cannam@167
|
1 /*
|
cannam@167
|
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
|
cannam@167
|
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
cannam@167
|
4 *
|
cannam@167
|
5 * This program is free software; you can redistribute it and/or modify
|
cannam@167
|
6 * it under the terms of the GNU General Public License as published by
|
cannam@167
|
7 * the Free Software Foundation; either version 2 of the License, or
|
cannam@167
|
8 * (at your option) any later version.
|
cannam@167
|
9 *
|
cannam@167
|
10 * This program is distributed in the hope that it will be useful,
|
cannam@167
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
cannam@167
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
cannam@167
|
13 * GNU General Public License for more details.
|
cannam@167
|
14 *
|
cannam@167
|
15 * You should have received a copy of the GNU General Public License
|
cannam@167
|
16 * along with this program; if not, write to the Free Software
|
cannam@167
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
cannam@167
|
18 *
|
cannam@167
|
19 */
|
cannam@167
|
20
|
cannam@167
|
21 /* Lots of ugly duplication from verify-lib.c, plus lots of ugliness in
|
cannam@167
|
22 general for all of the r2r variants...oh well, for now */
|
cannam@167
|
23
|
cannam@167
|
24 #include "verify.h"
|
cannam@167
|
25 #include <math.h>
|
cannam@167
|
26 #include <stdlib.h>
|
cannam@167
|
27 #include <stdio.h>
|
cannam@167
|
28
|
cannam@167
|
29 typedef struct {
|
cannam@167
|
30 bench_problem *p;
|
cannam@167
|
31 bench_tensor *probsz;
|
cannam@167
|
32 bench_tensor *totalsz;
|
cannam@167
|
33 bench_tensor *pckdsz;
|
cannam@167
|
34 bench_tensor *pckdvecsz;
|
cannam@167
|
35 } info;
|
cannam@167
|
36
|
cannam@167
|
37 /*
|
cannam@167
|
38 * Utility functions:
|
cannam@167
|
39 */
|
cannam@167
|
40
|
cannam@167
|
41 static double dabs(double x) { return (x < 0.0) ? -x : x; }
|
cannam@167
|
42 static double dmin(double x, double y) { return (x < y) ? x : y; }
|
cannam@167
|
43
|
cannam@167
|
44 static double raerror(R *a, R *b, int n)
|
cannam@167
|
45 {
|
cannam@167
|
46 if (n > 0) {
|
cannam@167
|
47 /* compute the relative Linf error */
|
cannam@167
|
48 double e = 0.0, mag = 0.0;
|
cannam@167
|
49 int i;
|
cannam@167
|
50
|
cannam@167
|
51 for (i = 0; i < n; ++i) {
|
cannam@167
|
52 e = dmax(e, dabs(a[i] - b[i]));
|
cannam@167
|
53 mag = dmax(mag, dmin(dabs(a[i]), dabs(b[i])));
|
cannam@167
|
54 }
|
cannam@167
|
55 if (dabs(mag) < 1e-14 && dabs(e) < 1e-14)
|
cannam@167
|
56 e = 0.0;
|
cannam@167
|
57 else
|
cannam@167
|
58 e /= mag;
|
cannam@167
|
59
|
cannam@167
|
60 #ifdef HAVE_ISNAN
|
cannam@167
|
61 BENCH_ASSERT(!isnan(e));
|
cannam@167
|
62 #endif
|
cannam@167
|
63 return e;
|
cannam@167
|
64 } else
|
cannam@167
|
65 return 0.0;
|
cannam@167
|
66 }
|
cannam@167
|
67
|
cannam@167
|
68 #define by2pi(m, n) ((K2PI * (m)) / (n))
|
cannam@167
|
69
|
cannam@167
|
70 /*
|
cannam@167
|
71 * Improve accuracy by reducing x to range [0..1/8]
|
cannam@167
|
72 * before multiplication by 2 * PI.
