annotate src/fftw-3.3.8/libbench2/verify-r2r.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents bd3cc4d1df30
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * This program is free software; you can redistribute it and/or modify
cannam@167 6 * it under the terms of the GNU General Public License as published by
cannam@167 7 * the Free Software Foundation; either version 2 of the License, or
cannam@167 8 * (at your option) any later version.
cannam@167 9 *
cannam@167 10 * This program is distributed in the hope that it will be useful,
cannam@167 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 13 * GNU General Public License for more details.
cannam@167 14 *
cannam@167 15 * You should have received a copy of the GNU General Public License
cannam@167 16 * along with this program; if not, write to the Free Software
cannam@167 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 18 *
cannam@167 19 */
cannam@167 20
cannam@167 21 /* Lots of ugly duplication from verify-lib.c, plus lots of ugliness in
cannam@167 22 general for all of the r2r variants...oh well, for now */
cannam@167 23
cannam@167 24 #include "verify.h"
cannam@167 25 #include <math.h>
cannam@167 26 #include <stdlib.h>
cannam@167 27 #include <stdio.h>
cannam@167 28
cannam@167 29 typedef struct {
cannam@167 30 bench_problem *p;
cannam@167 31 bench_tensor *probsz;
cannam@167 32 bench_tensor *totalsz;
cannam@167 33 bench_tensor *pckdsz;
cannam@167 34 bench_tensor *pckdvecsz;
cannam@167 35 } info;
cannam@167 36
cannam@167 37 /*
cannam@167 38 * Utility functions:
cannam@167 39 */
cannam@167 40
cannam@167 41 static double dabs(double x) { return (x < 0.0) ? -x : x; }
cannam@167 42 static double dmin(double x, double y) { return (x < y) ? x : y; }
cannam@167 43
cannam@167 44 static double raerror(R *a, R *b, int n)
cannam@167 45 {
cannam@167 46 if (n > 0) {
cannam@167 47 /* compute the relative Linf error */
cannam@167 48 double e = 0.0, mag = 0.0;
cannam@167 49 int i;
cannam@167 50
cannam@167 51 for (i = 0; i < n; ++i) {
cannam@167 52 e = dmax(e, dabs(a[i] - b[i]));
cannam@167 53 mag = dmax(mag, dmin(dabs(a[i]), dabs(b[i])));
cannam@167 54 }
cannam@167 55 if (dabs(mag) < 1e-14 && dabs(e) < 1e-14)
cannam@167 56 e = 0.0;
cannam@167 57 else
cannam@167 58 e /= mag;
cannam@167 59
cannam@167 60 #ifdef HAVE_ISNAN
cannam@167 61 BENCH_ASSERT(!isnan(e));
cannam@167 62 #endif
cannam@167 63 return e;
cannam@167 64 } else
cannam@167 65 return 0.0;
cannam@167 66 }
cannam@167 67
cannam@167 68 #define by2pi(m, n) ((K2PI * (m)) / (n))
cannam@167 69
cannam@167 70 /*
cannam@167 71 * Improve accuracy by reducing x to range [0..1/8]
cannam@167 72 * before multiplication by 2 * PI.
cannam@167 73 */
cannam@167 74
cannam@167 75 static trigreal bench_sincos(trigreal m, trigreal n, int sinp)
cannam@167 76 {
cannam@167 77 /* waiting for C to get tail recursion... */
cannam@167 78 trigreal half_n = n * 0.5;
cannam@167 79 trigreal quarter_n = half_n * 0.5;
cannam@167 80 trigreal eighth_n = quarter_n * 0.5;
cannam@167 81 trigreal sgn = 1.0;
cannam@167 82
cannam@167 83 if (sinp) goto sin;
cannam@167 84 cos:
cannam@167 85 if (m < 0) { m = -m; /* goto cos; */ }
cannam@167 86 if (m > half_n) { m = n - m; goto cos; }
cannam@167 87 if (m > eighth_n) { m = quarter_n - m; goto sin; }
cannam@167 88 return sgn * COS(by2pi(m, n));
cannam@167 89
cannam@167 90 msin:
cannam@167 91 sgn = -sgn;
cannam@167 92 sin:
cannam@167 93 if (m < 0) { m = -m; goto msin; }
cannam@167 94 if (m > half_n) { m = n - m; goto msin; }
cannam@167 95 if (m > eighth_n) { m = quarter_n - m; goto cos; }
cannam@167 96 return sgn * SIN(by2pi(m, n));
cannam@167 97 }
cannam@167 98
cannam@167 99 static trigreal cos2pi(int m, int n)
cannam@167 100 {
cannam@167 101 return bench_sincos((trigreal)m, (trigreal)n, 0);
cannam@167 102 }
cannam@167 103
cannam@167 104 static trigreal sin2pi(int m, int n)
cannam@167 105 {
cannam@167 106 return bench_sincos((trigreal)m, (trigreal)n, 1);
cannam@167 107 }
cannam@167 108
cannam@167 109 static trigreal cos00(int i, int j, int n)
cannam@167 110 {
cannam@167 111 return cos2pi(i * j, n);
cannam@167 112 }
cannam@167 113
cannam@167 114 static trigreal cos01(int i, int j, int n)
cannam@167 115 {
cannam@167 116 return cos00(i, 2*j + 1, 2*n);
