 *
cannam@167 19 */
cannam@167 20
cannam@167 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@167 22 /* Generated on Thu May 24 08:07:28 EDT 2018 */
cannam@167 23
cannam@167 24 #include "rdft/codelet-rdft.h"
cannam@167 25
cannam@167 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
cannam@167 27
cannam@167 28 /* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cb_10 -include rdft/scalar/r2cb.h */
cannam@167 29
cannam@167 30 /*
cannam@167 31 * This function contains 34 FP additions, 20 FP multiplications,
cannam@167 32 * (or, 14 additions, 0 multiplications, 20 fused multiply/add),
cannam@167 33 * 26 stack variables, 5 constants, and 20 memory accesses
cannam@167 34 */
cannam@167 35 #include "rdft/scalar/r2cb.h"
cannam@167 36
cannam@167 37 static void r2cb_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
cannam@167 38 {
cannam@167 39 DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
cannam@167 40 DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
cannam@167 41 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@167 42 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
cannam@167 43 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
cannam@167 44 {
cannam@167 45 INT i;
cannam@167 46 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) {
cannam@167 47 E T3, Tb, Tn, Tu, Tk, Tv, Ta, Ts, Te, Tg, Ti, Tj;
cannam@167 48 {
cannam@167 49 E T1, T2, Tl, Tm;
cannam@167 50 T1 = Cr[0];
cannam@167 51 T2 = Cr[WS(csr, 5)];
cannam@167 52 T3 = T1 - T2;
cannam@167 53 Tb = T1 + T2;
cannam@167 54 Tl = Ci[WS(csi, 2)];
cannam@167 55 Tm = Ci[WS(csi, 3)];
cannam@167 56 Tn = Tl - Tm;
cannam@167 57 Tu = Tl + Tm;
cannam@167 58 }
cannam@167 59 Ti = Ci[WS(csi, 4)];
cannam@167 60 Tj = Ci[WS(csi, 1)];
cannam@167 61 Tk = Ti - Tj;
cannam@167 62 Tv = Ti + Tj;
cannam@167 63 {
cannam@167 64 E T6, Tc, T9, Td;
cannam@167 65 {
cannam@167 66 E T4, T5, T7, T8;
cannam@167 67 T4 = Cr[WS(csr, 2)];
cannam@167 68 T5 = Cr[WS(csr, 3)];
cannam@167 69 T6 = T4 - T5;
cannam@167 70 Tc = T4 + T5;
cannam@167 71 T7 = Cr[WS(csr, 4)];
cannam@167 72 T8 = Cr[WS(csr, 1)];
cannam@167 73 T9 = T7 - T8;
cannam@167 74 Td = T7 + T8;
cannam@167 75 }
cannam@167 76 Ta = T6 + T9;
cannam@167 77 Ts = T6 - T9;
cannam@167 78 Te = Tc + Td;
cannam@167 79 Tg = Tc - Td;
cannam@167 80 }
cannam@167 81 R1[WS(rs, 2)] = FMA(KP2_000000000, Ta, T3);
cannam@167 82 R0[0] = FMA(KP2_000000000, Te, Tb);
cannam@167 83 {
cannam@167 84 E To, Tq, Th, Tp, Tf;
cannam@167 85 To = FNMS(KP618033988, Tn, Tk);
cannam@167 86 Tq = FMA(KP618033988, Tk, Tn);
cannam@167 87 Tf = FNMS(KP500000000, Te, Tb);
cannam@167 88 Th = FNMS(KP1_118033988, Tg, Tf);
cannam@167 89 Tp = FMA(KP1_118033988, Tg, Tf);
cannam@167 90 R0[WS(rs, 4)] = FNMS(KP1_902113032, To, Th);
cannam@167 91 R0[WS(rs, 2)] = FMA(KP1_902113032, Tq, Tp);
cannam@167 92 R0[WS(rs, 1)] = FMA(KP1_902113032, To, Th);
cannam@167 93 R0[WS(rs, 3)] = FNMS(KP1_902113032, Tq, Tp);
cannam@167 94 }
cannam@167 95 {
cannam@167 96 E Tw, Ty, Tt, Tx, Tr;
cannam@167 97 Tw = FMA(KP618033988, Tv, Tu);
cannam@167 98 Ty = FNMS(KP618033988, Tu, Tv);
cannam@167 99 Tr = FNMS(KP500000000, Ta, T3);
cannam@167 100 Tt = FMA(KP1_118033988, Ts, Tr);
cannam@167 101 Tx = FNMS(KP1_118033988, Ts, Tr);
cannam@167 102 R1[0] = FNMS(KP1_902113032, Tw, Tt);
cannam@167 103 R1[WS(rs, 3)] = FMA(KP1_902113032, Ty, Tx);
cannam@167 104 R1[WS(rs, 4)] = FMA(KP1_902113032, Tw, Tt);
cannam@167 105 R1[WS(rs, 1)] = FNMS(KP1_902113032, Ty, Tx);
cannam@167 106 }
cannam@167 107 }
cannam@167 108 }
cannam@167 109 }
cannam@167 110
cannam@167 111 static const kr2c_desc desc = { 10, "r2cb_10", {14, 0, 20, 0}, &GENUS };
cannam@167 112