|
cannam@167
|
73 */
|
cannam@167
|
74
|
cannam@167
|
75 static trigreal bench_sincos(trigreal m, trigreal n, int sinp)
|
cannam@167
|
76 {
|
cannam@167
|
77 /* waiting for C to get tail recursion... */
|
cannam@167
|
78 trigreal half_n = n * 0.5;
|
cannam@167
|
79 trigreal quarter_n = half_n * 0.5;
|
cannam@167
|
80 trigreal eighth_n = quarter_n * 0.5;
|
cannam@167
|
81 trigreal sgn = 1.0;
|
cannam@167
|
82
|
cannam@167
|
83 if (sinp) goto sin;
|
cannam@167
|
84 cos:
|
cannam@167
|
85 if (m < 0) { m = -m; /* goto cos; */ }
|
cannam@167
|
86 if (m > half_n) { m = n - m; goto cos; }
|
cannam@167
|
87 if (m > eighth_n) { m = quarter_n - m; goto sin; }
|
cannam@167
|
88 return sgn * COS(by2pi(m, n));
|
cannam@167
|
89
|
cannam@167
|
90 msin:
|
cannam@167
|
91 sgn = -sgn;
|
cannam@167
|
92 sin:
|
cannam@167
|
93 if (m < 0) { m = -m; goto msin; }
|
cannam@167
|
94 if (m > half_n) { m = n - m; goto msin; }
|
cannam@167
|
95 if (m > eighth_n) { m = quarter_n - m; goto cos; }
|
cannam@167
|
96 return sgn * SIN(by2pi(m, n));
|
cannam@167
|
97 }
|
cannam@167
|
98
|
cannam@167
|
99 static trigreal cos2pi(int m, int n)
|
cannam@167
|
100 {
|
cannam@167
|
101 return bench_sincos((trigreal)m, (trigreal)n, 0);
|
cannam@167
|
102 }
|
cannam@167
|
103
|
cannam@167
|
104 static trigreal sin2pi(int m, int n)
|
cannam@167
|
105 {
|
cannam@167
|
106 return bench_sincos((trigreal)m, (trigreal)n, 1);
|
cannam@167
|
107 }
|
cannam@167
|
108
|
cannam@167
|
109 static trigreal cos00(int i, int j, int n)
|
cannam@167
|
110 {
|
cannam@167
|
111 return cos2pi(i * j, n);
|
cannam@167
|
112 }
|
cannam@167
|
113
|
cannam@167
|
114 static trigreal cos01(int i, int j, int n)
|
cannam@167
|
115 {
|
cannam@167
|
116 return cos00(i, 2*j + 1, 2*n);
|
cannam@167
|
117 }
|
cannam@167
|
118
|
cannam@167
|
119 static trigreal cos10(int i, int j, int n)
|
cannam@167
|
120 {
|
cannam@167
|
121 return cos00(2*i + 1, j, 2*n);
|
cannam@167
|
122 }
|
cannam@167
|
123
|
cannam@167
|
124 static trigreal cos11(int i, int j, int n)
|
cannam@167
|
125 {
|
cannam@167
|
126 return cos00(2*i + 1, 2*j + 1, 4*n);
|
cannam@167
|
127 }
|
cannam@167
|
128
|
cannam@167
|
129 static trigreal sin00(int i, int j, int n)
|
cannam@167
|
130 {
|
cannam@167
|
131 return sin2pi(i * j, n);
|
cannam@167
|
132 }
|
cannam@167
|
133
|
cannam@167
|
134 static trigreal sin01(int i, int j, int n)
|
cannam@167
|
135 {
|
cannam@167
|
136 return sin00(i, 2*j + 1, 2*n);
|
cannam@167
|
137 }
|
cannam@167
|
138
|
cannam@167
|