cannam@167 117 }
cannam@167 118
cannam@167 119 static trigreal cos10(int i, int j, int n)
cannam@167 120 {
cannam@167 121 return cos00(2*i + 1, j, 2*n);
cannam@167 122 }
cannam@167 123
cannam@167 124 static trigreal cos11(int i, int j, int n)
cannam@167 125 {
cannam@167 126 return cos00(2*i + 1, 2*j + 1, 4*n);
cannam@167 127 }
cannam@167 128
cannam@167 129 static trigreal sin00(int i, int j, int n)
cannam@167 130 {
cannam@167 131 return sin2pi(i * j, n);
cannam@167 132 }
cannam@167 133
cannam@167 134 static trigreal sin01(int i, int j, int n)
cannam@167 135 {
cannam@167 136 return sin00(i, 2*j + 1, 2*n);
cannam@167 137 }
cannam@167 138
cannam@167 139 static trigreal sin10(int i, int j, int n)
cannam@167 140 {
cannam@167 141 return sin00(2*i + 1, j, 2*n);
cannam@167 142 }
cannam@167 143
cannam@167 144 static trigreal sin11(int i, int j, int n)
cannam@167 145 {
cannam@167 146 return sin00(2*i + 1, 2*j + 1, 4*n);
cannam@167 147 }
cannam@167 148
cannam@167 149 static trigreal realhalf(int i, int j, int n)
cannam@167 150 {
cannam@167 151 UNUSED(i);
cannam@167 152 if (j <= n - j)
cannam@167 153 return 1.0;
cannam@167 154 else
cannam@167 155 return 0.0;
cannam@167 156 }
cannam@167 157
cannam@167 158 static trigreal coshalf(int i, int j, int n)
cannam@167 159 {
cannam@167 160 if (j <= n - j)
cannam@167 161 return cos00(i, j, n);
cannam@167 162 else
cannam@167 163 return cos00(i, n - j, n);
cannam@167 164 }
cannam@167 165
cannam@167 166 static trigreal unity(int i, int j, int n)
cannam@167 167 {
cannam@167 168 UNUSED(i);
cannam@167 169 UNUSED(j);
cannam@167 170 UNUSED(n);
cannam@167 171 return 1.0;
cannam@167 172 }
cannam@167 173
cannam@167 174 typedef trigreal (*trigfun)(int, int, int);
cannam@167 175
cannam@167 176 static void rarand(R *a, int n)
cannam@167 177 {
cannam@167 178 int i;
cannam@167 179
cannam@167 180 /* generate random inputs */
cannam@167 181 for (i = 0; i < n; ++i) {
cannam@167 182 a[i] = mydrand();
cannam@167 183 }
cannam@167 184 }
cannam@167 185
cannam@167 186 /* C = A + B */
cannam@167 187 static void raadd(R *c, R *a, R *b, int n)
cannam@167 188 {
cannam@167 189 int i;
cannam@167 190
cannam@167 191 for (i = 0; i < n; ++i) {
cannam@167 192 c[i] = a[i] + b[i];
cannam@167 193 }
cannam@167 194 }
cannam@167 195
cannam@167 196 /* C = A - B */
cannam@167 197 static void rasub(R *c, R *a, R *b, int n)
cannam@167 198 {
cannam@167 199 int i;
cannam@167 200
cannam@167 201 for (i = 0; i < n; ++i) {
cannam@167 202 c[i] = a[i] - b[i];
cannam@167 203 }
cannam@167 204 }
cannam@167 205
cannam@167 206 /* B = rotate left A + rotate right A */
cannam@167 207 static void rarolr(R *b, R *a, int n, int nb, int na,
cannam@167 208 r2r_kind_t k)
cannam@167 209 {
cannam@167 210 int isL0 = 0, isL1 = 0, isR0 = 0, isR1 = 0;
cannam@167 211 int i, ib, ia;
cannam@167 212
cannam@167 213 for (ib = 0; ib < nb; ++ib) {
cannam@167 214 for (i = 0; i < n - 1; ++i)
cannam@167 215 for (ia = 0; ia < na; ++ia)
cannam@167 216 b[(ib * n + i) * na + ia] =
cannam@167 217 a[(ib * n + i + 1) * na + ia];
cannam@167 218
cannam@167 219 /* ugly switch to do boundary conditions for various r2r types */
cannam@167 220 switch (k) {
cannam@167 221 /* periodic boundaries */
cannam@167 222 case R2R_DHT:
cannam@167 223 case R2R_R2HC:
cannam@167 224 for (ia = 0; ia < na; ++ia) {
cannam@167 225 b[(ib * n + n - 1) * na + ia] =
cannam@167 226 a[(ib * n + 0) * na + ia];
cannam@167 227 b[(ib * n + 0) * na + ia] +=
cannam@167 228 a[(ib * n + n - 1) * na + ia];
cannam@167 229 }
cannam@167 230 break;
cannam@167 231
cannam@167 232 case R2R_HC2R: /* ugh (hermitian halfcomplex boundaries) */
cannam@167 233 if (n > 2) {
cannam@167 234 if (n % 2 == 0)
cannam@167 235 for (ia = 0; ia < na; ++ia) {
cannam@167 236 b[(ib * n + n - 1) * na + ia] = 0.0;
cannam@167 237 b[(ib * n + 0) * na + ia] +=
cannam@167 238 a[(ib * n + 1) * na + ia];
cannam@167 239 b[(ib * n + n/2) * na + ia] +=
cannam@167 240 + a[(ib * n + n/2 - 1) * na + ia]
cannam@167 241 - a[(ib * n + n/2 + 1) * na + ia];
cannam@167 242 b[(ib * n + n/2 + 1) * na + ia] +=
cannam@167 243 - a[(ib * n + n/2) * na + ia];
cannam@167 244 }
cannam@167 245 else
cannam@167 246 for (ia = 0; ia < na; ++ia) {
cannam@167 247 b[(ib * n + n - 1) * na + ia] = 0.0;
cannam@167 248 b[(ib * n + 0) * na + ia] +=
