annotate src/fftw-3.3.8/rdft/direct-r2c.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents bd3cc4d1df30
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * This program is free software; you can redistribute it and/or modify
cannam@167 6 * it under the terms of the GNU General Public License as published by
cannam@167 7 * the Free Software Foundation; either version 2 of the License, or
cannam@167 8 * (at your option) any later version.
cannam@167 9 *
cannam@167 10 * This program is distributed in the hope that it will be useful,
cannam@167 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 13 * GNU General Public License for more details.
cannam@167 14 *
cannam@167 15 * You should have received a copy of the GNU General Public License
cannam@167 16 * along with this program; if not, write to the Free Software
cannam@167 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 18 *
cannam@167 19 */
cannam@167 20
cannam@167 21
cannam@167 22 /* direct RDFT solver, using r2c codelets */
cannam@167 23
cannam@167 24 #include "rdft/rdft.h"
cannam@167 25
cannam@167 26 typedef struct {
cannam@167 27 solver super;
cannam@167 28 const kr2c_desc *desc;
cannam@167 29 kr2c k;
cannam@167 30 int bufferedp;
cannam@167 31 } S;
cannam@167 32
cannam@167 33 typedef struct {
cannam@167 34 plan_rdft super;
cannam@167 35
cannam@167 36 stride rs, csr, csi;
cannam@167 37 stride brs, bcsr, bcsi;
cannam@167 38 INT n, vl, rs0, ivs, ovs, ioffset, bioffset;
cannam@167 39 kr2c k;
cannam@167 40 const S *slv;
cannam@167 41 } P;
cannam@167 42
cannam@167 43 /*************************************************************
cannam@167 44 Nonbuffered code
cannam@167 45 *************************************************************/
cannam@167 46 static void apply_r2hc(const plan *ego_, R *I, R *O)
cannam@167 47 {
cannam@167 48 const P *ego = (const P *) ego_;
cannam@167 49 ASSERT_ALIGNED_DOUBLE;
cannam@167 50 ego->k(I, I + ego->rs0, O, O + ego->ioffset,
cannam@167 51 ego->rs, ego->csr, ego->csi,
cannam@167 52 ego->vl, ego->ivs, ego->ovs);
cannam@167 53 }
cannam@167 54
cannam@167 55 static void apply_hc2r(const plan *ego_, R *I, R *O)
cannam@167 56 {
cannam@167 57 const P *ego = (const P *) ego_;
cannam@167 58 ASSERT_ALIGNED_DOUBLE;
cannam@167 59 ego->k(O, O + ego->rs0, I, I + ego->ioffset,
cannam@167 60 ego->rs, ego->csr, ego->csi,
cannam@167 61 ego->vl, ego->ivs, ego->ovs);
cannam@167 62 }
cannam@167 63
cannam@167 64 /*************************************************************
cannam@167 65 Buffered code
cannam@167 66 *************************************************************/
cannam@167 67 /* should not be 2^k to avoid associativity conflicts */
cannam@167 68 static INT compute_batchsize(INT radix)
cannam@167 69 {
cannam@167 70 /* round up to multiple of 4 */
cannam@167 71 radix += 3;
cannam@167 72 radix &= -4;
cannam@167 73
cannam@167 74 return (radix + 2);
cannam@167 75 }
cannam@167 76
cannam@167 77 static void dobatch_r2hc(const P *ego, R *I, R *O, R *buf, INT batchsz)
cannam@167 78 {
cannam@167 79 X(cpy2d_ci)(I, buf,
cannam@167 80 ego->n, ego->rs0, WS(ego->bcsr /* hack */, 1),
cannam@167 81 batchsz, ego->ivs, 1, 1);
cannam@167 82