139 static trigreal sin10(int i, int j, int n)
|
cannam@167
|
140 {
|
cannam@167
|
141 return sin00(2*i + 1, j, 2*n);
|
cannam@167
|
142 }
|
cannam@167
|
143
|
cannam@167
|
144 static trigreal sin11(int i, int j, int n)
|
cannam@167
|
145 {
|
cannam@167
|
146 return sin00(2*i + 1, 2*j + 1, 4*n);
|
cannam@167
|
147 }
|
cannam@167
|
148
|
cannam@167
|
149 static trigreal realhalf(int i, int j, int n)
|
cannam@167
|
150 {
|
cannam@167
|
151 UNUSED(i);
|
cannam@167
|
152 if (j <= n - j)
|
cannam@167
|
153 return 1.0;
|
cannam@167
|
154 else
|
cannam@167
|
155 return 0.0;
|
cannam@167
|
156 }
|
cannam@167
|
157
|
cannam@167
|
158 static trigreal coshalf(int i, int j, int n)
|
cannam@167
|
159 {
|
cannam@167
|
160 if (j <= n - j)
|
cannam@167
|
161 return cos00(i, j, n);
|
cannam@167
|
162 else
|
cannam@167
|
163 return cos00(i, n - j, n);
|
cannam@167
|
164 }
|
cannam@167
|
165
|
cannam@167
|
166 static trigreal unity(int i, int j, int n)
|
cannam@167
|
167 {
|
cannam@167
|
168 UNUSED(i);
|
cannam@167
|
169 UNUSED(j);
|
cannam@167
|
170 UNUSED(n);
|
cannam@167
|
171 return 1.0;
|
cannam@167
|
172 }
|
cannam@167
|
173
|
cannam@167
|
174 typedef trigreal (*trigfun)(int, int, int);
|
cannam@167
|
175
|
cannam@167
|
176 static void rarand(R *a, int n)
|
cannam@167
|
177 {
|
cannam@167
|
178 int i;
|
cannam@167
|
179
|
cannam@167
|
180 /* generate random inputs */
|
cannam@167
|
181 for (i = 0; i < n; ++i) {
|
cannam@167
|
182 a[i] = mydrand();
|
cannam@167
|
183 }
|
cannam@167
|
184 }
|
cannam@167
|
185
|
cannam@167
|
186 /* C = A + B */
|
cannam@167
|
187 static void raadd(R *c, R *a, R *b, int n)
|
cannam@167
|
188 {
|
cannam@167
|
189 int i;
|
cannam@167
|
190
|
cannam@167
|
191 for (i = 0; i < n; ++i) {
|
cannam@167
|
192 c[i] = a[i] + b[i];
|
cannam@167
|
193 }
|
cannam@167
|
194 }
|
cannam@167
|
195
|
cannam@167
|
196 /* C = A - B */
|
cannam@167
|
197 static void rasub(R *c, R *a, R *b, int n)
|
cannam@167
|
198 {
|
cannam@167
|
199 int i;
|
cannam@167
|
200
|
cannam@167
|
201 for (i = 0; i < n; ++i) {
|
cannam@167
|
202 c[i] = a[i] - b[i];
|
cannam@167
|
203 }
|
cannam@167
|
204 }
|
cannam@167
|
205
|
cannam@167
|
206 /* B = rotate left A + rotate right A */
|
cannam@167
|
207 static void rarolr(R *b, R *a, int n, int nb, int na,
|
cannam@167
|
208 r2r_kind_t k)
|
cannam@167
|
209 {
|
cannam@167
|
210 int isL0 = 0, isL1 = 0, isR0 = 0, isR1 = 0;
|
cannam@167
|
211 int i, ib, ia;
|
cannam@167
|
212
|
cannam@167
|
213 for (ib = 0; ib < nb; ++ib) {
|
cannam@167
|