cannam@167 249 a[(ib * n + 1) * na + ia];
cannam@167 250 b[(ib * n + n/2) * na + ia] +=
cannam@167 251 + a[(ib * n + n/2) * na + ia]
cannam@167 252 - a[(ib * n + n/2 + 1) * na + ia];
cannam@167 253 b[(ib * n + n/2 + 1) * na + ia] +=
cannam@167 254 - a[(ib * n + n/2 + 1) * na + ia]
cannam@167 255 - a[(ib * n + n/2) * na + ia];
cannam@167 256 }
cannam@167 257 } else /* n <= 2 */ {
cannam@167 258 for (ia = 0; ia < na; ++ia) {
cannam@167 259 b[(ib * n + n - 1) * na + ia] =
cannam@167 260 a[(ib * n + 0) * na + ia];
cannam@167 261 b[(ib * n + 0) * na + ia] +=
cannam@167 262 a[(ib * n + n - 1) * na + ia];
cannam@167 263 }
cannam@167 264 }
cannam@167 265 break;
cannam@167 266
cannam@167 267 /* various even/odd boundary conditions */
cannam@167 268 case R2R_REDFT00:
cannam@167 269 isL1 = isR1 = 1;
cannam@167 270 goto mirrors;
cannam@167 271 case R2R_REDFT01:
cannam@167 272 isL1 = 1;
cannam@167 273 goto mirrors;
cannam@167 274 case R2R_REDFT10:
cannam@167 275 isL0 = isR0 = 1;
cannam@167 276 goto mirrors;
cannam@167 277 case R2R_REDFT11:
cannam@167 278 isL0 = 1;
cannam@167 279 isR0 = -1;
cannam@167 280 goto mirrors;
cannam@167 281 case R2R_RODFT00:
cannam@167 282 goto mirrors;
cannam@167 283 case R2R_RODFT01:
cannam@167 284 isR1 = 1;
cannam@167 285 goto mirrors;
cannam@167 286 case R2R_RODFT10:
cannam@167 287 isL0 = isR0 = -1;
cannam@167 288 goto mirrors;
cannam@167 289 case R2R_RODFT11:
cannam@167 290 isL0 = -1;
cannam@167 291 isR0 = 1;
cannam@167 292 goto mirrors;
cannam@167 293
cannam@167 294 mirrors:
cannam@167 295
cannam@167 296 for (ia = 0; ia < na; ++ia)
cannam@167 297 b[(ib * n + n - 1) * na + ia] =
cannam@167 298 isR0 * a[(ib * n + n - 1) * na + ia]
cannam@167 299 + (n > 1 ? isR1 * a[(ib * n + n - 2) * na + ia]
cannam@167 300 : 0);
cannam@167 301
cannam@167 302 for (ia = 0; ia < na; ++ia)
cannam@167 303 b[(ib * n) * na + ia] +=
cannam@167 304 isL0 * a[(ib * n) * na + ia]
cannam@167 305 + (n > 1 ? isL1 * a[(ib * n + 1) * na + ia] : 0);
cannam@167 306
cannam@167 307 }
cannam@167 308
cannam@167 309 for (i = 1; i < n; ++i)
cannam@167 310 for (ia = 0; ia < na; ++ia)
cannam@167 311 b[(ib * n + i) * na + ia] +=
cannam@167 312 a[(ib * n + i - 1) * na + ia];
cannam@167 313 }
cannam@167 314 }
cannam@167 315
cannam@167 316 static void raphase_shift(R *b, R *a, int n, int nb, int na,
cannam@167 317 int n0, int k0, trigfun t)
cannam@167 318 {
cannam@167 319 int j, jb, ja;
cannam@167 320
cannam@167 321 for (jb = 0; jb < nb; ++jb)
cannam@167 322 for (j = 0; j < n; ++j) {
cannam@167 323 trigreal c = 2.0 * t(1, j + k0, n0);
cannam@167 324
cannam@167 325 for (ja = 0; ja < na; ++ja) {
cannam@167 326 int k = (jb * n + j) * na + ja;
cannam@167 327 b[k] = a[k] * c;
cannam@167 328 }
cannam@167 329 }
cannam@167 330 }
cannam@167 331
cannam@167 332 /* A = alpha * A (real, in place) */
cannam@167 333 static void rascale(R *a, R alpha, int n)
cannam@167 334 {
cannam@167 335 int i;
cannam@167 336
cannam@167 337 for (i = 0; i < n; ++i) {
cannam@167 338 a[i] *= alpha;
cannam@167 339 }
cannam@167 340 }
cannam@167 341
cannam@167 342 /*
cannam@167 343 * compute rdft:
cannam@167 344 */
cannam@167 345
cannam@167 346 /* copy real A into real B, using output stride of A and input stride of B */
cannam@167 347 typedef struct {
cannam@167 348 dotens2_closure k;
cannam@167 349 R *ra;
cannam@167 350 R *rb;
cannam@167 351 } cpyr_closure;
cannam@167 352
cannam@167 353 static void cpyr0(dotens2_closure *k_,
cannam@167 354 int indxa, int ondxa, int indxb, int ondxb)
cannam@167 355 {
cannam@167 356 cpyr_closure *k = (cpyr_closure *)k_;
cannam@167 357 k->rb[indxb] = k->ra[ondxa];
cannam@167 358 UNUSED(indxa); UNUSED(ondxb);
cannam@167 359 }
cannam@167 360
cannam@167 361 static void cpyr(R *ra, bench_tensor *sza, R *rb, bench_tensor *szb)
cannam@167 362 {
cannam@167 363 cpyr_closure k;
cannam@167 364 k.k.apply = cpyr0;
cannam@167 365 k.ra = ra; k.rb = rb;
cannam@167 366 bench_dotens2(sza, szb, &k.k);
cannam@167 367 }
cannam@167 368
cannam@167 369 static void dofft(info *nfo, R *in, R *out)
cannam@167 370 {
cannam@167 371 cpyr(in, nfo->pckdsz, (R *) nfo->p->in, nfo->totalsz);
cannam@167 372 after_problem_rcopy_from(nfo->p, (bench_real *)nfo->p->in);
cannam@167 373 doit(1, nfo->p);