cannam@167 83 if (IABS(WS(ego->csr, 1)) < IABS(ego->ovs)) {
cannam@167 84 /* transform directly to output */
cannam@167 85 ego->k(buf, buf + WS(ego->bcsr /* hack */, 1),
cannam@167 86 O, O + ego->ioffset,
cannam@167 87 ego->brs, ego->csr, ego->csi,
cannam@167 88 batchsz, 1, ego->ovs);
cannam@167 89 } else {
cannam@167 90 /* transform to buffer and copy back */
cannam@167 91 ego->k(buf, buf + WS(ego->bcsr /* hack */, 1),
cannam@167 92 buf, buf + ego->bioffset,
cannam@167 93 ego->brs, ego->bcsr, ego->bcsi,
cannam@167 94 batchsz, 1, 1);
cannam@167 95 X(cpy2d_co)(buf, O,
cannam@167 96 ego->n, WS(ego->bcsr, 1), WS(ego->csr, 1),
cannam@167 97 batchsz, 1, ego->ovs, 1);
cannam@167 98 }
cannam@167 99 }
cannam@167 100
cannam@167 101 static void dobatch_hc2r(const P *ego, R *I, R *O, R *buf, INT batchsz)
cannam@167 102 {
cannam@167 103 if (IABS(WS(ego->csr, 1)) < IABS(ego->ivs)) {
cannam@167 104 /* transform directly from input */
cannam@167 105 ego->k(buf, buf + WS(ego->bcsr /* hack */, 1),
cannam@167 106 I, I + ego->ioffset,
cannam@167 107 ego->brs, ego->csr, ego->csi,
cannam@167 108 batchsz, ego->ivs, 1);
cannam@167 109 } else {
cannam@167 110 /* copy into buffer and transform in place */
cannam@167 111 X(cpy2d_ci)(I, buf,
cannam@167 112 ego->n, WS(ego->csr, 1), WS(ego->bcsr, 1),
cannam@167 113 batchsz, ego->ivs, 1, 1);
cannam@167 114 ego->k(buf, buf + WS(ego->bcsr /* hack */, 1),
cannam@167 115 buf, buf + ego->bioffset,
cannam@167 116 ego->brs, ego->bcsr, ego->bcsi,
cannam@167 117 batchsz, 1, 1);
cannam@167 118 }
cannam@167 119 X(cpy2d_co)(buf, O,
cannam@167 120 ego->n, WS(ego->bcsr /* hack */, 1), ego->rs0,
cannam@167 121 batchsz, 1, ego->ovs, 1);
cannam@167 122 }
cannam@167 123
cannam@167 124 static void iterate(const P *ego, R *I, R *O,
cannam@167 125 void (*dobatch)(const P *ego, R *I, R *O,
cannam@167 126 R *buf, INT batchsz))
cannam@167 127 {
cannam@167 128 R *buf;
cannam@167 129 INT vl = ego->vl;
cannam@167 130 INT n = ego->n;
cannam@167 131 INT i;
cannam@167 132 INT batchsz = compute_batchsize(n);
cannam@167 133 size_t bufsz = n * batchsz * sizeof(R);
cannam@167 134
cannam@167 135 BUF_ALLOC(R *, buf, bufsz);
cannam@167 136
cannam@167 137 for (i = 0; i < vl - batchsz; i += batchsz) {
cannam@167 138 dobatch(ego, I, O, buf, batchsz);
cannam@167 139 I += batchsz * ego->ivs;
cannam@167 140 O += batchsz * ego->ovs;
cannam@167 141 }
cannam@167 142 dobatch(ego, I, O, buf, vl - i);
cannam@167 143
cannam@167 144 BUF_FREE(buf, bufsz);
cannam@167 145 }
cannam@167 146
cannam@167 147 static void apply_buf_r2hc(const plan *ego_, R *I, R *O)
cannam@167 148 {
cannam@167 149 iterate((const P *) ego_, I, O, dobatch_r2hc);
cannam@167 150 }
cannam@167 151
cannam@167 152 static void apply_buf_hc2r(const plan *ego_, R *I, R *O)
cannam@167 153 {
cannam@167 154 iterate((const P *) ego_, I, O, dobatch_hc2r);
cannam@167 155 }
cannam@167 156
cannam@167 157 static void destroy(plan *ego_)
cannam@167 158 {
cannam@167 159 P *ego = (P *) ego_;
cannam@167 160 X(stride_destroy)(ego->rs);
cannam@167 161 X(stride_destroy)(ego->csr);
cannam@167 162 X(stride_destroy)(ego->csi);
cannam@167 163 X(stride_destroy)(ego->brs);
cannam@167 164 X(stride_destroy)(ego->bcsr);
cannam@167 165 X(stride_destroy)(ego->bcsi);
