annotate src/fftw-3.3.8/rdft/direct-r2r.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents bd3cc4d1df30
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * This program is free software; you can redistribute it and/or modify
cannam@167 6 * it under the terms of the GNU General Public License as published by
cannam@167 7 * the Free Software Foundation; either version 2 of the License, or
cannam@167 8 * (at your option) any later version.
cannam@167 9 *
cannam@167 10 * This program is distributed in the hope that it will be useful,
cannam@167 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 13 * GNU General Public License for more details.
cannam@167 14 *
cannam@167 15 * You should have received a copy of the GNU General Public License
cannam@167 16 * along with this program; if not, write to the Free Software
cannam@167 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 18 *
cannam@167 19 */
cannam@167 20
cannam@167 21
cannam@167 22 /* direct RDFT solver, using r2r codelets */
cannam@167 23
cannam@167 24 #include "rdft/rdft.h"
cannam@167 25
cannam@167 26 typedef struct {
cannam@167 27 solver super;
cannam@167 28 const kr2r_desc *desc;
cannam@167 29 kr2r k;
cannam@167 30 } S;
cannam@167 31
cannam@167 32 typedef struct {
cannam@167 33 plan_rdft super;
cannam@167 34
cannam@167 35 INT vl, ivs, ovs;
cannam@167 36 stride is, os;
cannam@167 37 kr2r k;
cannam@167 38 const S *slv;
cannam@167 39 } P;
cannam@167 40
cannam@167 41 static void apply(const plan *ego_, R *I, R *O)
cannam@167 42 {
cannam@167 43 const P *ego = (const P *) ego_;
cannam@167 44 ASSERT_ALIGNED_DOUBLE;
cannam@167 45 ego->k(I, O, ego->is, ego->os, ego->vl, ego->ivs, ego->ovs);
cannam@167 46 }
cannam@167 47
cannam@167 48 static void destroy(plan *ego_)
cannam@167 49 {
cannam@167 50 P *ego = (P *) ego_;
cannam@167 51 X(stride_destroy)(ego->is);
cannam@167 52 X(stride_destroy)(ego->os);
cannam@167 53 }
cannam@167 54
cannam@167 55 static void print(const plan *ego_, printer *p)
cannam@167 56 {
cannam@167 57 const P *ego = (const P *) ego_;
cannam@167 58 const S *s = ego->slv;
cannam@167 59
cannam@167 60 p->print(p, "(rdft-%s-direct-r2r-%D%v \"%s\")",
cannam@167 61 X(rdft_kind_str)(s->desc->kind), s->desc->n,
cannam@167 62 ego->vl, s->desc->nam);
cannam@167 63 }
cannam@167 64
cannam@167 65 static int applicable(const solver *ego_, const problem *p_)
cannam@167 66 {
cannam@167 67 const S *ego = (const S *) ego_;
cannam@167 68 const problem_rdft *p = (const problem_rdft *) p_;
cannam@167 69 INT vl;
cannam@167 70 INT ivs, ovs;
cannam@167 71
cannam@167 72 return (
cannam@167 73 1
cannam@167 74 && p->sz->rnk == 1
cannam@167 75 && p->vecsz->rnk <= 1
cannam@167 76 && p->sz->dims[0].n == ego->desc->n
cannam@167 77 && p->kind[0] == ego->desc->kind
cannam@167 78
cannam@167 79 /* check strides etc */
cannam@167 80 && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs)
cannam@167 81
cannam@167 82 && (0
cannam@167 83 /* can operate out-of-place */
cannam@167 84 || p->I != p->O
cannam@167 85
cannam@167 86 /* computing one transform */
cannam@167 87 || vl == 1
cannam@167 88
cannam@167 89 /* can operate in-place as long as strides are the same */
cannam@167 90 || X(tensor_inplace_strides2)(p->sz, p->vecsz)
cannam@167 91 )
cannam@167 92 );
cannam@167 93 }
cannam@167 94
cannam@167 95 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
cannam@167 96 {
cannam@167 97 const S *ego = (const S *) ego_;
cannam@167 98 P *pln;
cannam@167 99 const problem_rdft *p;
cannam@167 100 iodim *d;
cannam@167 101
cannam@167 102 static const plan_adt padt = {
cannam@167 103 X(rdft_solve), X(null_awake), print, destroy
cannam@167 104 };
cannam@167 105
cannam@167 106 UNUSED(plnr);
cannam@167 107
cannam@167 108 if (!applicable(ego_, p_))
cannam@167 109 return (plan *)0;
cannam@167 110
cannam@167 111 p = (const problem_rdft *) p_;
cannam@167 112
cannam@167 113
cannam@167 114 pln = MKPLAN_RDFT(P, &padt, apply);
cannam@167 115
cannam@167 116 d = p->sz->dims;
cannam@167 117
cannam@167 118 pln->k = ego->k;
cannam@167 119
cannam@167 120 pln->is = X(mkstride)(d->n, d->is);
cannam@167 121 pln->os = X(mkstride)(d->n, d->os);
cannam@167 122
cannam@167 123 X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
cannam@167 124
cannam@167 125 pln->slv = ego;
cannam@167 126 X(ops_zero)(&pln->super.super.ops);
cannam@167 127 X(ops_madd2)(pln->vl / ego->desc->genus->vl,
cannam@167 128 &ego->desc->ops,
cannam@167 129 &pln->super.super.ops);
cannam@167 130
cannam@167 131 pln->super.super.could_prune_now_p = 1;
cannam@167 132
cannam@167 133 return &(pln->super.super);
cannam@167 134 }
cannam@167 135
cannam@167 136 /* constructor */
cannam@167 137 solver *X(mksolver_rdft_r2r_direct)(kr2r k, const kr2r_desc *desc)
cannam@167 138 {
cannam@167 139 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
cannam@167 140 S *slv = MKSOLVER(S, &sadt);
cannam@167 141 slv->k = k;
cannam@167 142 slv->desc = desc;
cannam@167 143 return &(slv->super);
cannam@167 144 }
cannam@167 145