cannam@167 374 after_problem_rcopy_to(nfo->p, (bench_real *)nfo->p->out);
cannam@167 375 cpyr((R *) nfo->p->out, nfo->totalsz, out, nfo->pckdsz);
cannam@167 376 }
cannam@167 377
cannam@167 378 static double racmp(R *a, R *b, int n, const char *test, double tol)
cannam@167 379 {
cannam@167 380 double d = raerror(a, b, n);
cannam@167 381 if (d > tol) {
cannam@167 382 ovtpvt_err("Found relative error %e (%s)\n", d, test);
cannam@167 383 {
cannam@167 384 int i, N;
cannam@167 385 N = n > 300 && verbose <= 2 ? 300 : n;
cannam@167 386 for (i = 0; i < N; ++i)
cannam@167 387 ovtpvt_err("%8d %16.12f %16.12f\n", i,
cannam@167 388 (double) a[i],
cannam@167 389 (double) b[i]);
cannam@167 390 }
cannam@167 391 bench_exit(EXIT_FAILURE);
cannam@167 392 }
cannam@167 393 return d;
cannam@167 394 }
cannam@167 395
cannam@167 396 /***********************************************************************/
cannam@167 397
cannam@167 398 typedef struct {
cannam@167 399 int n; /* physical size */
cannam@167 400 int n0; /* "logical" transform size */
cannam@167 401 int i0, k0; /* shifts of input/output */
cannam@167 402 trigfun ti, ts; /* impulse/shift trig functions */
cannam@167 403 } dim_stuff;
cannam@167 404
cannam@167 405 static void impulse_response(int rnk, dim_stuff *d, R impulse_amp,
cannam@167 406 R *A, int N)
cannam@167 407 {
cannam@167 408 if (rnk == 0)
cannam@167 409 A[0] = impulse_amp;
cannam@167 410 else {
cannam@167 411 int i;
cannam@167 412 N /= d->n;
cannam@167 413 for (i = 0; i < d->n; ++i) {
cannam@167 414 impulse_response(rnk - 1, d + 1,
cannam@167 415 impulse_amp * d->ti(d->i0, d->k0 + i, d->n0),
cannam@167 416 A + i * N, N);
cannam@167 417 }
cannam@167 418 }
cannam@167 419 }
cannam@167 420
cannam@167 421 /***************************************************************************/
cannam@167 422
cannam@167 423 /*
cannam@167 424 * Implementation of the FFT tester described in
cannam@167 425 *
cannam@167 426 * Funda Ergün. Testing multivariate linear functions: Overcoming the
cannam@167 427 * generator bottleneck. In Proceedings of the Twenty-Seventh Annual
cannam@167 428 * ACM Symposium on the Theory of Computing, pages 407-416, Las Vegas,
cannam@167 429 * Nevada, 29 May--1 June 1995.
cannam@167 430 *
cannam@167 431 * Also: F. Ergun, S. R. Kumar, and D. Sivakumar, "Self-testing without
cannam@167 432 * the generator bottleneck," SIAM J. on Computing 29 (5), 1630-51 (2000).
cannam@167 433 */
cannam@167 434
cannam@167 435 static double rlinear(int n, info *nfo, R *inA, R *inB, R *inC, R *outA,
cannam@167 436 R *outB, R *outC, R *tmp, int rounds, double tol)
cannam@167 437 {
cannam@167 438 double e = 0.0;
cannam@167 439 int j;
cannam@167 440
cannam@167 441 for (j = 0; j < rounds; ++j) {
cannam@167 442 R alpha, beta;
cannam@167 443 alpha = mydrand();
cannam@167 444 beta = mydrand();
cannam@167 445 rarand(inA, n);
cannam@167 446 rarand(inB, n);
cannam@167 447 dofft(nfo, inA, outA);
cannam@167 448 dofft(nfo, inB, outB);
cannam@167 449
cannam@167 450 rascale(outA, alpha, n);
cannam@167 451 rascale(outB, beta, n);
cannam@167 452 raadd(tmp, outA, outB, n);
cannam@167 453 rascale(inA, alpha, n);
cannam@167 454 rascale(inB, beta, n);
cannam@167 455 raadd(inC, inA, inB, n);
cannam@167 456 dofft(nfo, inC, outC);
cannam@167 457
cannam@167 458 e = dmax(e, racmp(outC, tmp, n, "linear", tol));
cannam@167 459 }
cannam@167 460 return e;
cannam@167 461 }
cannam@167 462
cannam@167 463 static double rimpulse(dim_stuff *d, R impulse_amp,
cannam@167 464 int n, int vecn, info *nfo,
cannam@167 465 R *inA, R *inB, R *inC,
cannam@167 466 R *outA, R *outB, R *outC,
cannam@167 467 R *tmp, int rounds, double tol)
cannam@167 468 {
cannam@167 469 double e = 0.0;
cannam@167 470 int N = n * vecn;
cannam@167 471 int i;
cannam@167 472 int j;
cannam@167 473
cannam@167 474 /* test 2: check that the unit impulse is transformed properly */
cannam@167 475
cannam@167 476 for (i = 0; i < N; ++i) {
cannam@167 477 /* pls */
cannam@167 478 inA[i] = 0.0;
cannam@167 479 }
cannam@167 480 for (i = 0; i < vecn; ++i) {
cannam@167 481 inA[i * n] = (i+1) / (double)(vecn+1);
cannam@167 482
cannam@167 483 /* transform of the pls */
cannam@167 484 impulse_response(nfo->probsz->rnk, d, impulse_amp * inA[i * n],
cannam@167 485 outA + i * n, n);