cannam@167 113 void X(codelet_r2cb_10) (planner *p) {
cannam@167 114 X(kr2c_register) (p, r2cb_10, &desc);
cannam@167 115 }
cannam@167 116
cannam@167 117 #else
cannam@167 118
cannam@167 119 /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cb_10 -include rdft/scalar/r2cb.h */
cannam@167 120
cannam@167 121 /*
cannam@167 122 * This function contains 34 FP additions, 14 FP multiplications,
cannam@167 123 * (or, 26 additions, 6 multiplications, 8 fused multiply/add),
cannam@167 124 * 26 stack variables, 5 constants, and 20 memory accesses
cannam@167 125 */
cannam@167 126 #include "rdft/scalar/r2cb.h"
cannam@167 127
cannam@167 128 static void r2cb_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
cannam@167 129 {
cannam@167 130 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@167 131 DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
cannam@167 132 DK(KP1_175570504, +1.175570504584946258337411909278145537195304875);
cannam@167 133 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
cannam@167 134 DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
cannam@167 135 {
cannam@167 136 INT i;
cannam@167 137 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) {
cannam@167 138 E T3, Tb, Tn, Tv, Tk, Tu, Ta, Ts, Te, Tg, Ti, Tj;
cannam@167 139 {
cannam@167 140 E T1, T2, Tl, Tm;
cannam@167 141 T1 = Cr[0];
cannam@167 142 T2 = Cr[WS(csr, 5)];
cannam@167 143 T3 = T1 - T2;
cannam@167 144 Tb = T1 + T2;
cannam@167 145 Tl = Ci[WS(csi, 4)];
cannam@167 146 Tm = Ci[WS(csi, 1)];
cannam@167 147 Tn = Tl - Tm;
cannam@167 148 Tv = Tl + Tm;
cannam@167 149 }
cannam@167 150 Ti = Ci[WS(csi, 2)];
cannam@167 151 Tj = Ci[WS(csi, 3)];
cannam@167 152 Tk = Ti - Tj;
cannam@167 153 Tu = Ti + Tj;
cannam@167 154 {
cannam@167 155 E T6, Tc, T9, Td;
cannam@167 156 {
cannam@167 157 E T4, T5, T7, T8;
cannam@167 158 T4 = Cr[WS(csr, 2)];
cannam@167 159 T5 = Cr[WS(csr, 3)];
cannam@167 160 T6 = T4 - T5;
cannam@167 161 Tc = T4 + T5;
cannam@167 162 T7 = Cr[WS(csr, 4)];
cannam@167 163 T8 = Cr[WS(csr, 1)];
cannam@167 164 T9 = T7 - T8;
cannam@167 165 Td = T7 + T8;
cannam@167 166 }
cannam@167 167 Ta = T6 + T9;
cannam@167 168 Ts = KP1_118033988 * (T6 - T9);
cannam@167 169 Te = Tc + Td;
cannam@167 170 Tg = KP1_118033988 * (Tc - Td);
cannam@167 171 }
cannam@167 172 R1[WS(rs, 2)] = FMA(KP2_000000000, Ta, T3);
cannam@167 173 R0[0] = FMA(KP2_000000000, Te, Tb);
cannam@167 174 {
cannam@167 175 E To, Tq, Th, Tp, Tf;
cannam@167 176 To = FNMS(KP1_902113032, Tn, KP1_175570504 * Tk);
cannam@167 177 Tq = FMA(KP1_902113032, Tk, KP1_175570504 * Tn);
cannam@167 178 Tf = FNMS(KP500000000, Te, Tb);
cannam@167 179 Th = Tf - Tg;
cannam@167 180 Tp = Tg + Tf;
cannam@167 181 R0[WS(rs, 1)] = Th - To;
cannam@167 182 R0[WS(rs, 2)] = Tp + Tq;
cannam@167 183 R0[WS(rs, 4)] = Th + To;
cannam@167 184 R0[WS(rs, 3)] = Tp - Tq;
cannam@167 185 }
cannam@167 186 {
cannam@167 187 E Tw, Ty, Tt, Tx, Tr;
cannam@167 188 Tw = FNMS(KP1_902113032, Tv, KP1_175570504 * Tu);
cannam@167 189 Ty = FMA(KP1_902113032, Tu, KP1_175570504 * Tv);
cannam@167 190 Tr = FNMS(KP500000000, Ta, T3);
cannam@167 191 Tt = Tr - Ts;
cannam@167 192 Tx = Ts + Tr;
cannam@167 193 R1[WS(rs, 3)] = Tt - Tw;
cannam@167 194 R1[WS(rs, 4)] = Tx + Ty;
cannam@167 195 R1[WS(rs, 1)] = Tt + Tw;
cannam@167 196 R1[0] = Tx - Ty;
cannam@167 197 }
cannam@167 198 }
cannam@167 199 }
cannam@167 200 }
cannam@167 201
cannam@167 202 static const kr2c_desc desc = { 10, "r2cb_10", {26, 6, 8, 0}, &GENUS };
cannam@167 203
cannam@167 204 void X(codelet_r2cb_10) (planner *p) {
cannam@167 205 X(kr2c_register) (p, r2cb_10, &desc);
cannam@167 206 }
cannam@167 207
cannam@167 208 #endif