cannam@167 166 }
cannam@167 167
cannam@167 168 static void print(const plan *ego_, printer *p)
cannam@167 169 {
cannam@167 170 const P *ego = (const P *) ego_;
cannam@167 171 const S *s = ego->slv;
cannam@167 172
cannam@167 173 if (ego->slv->bufferedp)
cannam@167 174 p->print(p, "(rdft-%s-directbuf/%D-r2c-%D%v \"%s\")",
cannam@167 175 X(rdft_kind_str)(s->desc->genus->kind),
cannam@167 176 /* hack */ WS(ego->bcsr, 1), ego->n,
cannam@167 177 ego->vl, s->desc->nam);
cannam@167 178
cannam@167 179 else
cannam@167 180 p->print(p, "(rdft-%s-direct-r2c-%D%v \"%s\")",
cannam@167 181 X(rdft_kind_str)(s->desc->genus->kind), ego->n,
cannam@167 182 ego->vl, s->desc->nam);
cannam@167 183 }
cannam@167 184
cannam@167 185 static INT ioffset(rdft_kind kind, INT sz, INT s)
cannam@167 186 {
cannam@167 187 return(s * ((kind == R2HC || kind == HC2R) ? sz : (sz - 1)));
cannam@167 188 }
cannam@167 189
cannam@167 190 static int applicable(const solver *ego_, const problem *p_)
cannam@167 191 {
cannam@167 192 const S *ego = (const S *) ego_;
cannam@167 193 const kr2c_desc *desc = ego->desc;
cannam@167 194 const problem_rdft *p = (const problem_rdft *) p_;
cannam@167 195 INT vl, ivs, ovs;
cannam@167 196
cannam@167 197 return (
cannam@167 198 1
cannam@167 199 && p->sz->rnk == 1
cannam@167 200 && p->vecsz->rnk <= 1
cannam@167 201 && p->sz->dims[0].n == desc->n
cannam@167 202 && p->kind[0] == desc->genus->kind
cannam@167 203
cannam@167 204 /* check strides etc */
cannam@167 205 && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs)
cannam@167 206
cannam@167 207 && (0
cannam@167 208 /* can operate out-of-place */
cannam@167 209 || p->I != p->O
cannam@167 210
cannam@167 211 /* computing one transform */
cannam@167 212 || vl == 1
cannam@167 213
cannam@167 214 /* can operate in-place as long as strides are the same */
cannam@167 215 || X(tensor_inplace_strides2)(p->sz, p->vecsz)
cannam@167 216 )
cannam@167 217 );
cannam@167 218 }
cannam@167 219
cannam@167 220 static int applicable_buf(const solver *ego_, const problem *p_)
cannam@167 221 {
cannam@167 222 const S *ego = (const S *) ego_;
cannam@167 223 const kr2c_desc *desc = ego->desc;
cannam@167 224 const problem_rdft *p = (const problem_rdft *) p_;
cannam@167 225 INT vl, ivs, ovs, batchsz;
cannam@167 226
cannam@167 227 return (
cannam@167 228 1
cannam@167 229 && p->sz->rnk == 1
cannam@167 230 && p->vecsz->rnk <= 1
cannam@167 231 && p->sz->dims[0].n == desc->n
cannam@167 232 && p->kind[0] == desc->genus->kind
cannam@167 233
cannam@167 234 /* check strides etc */
cannam@167 235 && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs)
cannam@167 236
cannam@167 237 && (batchsz = compute_batchsize(desc->n), 1)
cannam@167 238
cannam@167 239 && (0
cannam@167 240 /* can operate out-of-place */
cannam@167 241 || p->I != p->O
cannam@167 242
cannam@167 243 /* can operate in-place as long as strides are the same */
cannam@167 244 || X(tensor_inplace_strides2)(p->sz, p->vecsz)
cannam@167 245
cannam@167 246 /* can do it if the problem fits in the buffer, no matter
cannam@167 247 what the strides are */
cannam@167 248 || vl <= batchsz
cannam@167 249 )
cannam@167 250 );
cannam@167 251 }
cannam@167 252