cannam@167 486 }
cannam@167 487
cannam@167 488 dofft(nfo, inA, tmp);
cannam@167 489 e = dmax(e, racmp(tmp, outA, N, "impulse 1", tol));
cannam@167 490
cannam@167 491 for (j = 0; j < rounds; ++j) {
cannam@167 492 rarand(inB, N);
cannam@167 493 rasub(inC, inA, inB, N);
cannam@167 494 dofft(nfo, inB, outB);
cannam@167 495 dofft(nfo, inC, outC);
cannam@167 496 raadd(tmp, outB, outC, N);
cannam@167 497 e = dmax(e, racmp(tmp, outA, N, "impulse", tol));
cannam@167 498 }
cannam@167 499 return e;
cannam@167 500 }
cannam@167 501
cannam@167 502 static double t_shift(int n, int vecn, info *nfo,
cannam@167 503 R *inA, R *inB, R *outA, R *outB, R *tmp,
cannam@167 504 int rounds, double tol,
cannam@167 505 dim_stuff *d)
cannam@167 506 {
cannam@167 507 double e = 0.0;
cannam@167 508 int nb, na, dim, N = n * vecn;
cannam@167 509 int i, j;
cannam@167 510 bench_tensor *sz = nfo->probsz;
cannam@167 511
cannam@167 512 /* test 3: check the time-shift property */
cannam@167 513 /* the paper performs more tests, but this code should be fine too */
cannam@167 514
cannam@167 515 nb = 1;
cannam@167 516 na = n;
cannam@167 517
cannam@167 518 /* check shifts across all SZ dimensions */
cannam@167 519 for (dim = 0; dim < sz->rnk; ++dim) {
cannam@167 520 int ncur = sz->dims[dim].n;
cannam@167 521
cannam@167 522 na /= ncur;
cannam@167 523
cannam@167 524 for (j = 0; j < rounds; ++j) {
cannam@167 525 rarand(inA, N);
cannam@167 526
cannam@167 527 for (i = 0; i < vecn; ++i) {
cannam@167 528 rarolr(inB + i * n, inA + i*n, ncur, nb,na,
cannam@167 529 nfo->p->k[dim]);
cannam@167 530 }
cannam@167 531 dofft(nfo, inA, outA);
cannam@167 532 dofft(nfo, inB, outB);
cannam@167 533 for (i = 0; i < vecn; ++i)
cannam@167 534 raphase_shift(tmp + i * n, outA + i * n, ncur,
cannam@167 535 nb, na, d[dim].n0, d[dim].k0, d[dim].ts);
cannam@167 536 e = dmax(e, racmp(tmp, outB, N, "time shift", tol));
cannam@167 537 }
cannam@167 538
cannam@167 539 nb *= ncur;
cannam@167 540 }
cannam@167 541 return e;
cannam@167 542 }
cannam@167 543
cannam@167 544 /***********************************************************************/
cannam@167 545
cannam@167 546 void verify_r2r(bench_problem *p, int rounds, double tol, errors *e)
cannam@167 547 {
cannam@167 548 R *inA, *inB, *inC, *outA, *outB, *outC, *tmp;
cannam@167 549 info nfo;
cannam@167 550 int n, vecn, N;
cannam@167 551 double impulse_amp = 1.0;
cannam@167 552 dim_stuff *d;
cannam@167 553 int i;
cannam@167 554
cannam@167 555 if (rounds == 0)
cannam@167 556 rounds = 20; /* default value */
cannam@167 557
cannam@167 558 n = tensor_sz(p->sz);
cannam@167 559 vecn = tensor_sz(p->vecsz);
cannam@167 560 N = n * vecn;
cannam@167 561
cannam@167 562 d = (dim_stuff *) bench_malloc(sizeof(dim_stuff) * p->sz->rnk);
cannam@167 563 for (i = 0; i < p->sz->rnk; ++i) {
cannam@167 564 int n0, i0, k0;
cannam@167 565 trigfun ti, ts;
cannam@167 566
cannam@167 567 d[i].n = n0 = p->sz->dims[i].n;
cannam@167 568 if (p->k[i] > R2R_DHT)
cannam@167 569 n0 = 2 * (n0 + (p->k[i] == R2R_REDFT00 ? -1 :
cannam@167 570 (p->k[i] == R2R_RODFT00 ? 1 : 0)));
cannam@167 571
cannam@167 572 switch (p->k[i]) {
cannam@167 573 case R2R_R2HC:
cannam@167 574 i0 = k0 = 0;
cannam@167 575 ti = realhalf;
cannam@167 576 ts = coshalf;
cannam@167 577 break;
cannam@167 578 case R2R_DHT:
cannam@167 579 i0 = k0 = 0;
cannam@167 580 ti = unity;
cannam@167 581 ts = cos00;
cannam@167 582 break;
cannam@167 583 case R2R_HC2R:
cannam@167 584 i0 = k0 = 0;
cannam@167 585 ti = unity;
cannam@167 586 ts = cos00;
cannam@167 587 break;
cannam@167 588 case R2R_REDFT00:
cannam@167 589 i0 = k0 = 0;
cannam@167 590 ti = ts = cos00;
cannam@167 591 break;
cannam@167 592 case R2R_REDFT01:
cannam@167 593 i0 = k0 = 0;
cannam@167 594 ti = ts = cos01;
cannam@167 595 break;
cannam@167 596 case R2R_REDFT10:
cannam@167 597 i0 = k0 = 0;
cannam@167 598 ti = cos10; impulse_amp *= 2.0;
cannam@167 599 ts = cos00;
cannam@167 600 break;
cannam@167 601 case R2R_REDFT11:
cannam@167 602 i0 = k0 = 0;
cannam@167 603 ti = cos11; impulse_amp *= 2.0;
cannam@167 604 ts = cos01;
cannam@167 605 break;
cannam@167 606 case R2R_RODFT00:
cannam@167 607 i0 = k0 = 1;
cannam@167 608 ti = sin00; impulse_amp *= 2.0;
cannam@167 609 ts = cos00;
cannam@167 610 break;