214 for (i = 0; i < n - 1; ++i)
|
cannam@167
|
215 for (ia = 0; ia < na; ++ia)
|
cannam@167
|
216 b[(ib * n + i) * na + ia] =
|
cannam@167
|
217 a[(ib * n + i + 1) * na + ia];
|
cannam@167
|
218
|
cannam@167
|
219 /* ugly switch to do boundary conditions for various r2r types */
|
cannam@167
|
220 switch (k) {
|
cannam@167
|
221 /* periodic boundaries */
|
cannam@167
|
222 case R2R_DHT:
|
cannam@167
|
223 case R2R_R2HC:
|
cannam@167
|
224 for (ia = 0; ia < na; ++ia) {
|
cannam@167
|
225 b[(ib * n + n - 1) * na + ia] =
|
cannam@167
|
226 a[(ib * n + 0) * na + ia];
|
cannam@167
|
227 b[(ib * n + 0) * na + ia] +=
|
cannam@167
|
228 a[(ib * n + n - 1) * na + ia];
|
cannam@167
|
229 }
|
cannam@167
|
230 break;
|
cannam@167
|
231
|
cannam@167
|
232 case R2R_HC2R: /* ugh (hermitian halfcomplex boundaries) */
|
cannam@167
|
233 if (n > 2) {
|
cannam@167
|
234 if (n % 2 == 0)
|
cannam@167
|
235 for (ia = 0; ia < na; ++ia) {
|
cannam@167
|
236 b[(ib * n + n - 1) * na + ia] = 0.0;
|
cannam@167
|
237 b[(ib * n + 0) * na + ia] +=
|
cannam@167
|
238 a[(ib * n + 1) * na + ia];
|
cannam@167
|
239 b[(ib * n + n/2) * na + ia] +=
|
cannam@167
|
240 + a[(ib * n + n/2 - 1) * na + ia]
|
cannam@167
|
241 - a[(ib * n + n/2 + 1) * na + ia];
|
cannam@167
|
242 b[(ib * n + n/2 + 1) * na + ia] +=
|
cannam@167
|
243 - a[(ib * n + n/2) * na + ia];
|
cannam@167
|
244 }
|
cannam@167
|
245 else
|
cannam@167
|
246 for (ia = 0; ia < na; ++ia) {
|
cannam@167
|
247 b[(ib * n + n - 1) * na + ia] = 0.0;
|
cannam@167
|
248 b[(ib * n + 0) * na + ia] +=
|
cannam@167
|
249 a[(ib * n + 1) * na + ia];
|
cannam@167
|
250 b[(ib * n + n/2) * na + ia] +=
|
cannam@167
|
251 + a[(ib * n + n/2) * na + ia]
|
cannam@167
|
252 - a[(ib * n + n/2 + 1) * na + ia];
|
cannam@167
|
253 b[(ib * n + n/2 + 1) * na + ia] +=
|
cannam@167
|
254 - a[(ib * n + n/2 + 1) * na + ia]
|
cannam@167
|
255 - a[(ib * n + n/2) * na + ia];
|
cannam@167
|
256 }
|
cannam@167
|
257 } else /* n <= 2 */ {
|
cannam@167
|
258 for (ia = 0; ia < na; ++ia) {
|
cannam@167
|
259 b[(ib * n + n - 1) * na + ia] =
|
cannam@167
|
260 a[(ib * n + 0) * na + ia];
|
cannam@167
|
261 b[(ib * n + 0) * na + ia] +=
|
cannam@167
|
262 a[(ib * n + n - 1) * na + ia];
|
cannam@167
|
263 }
|
cannam@167
|
264 }
|
cannam@167
|
265 break;
|
cannam@167
|
266
|
cannam@167
|
267 /* various even/odd boundary conditions */
|
cannam@167
|
268 case R2R_REDFT00:
|
cannam@167
|
269 isL1 = isR1 = 1;
|
cannam@167
|
270 goto mirrors;
|
cannam@167
|
271 case R2R_REDFT01:
|
cannam@167
|
272 isL1 = 1;