cannam@167 253 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
cannam@167 254 {
cannam@167 255 const S *ego = (const S *) ego_;
cannam@167 256 P *pln;
cannam@167 257 const problem_rdft *p;
cannam@167 258 iodim *d;
cannam@167 259 INT rs, cs, b, n;
cannam@167 260
cannam@167 261 static const plan_adt padt = {
cannam@167 262 X(rdft_solve), X(null_awake), print, destroy
cannam@167 263 };
cannam@167 264
cannam@167 265 UNUSED(plnr);
cannam@167 266
cannam@167 267 if (ego->bufferedp) {
cannam@167 268 if (!applicable_buf(ego_, p_))
cannam@167 269 return (plan *)0;
cannam@167 270 } else {
cannam@167 271 if (!applicable(ego_, p_))
cannam@167 272 return (plan *)0;
cannam@167 273 }
cannam@167 274
cannam@167 275 p = (const problem_rdft *) p_;
cannam@167 276
cannam@167 277 if (R2HC_KINDP(p->kind[0])) {
cannam@167 278 rs = p->sz->dims[0].is; cs = p->sz->dims[0].os;
cannam@167 279 pln = MKPLAN_RDFT(P, &padt,
cannam@167 280 ego->bufferedp ? apply_buf_r2hc : apply_r2hc);
cannam@167 281 } else {
cannam@167 282 rs = p->sz->dims[0].os; cs = p->sz->dims[0].is;
cannam@167 283 pln = MKPLAN_RDFT(P, &padt,
cannam@167 284 ego->bufferedp ? apply_buf_hc2r : apply_hc2r);
cannam@167 285 }
cannam@167 286
cannam@167 287 d = p->sz->dims;
cannam@167 288 n = d[0].n;
cannam@167 289
cannam@167 290 pln->k = ego->k;
cannam@167 291 pln->n = n;
cannam@167 292
cannam@167 293 pln->rs0 = rs;
cannam@167 294 pln->rs = X(mkstride)(n, 2 * rs);
cannam@167 295 pln->csr = X(mkstride)(n, cs);
cannam@167 296 pln->csi = X(mkstride)(n, -cs);
cannam@167 297 pln->ioffset = ioffset(p->kind[0], n, cs);
cannam@167 298
cannam@167 299 b = compute_batchsize(n);
cannam@167 300 pln->brs = X(mkstride)(n, 2 * b);
cannam@167 301 pln->bcsr = X(mkstride)(n, b);
cannam@167 302 pln->bcsi = X(mkstride)(n, -b);
cannam@167 303 pln->bioffset = ioffset(p->kind[0], n, b);
cannam@167 304
cannam@167 305 X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
cannam@167 306
cannam@167 307 pln->slv = ego;
cannam@167 308 X(ops_zero)(&pln->super.super.ops);
cannam@167 309
cannam@167 310 X(ops_madd2)(pln->vl / ego->desc->genus->vl,
cannam@167 311 &ego->desc->ops,
cannam@167 312 &pln->super.super.ops);
cannam@167 313
cannam@167 314 if (ego->bufferedp)
cannam@167 315 pln->super.super.ops.other += 2 * n * pln->vl;
cannam@167 316
cannam@167 317 pln->super.super.could_prune_now_p = !ego->bufferedp;
cannam@167 318
cannam@167 319 return &(pln->super.super);
cannam@167 320 }
cannam@167 321
cannam@167 322 /* constructor */
cannam@167 323 static solver *mksolver(kr2c k, const kr2c_desc *desc, int bufferedp)
cannam@167 324 {
cannam@167 325 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
cannam@167 326 S *slv = MKSOLVER(S, &sadt);
cannam@167 327 slv->k = k;
cannam@167 328 slv->desc = desc;
cannam@167 329 slv->bufferedp = bufferedp;
cannam@167 330 return &(slv->super);
cannam@167 331 }
cannam@167 332
cannam@167 333 solver *X(mksolver_rdft_r2c_direct)(kr2c k, const kr2c_desc *desc)
cannam@167 334 {
cannam@167 335 return mksolver(k, desc, 0);
cannam@167 336 }
cannam@167 337
cannam@167 338 solver *X(mksolver_rdft_r2c_directbuf)(kr2c k, const kr2c_desc *desc)
cannam@167 339 {
cannam@167 340 return mksolver(k, desc, 1);
cannam@167 341 }