cannam@167 611 case R2R_RODFT01:
cannam@167 612 i0 = 1; k0 = 0;
cannam@167 613 ti = sin01; impulse_amp *= n == 1 ? 1.0 : 2.0;
cannam@167 614 ts = cos01;
cannam@167 615 break;
cannam@167 616 case R2R_RODFT10:
cannam@167 617 i0 = 0; k0 = 1;
cannam@167 618 ti = sin10; impulse_amp *= 2.0;
cannam@167 619 ts = cos00;
cannam@167 620 break;
cannam@167 621 case R2R_RODFT11:
cannam@167 622 i0 = k0 = 0;
cannam@167 623 ti = sin11; impulse_amp *= 2.0;
cannam@167 624 ts = cos01;
cannam@167 625 break;
cannam@167 626 default:
cannam@167 627 BENCH_ASSERT(0);
cannam@167 628 return;
cannam@167 629 }
cannam@167 630
cannam@167 631 d[i].n0 = n0;
cannam@167 632 d[i].i0 = i0;
cannam@167 633 d[i].k0 = k0;
cannam@167 634 d[i].ti = ti;
cannam@167 635 d[i].ts = ts;
cannam@167 636 }
cannam@167 637
cannam@167 638
cannam@167 639 inA = (R *) bench_malloc(N * sizeof(R));
cannam@167 640 inB = (R *) bench_malloc(N * sizeof(R));
cannam@167 641 inC = (R *) bench_malloc(N * sizeof(R));
cannam@167 642 outA = (R *) bench_malloc(N * sizeof(R));
cannam@167 643 outB = (R *) bench_malloc(N * sizeof(R));
cannam@167 644 outC = (R *) bench_malloc(N * sizeof(R));
cannam@167 645 tmp = (R *) bench_malloc(N * sizeof(R));
cannam@167 646
cannam@167 647 nfo.p = p;
cannam@167 648 nfo.probsz = p->sz;
cannam@167 649 nfo.totalsz = tensor_append(p->vecsz, nfo.probsz);
cannam@167 650 nfo.pckdsz = verify_pack(nfo.totalsz, 1);
cannam@167 651 nfo.pckdvecsz = verify_pack(p->vecsz, tensor_sz(nfo.probsz));
cannam@167 652
cannam@167 653 e->i = rimpulse(d, impulse_amp, n, vecn, &nfo,
cannam@167 654 inA, inB, inC, outA, outB, outC, tmp, rounds, tol);
cannam@167 655 e->l = rlinear(N, &nfo, inA, inB, inC, outA, outB, outC, tmp, rounds,tol);
cannam@167 656 e->s = t_shift(n, vecn, &nfo, inA, inB, outA, outB, tmp,
cannam@167 657 rounds, tol, d);
cannam@167 658
cannam@167 659 /* grr, verify-lib.c:preserves_input() only works for complex */
cannam@167 660 if (!p->in_place && !p->destroy_input) {
cannam@167 661 bench_tensor *totalsz_swap, *pckdsz_swap;
cannam@167 662 totalsz_swap = tensor_copy_swapio(nfo.totalsz);
cannam@167 663 pckdsz_swap = tensor_copy_swapio(nfo.pckdsz);
cannam@167 664
cannam@167 665 for (i = 0; i < rounds; ++i) {
cannam@167 666 rarand(inA, N);
cannam@167 667 dofft(&nfo, inA, outB);
cannam@167 668 cpyr((R *) nfo.p->in, totalsz_swap, inB, pckdsz_swap);
cannam@167 669 racmp(inB, inA, N, "preserves_input", 0.0);
cannam@167 670 }
cannam@167 671
cannam@167 672 tensor_destroy(totalsz_swap);
cannam@167 673 tensor_destroy(pckdsz_swap);
cannam@167 674 }
cannam@167 675
cannam@167 676 tensor_destroy(nfo.totalsz);
cannam@167 677 tensor_destroy(nfo.pckdsz);
cannam@167 678 tensor_destroy(nfo.pckdvecsz);
cannam@167 679 bench_free(tmp);
cannam@167 680 bench_free(outC);
cannam@167 681 bench_free(outB);
cannam@167 682 bench_free(outA);
cannam@167 683 bench_free(inC);
cannam@167 684 bench_free(inB);
cannam@167 685 bench_free(inA);
cannam@167 686 bench_free(d);
cannam@167 687 }
cannam@167 688
cannam@167 689
cannam@167 690 typedef struct {
cannam@167 691 dofft_closure k;
cannam@167 692 bench_problem *p;
cannam@167 693 int n0;
cannam@167 694 } dofft_r2r_closure;
cannam@167 695
cannam@167 696 static void cpyr1(int n, R *in, int is, R *out, int os, R scale)
cannam@167 697 {
cannam@167 698 int i;
cannam@167 699 for (i = 0; i < n; ++i)
cannam@167 700 out[i * os] = in[i * is] * scale;
cannam@167 701 }
cannam@167 702
cannam@167 703 static void mke00(C *a, int n, int c)
cannam@167 704 {
cannam@167 705 int i;
cannam@167 706 for (i = 1; i + i < n; ++i)
cannam@167 707 a[n - i][c] = a[i][c];
cannam@167 708 }
cannam@167 709
cannam@167 710 static void mkre00(C *a, int n)
cannam@167 711 {
cannam@167 712 mkreal(a, n);
cannam@167 713 mke00(a, n, 0);
cannam@167 714 }
cannam@167 715
cannam@167 716 static void mkimag(C *a, int n)
cannam@167 717 {
cannam@167 718 int i;
cannam@167 719 for (i = 0; i < n; ++i)
cannam@167 720 c_re(a[i]) = 0.0;
cannam@167 721 }
cannam@167 722
cannam@167 723 static void mko00(C *a, int n, int c)
cannam@167 724 {
cannam@167 725 int i;
cannam@167 726 a[0][c] = 0.0;
cannam@167 727 for (i = 1; i + i < n; ++i)
cannam@167 728 a[n - i][c] = -a[i][c];
cannam@167 729 if (i + i == n)
cannam@167 730 a[i][c] = 0.0;
cannam@167 731 }
cannam@167 732
cannam@167 733 static void mkro00(C *a, int n)
cannam@167 734 {
cannam@167 735 mkreal(a, n);
cannam@167 736 mko00(a, n, 0);
cannam@167 737 }
cannam@167 738
cannam@167 739 static void mkio00(C *a, int n)
cannam@167 740 {
cannam@167 741 mkimag(a, n);
cannam@167 742 mko00(a, n, 1);
cannam@167 743 }
cannam@167 744
cannam@167 745 static void mkre01(C *a, int n) /* n should be be multiple of 4 */
cannam@167 746 {
cannam@167 747 R a0;
cannam@167 748 a0 = c_re(a[0]);
cannam@167 749 mko00(a, n/2, 0);
cannam@167 750 c_re(a[n/2]) = -(c_re(a[0]) = a0);
cannam@167 751 mkre00(a, n);
cannam@167 752 }
cannam@167 753
cannam@167 754 static void mkro01(C *a, int n) /* n should be be multiple of 4 */
cannam@167 755 {
cannam@167 756 c_re(a[0]) = c_im(a[0]) = 0.0;
cannam@167 757 mkre00(a, n/2);
cannam@167 758 mkro00(a, n);
cannam@167 759 }
cannam@167 760
cannam@167 761 static void mkoddonly(C *a, int n)
cannam@167 762 {
cannam@167 763 int i;
cannam@167 764 for (i = 0; i < n; i += 2)
cannam@167 765 c_re(a[i]) = c_im(a[i]) = 0.0;
cannam@167 766 }
cannam@167 767
cannam@167 768 static void mkre10(C *a, int n)
cannam@167 769 {
cannam@167 770 mkoddonly(a, n);
cannam@167 771 mkre00(a, n);
cannam@167 772 }
cannam@167 773
cannam@167 774 static void mkio10(C *a, int n)
cannam@167 775 {
cannam@167 776 mkoddonly(a, n);
cannam@167 777 mkio00(a, n);
cannam@167 778 }
cannam@167 779
cannam@167 780 static void mkre11(C *a, int n)
cannam@167 781 {
cannam@167 782 mkoddonly(a, n);
cannam@167 783 mko00(a, n/2, 0);
cannam@167 784 mkre00(a, n);
cannam@167 785 }
cannam@167 786
cannam@167 787 static void mkro11(C *a, int n)
cannam@167 788 {
cannam@167 789 mkoddonly(a, n);
cannam@167 790 mkre00(a, n/2);
cannam@167 791 mkro00(a, n);
cannam@167 792 }
cannam@167 793
cannam@167 794 static void mkio11(C *a, int n)
cannam@167 795 {
cannam@167 796 mkoddonly(a, n);
cannam@167 797 mke00(a, n/2, 1);
cannam@167 798 mkio00(a, n);
cannam@167 799 }
cannam@167 800
cannam@167 801 static void r2r_apply(dofft_closure *k_, bench_complex *in, bench_complex *out)
cannam@167 802 {
cannam@167 803 dofft_r2r_closure *k = (dofft_r2r_closure *)k_;
cannam@167 804 bench_problem *p = k->p;
cannam@167 805 bench_real *ri, *ro;
cannam@167 806 int n, is, os;
cannam@167 807
cannam@167 808 n = p->sz->dims[0].n;
cannam@167 809 is = p->sz->dims[0].is;
cannam@167 810 os = p->sz->dims[0].os;
cannam@167 811
cannam@167 812 ri = (bench_real *) p->in;
cannam@167 813 ro = (bench_real *) p->out;
cannam@167 814
cannam@167 815 switch (p->k[0]) {
cannam@167 816 case R2R_R2HC:
cannam@167 817 cpyr1(n, &c_re(in[0]), 2, ri, is, 1.0);
cannam@167 818 break;
cannam@167 819 case R2R_HC2R:
cannam@167 820 cpyr1(n/2 + 1, &c_re(in[0]), 2, ri, is, 1.0);
cannam@167 821 cpyr1((n+1)/2 - 1, &c_im(in[n-1]), -2, ri + is*(n-1), -is, 1.0);
cannam@167 822 break;
cannam@167 823 case R2R_REDFT00:
cannam@167 824 cpyr1(n, &c_re(in[0]), 2, ri, is, 1.0);
cannam@167 825 break;
cannam@167 826 case R2R_RODFT00:
cannam@167 827 cpyr1(n, &c_re(in[1]), 2, ri, is, 1.0);
cannam@167 828 break;
cannam@167 829 case R2R_REDFT01:
cannam@167 830 cpyr1(n, &c_re(in[0]), 2, ri, is, 1.0);
cannam@167 831 break;
cannam@167 832 case R2R_REDFT10:
cannam@167 833 cpyr1(n, &c_re(in[1]), 4, ri, is, 1.0);
cannam@167 834 break;
cannam@167 835 case R2R_RODFT01:
cannam@167 836 cpyr1(n, &c_re(in[1]), 2, ri, is, 1.0);
cannam@167 837 break;
cannam@167 838 case R2R_RODFT10:
cannam@167 839 cpyr1(n, &c_im(in[1]), 4, ri, is, 1.0);
cannam@167 840 break;
cannam@167 841 case R2R_REDFT11:
cannam@167 842 cpyr1(n, &c_re(in[1]), 4, ri, is, 1.0);
cannam@167 843 break;
cannam@167 844 case R2R_RODFT11:
cannam@167 845 cpyr1(n, &c_re(in[1]), 4, ri, is, 1.0);
cannam@167 846 break;
cannam@167 847 default:
cannam@167 848 BENCH_ASSERT(0); /* not yet implemented */
cannam@167 849 }
cannam@167 850
cannam@167 851 after_problem_rcopy_from(p, ri);
cannam@167 852 doit(1, p);
cannam@167 853 after_problem_rcopy_to(p, ro);
cannam@167 854
cannam@167 855 switch (p->k[0]) {
cannam@167 856 case R2R_R2HC:
cannam@167 857 if (k->k.recopy_input)
cannam@167 858 cpyr1(n, ri, is, &c_re(in[0]), 2, 1.0);
cannam@167 859 cpyr1(n/2 + 1, ro, os, &c_re(out[0]), 2, 1.0);
cannam@167 860 cpyr1((n+1)/2 - 1, ro + os*(n-1), -os, &c_im(out[1]), 2, 1.0);
cannam@167 861 c_im(out[0]) = 0.0;
cannam@167 862 if (n % 2 == 0)
cannam@167 863 c_im(out[n/2]) = 0.0;
cannam@167 864 mkhermitian1(out, n);
cannam@167 865 break;
cannam@167 866 case R2R_HC2R:
cannam@167 867 if (k->k.recopy_input) {
cannam@167 868 cpyr1(n/2 + 1, ri, is, &c_re(in[0]), 2, 1.0);
cannam@167 869 cpyr1((n+1)/2 - 1, ri + is*(n-1), -is, &c_im(in[1]), 2,1.0);
cannam@167 870 }
cannam@167 871 cpyr1(n, ro, os, &c_re(out[0]), 2, 1.0);
cannam@167 872 mkreal(out, n);
cannam@167 873 break;
cannam@167 874 case R2R_REDFT00:
cannam@167 875 if (k->k.recopy_input)
cannam@167 876 cpyr1(n, ri, is, &c_re(in[0]), 2, 1.0);
cannam@167 877 cpyr1(n, ro, os, &c_re(out[0]), 2, 1.0);
cannam@167 878 mkre00(out, k->n0);
cannam@167 879 break;
cannam@167 880 case R2R_RODFT00:
cannam@167 881 if (k->k.recopy_input)
cannam@167 882 cpyr1(n, ri, is, &c_im(in[1]), 2, -1.0);
cannam@167 883 cpyr1(n, ro, os, &c_im(out[1]), 2, -1.0);
cannam@167 884 mkio00(out, k->n0);
cannam@167 885 break;
cannam@167 886 case R2R_REDFT01:
cannam@167 887 if (k->k.recopy_input)
cannam@167 888 cpyr1(n, ri, is, &c_re(in[0]), 2, 1.0);
cannam@167 889 cpyr1(n, ro, os, &c_re(out[1]), 4, 2.0);
cannam@167 890 mkre10(out, k->n0);
cannam@167 891 break;
cannam@167 892 case R2R_REDFT10:
cannam@167 893 if (k->k.recopy_input)
cannam@167 894 cpyr1(n, ri, is, &c_re(in[1]), 4, 2.0);
cannam@167 895 cpyr1(n, ro, os, &c_re(out[0]), 2, 1.0);
cannam@167 896 mkre01(out, k->n0);
cannam@167 897 break;
cannam@167 898 case R2R_RODFT01:
cannam@167 899 if (k->k.recopy_input)
cannam@167 900 cpyr1(n, ri, is, &c_re(in[1]), 2, 1.0);
cannam@167 901 cpyr1(n, ro, os, &c_im(out[1]), 4, -2.0);
cannam@167 902 mkio10(out, k->n0);
cannam@167 903 break;
cannam@167 904 case R2R_RODFT10:
cannam@167 905 if (k->k.recopy_input)
cannam@167 906 cpyr1(n, ri, is, &c_im(in[1]), 4, -2.0);
cannam@167 907 cpyr1(n, ro, os, &c_re(out[1]), 2, 1.0);
cannam@167 908 mkro01(out, k->n0);
cannam@167 909 break;
cannam@167 910 case R2R_REDFT11:
cannam@167 911 if (k->k.recopy_input)
cannam@167 912 cpyr1(n, ri, is, &c_re(in[1]), 4, 2.0);
cannam@167 913 cpyr1(n, ro, os, &c_re(out[1]), 4, 2.0);
cannam@167 914 mkre11(out, k->n0);
cannam@167 915 break;
cannam@167 916 case R2R_RODFT11:
cannam@167 917 if (k->k.recopy_input)
cannam@167 918 cpyr1(n, ri, is, &c_im(in[1]), 4, -2.0);
cannam@167 919 cpyr1(n, ro, os, &c_im(out[1]), 4, -2.0);
cannam@167 920 mkio11(out, k->n0);
cannam@167 921 break;
cannam@167 922 default:
cannam@167 923 BENCH_ASSERT(0); /* not yet implemented */
cannam@167 924 }
cannam@167 925 }
cannam@167 926
cannam@167 927 void accuracy_r2r(bench_problem *p, int rounds, int impulse_rounds,
cannam@167 928 double t[6])
cannam@167 929 {
cannam@167 930 dofft_r2r_closure k;
cannam@167 931 int n, n0 = 1;
cannam@167 932 C *a, *b;
cannam@167 933 aconstrain constrain = 0;
cannam@167 934
cannam@167 935 BENCH_ASSERT(p->kind == PROBLEM_R2R);
cannam@167 936 BENCH_ASSERT(p->sz->rnk == 1);
cannam@167 937 BENCH_ASSERT(p->vecsz->rnk == 0);
cannam@167 938
cannam@167 939 k.k.apply = r2r_apply;
cannam@167 940 k.k.recopy_input = 0;
cannam@167 941 k.p = p;
cannam@167 942 n = tensor_sz(p->sz);
cannam@167 943
cannam@167 944 switch (p->k[0]) {
cannam@167 945 case R2R_R2HC: constrain = mkreal; n0 = n; break;
cannam@167 946 case R2R_HC2R: constrain = mkhermitian1; n0 = n; break;
cannam@167 947 case R2R_REDFT00: constrain = mkre00; n0 = 2*(n-1); break;
cannam@167 948 case R2R_RODFT00: constrain = mkro00; n0 = 2*(n+1); break;
cannam@167 949 case R2R_REDFT01: constrain = mkre01; n0 = 4*n; break;
cannam@167 950 case R2R_REDFT10: constrain = mkre10; n0 = 4*n; break;
cannam@167 951 case R2R_RODFT01: constrain = mkro01; n0 = 4*n; break;
cannam@167 952 case R2R_RODFT10: constrain = mkio10; n0 = 4*n; break;
cannam@167 953 case R2R_REDFT11: constrain = mkre11; n0 = 8*n; break;
cannam@167 954 case R2R_RODFT11: constrain = mkro11; n0 = 8*n; break;
cannam@167 955 default: BENCH_ASSERT(0); /* not yet implemented */
cannam@167 956 }
cannam@167 957 k.n0 = n0;
cannam@167 958
cannam@167 959 a = (C *) bench_malloc(n0 * sizeof(C));
cannam@167 960 b = (C *) bench_malloc(n0 * sizeof(C));
cannam@167 961 accuracy_test(&k.k, constrain, -1, n0, a, b, rounds, impulse_rounds, t);
cannam@167 962 bench_free(b);
cannam@167 963 bench_free(a);
cannam@167 964 }