|
cannam@167
|
273 goto mirrors;
|
cannam@167
|
274 case R2R_REDFT10:
|
cannam@167
|
275 isL0 = isR0 = 1;
|
cannam@167
|
276 goto mirrors;
|
cannam@167
|
277 case R2R_REDFT11:
|
cannam@167
|
278 isL0 = 1;
|
cannam@167
|
279 isR0 = -1;
|
cannam@167
|
280 goto mirrors;
|
cannam@167
|
281 case R2R_RODFT00:
|
cannam@167
|
282 goto mirrors;
|
cannam@167
|
283 case R2R_RODFT01:
|
cannam@167
|
284 isR1 = 1;
|
cannam@167
|
285 goto mirrors;
|
cannam@167
|
286 case R2R_RODFT10:
|
cannam@167
|
287 isL0 = isR0 = -1;
|
cannam@167
|
288 goto mirrors;
|
cannam@167
|
289 case R2R_RODFT11:
|
cannam@167
|
290 isL0 = -1;
|
cannam@167
|
291 isR0 = 1;
|
cannam@167
|
292 goto mirrors;
|
cannam@167
|
293
|
cannam@167
|
294 mirrors:
|
cannam@167
|
295
|
cannam@167
|
296 for (ia = 0; ia < na; ++ia)
|
cannam@167
|
297 b[(ib * n + n - 1) * na + ia] =
|
cannam@167
|
298 isR0 * a[(ib * n + n - 1) * na + ia]
|
cannam@167
|
299 + (n > 1 ? isR1 * a[(ib * n + n - 2) * na + ia]
|
cannam@167
|
300 : 0);
|
cannam@167
|
301
|
cannam@167
|
302 for (ia = 0; ia < na; ++ia)
|
cannam@167
|
303 b[(ib * n) * na + ia] +=
|
cannam@167
|
304 isL0 * a[(ib * n) * na + ia]
|
cannam@167
|
305 + (n > 1 ? isL1 * a[(ib * n + 1) * na + ia] : 0);
|
cannam@167
|
306
|
cannam@167
|
307 }
|
cannam@167
|
308
|
cannam@167
|
309 for (i = 1; i < n; ++i)
|
cannam@167
|
310 for (ia = 0; ia < na; ++ia)
|
cannam@167
|
311 b[(ib * n + i) * na + ia] +=
|
cannam@167
|
312 a[(ib * n + i - 1) * na + ia];
|
cannam@167
|
313 }
|
cannam@167
|
314 }
|
cannam@167
|
315
|
cannam@167
|
316 static void raphase_shift(R *b, R *a, int n, int nb, int na,
|
cannam@167
|
317 int n0, int k0, trigfun t)
|
cannam@167
|
318 {
|
cannam@167
|
319 int j, jb, ja;
|
cannam@167
|
320
|
cannam@167
|
321 for (jb = 0; jb < nb; ++jb)
|
cannam@167
|
322 for (j = 0; j < n; ++j) {
|
cannam@167
|
323 trigreal c = 2.0 * t(1, j + k0, n0);
|
cannam@167
|
324
|
cannam@167
|
325 for (ja = 0; ja < na; ++ja) {
|
cannam@167
|
326 int k = (jb * n + j) * na + ja;
|
cannam@167
|
327 b[k] = a[k] * c;
|
cannam@167
|
328 }
|
cannam@167
|
329 }
|
cannam@167
|
330 }
|
cannam@167
|
331
|
cannam@167
|
332 /* A = alpha * A (real, in place) */
|
cannam@167
|
333 static void rascale(R *a, R alpha, int n)
|
cannam@167
|
334 {
|
cannam@167
|
335 int i;
|
cannam@167
|
336
|
cannam@167
|
337 for (i = 0; i < n; ++i) {
|
cannam@167
|
338 a[i] *= alpha;
|
cannam@167
|
339 }
|
cannam@167
|
340 }
|
cannam@167
|
341
|
cannam@167
|
342 /*
|
cannam@167
|
343 * compute rdft:
|
cannam@167
|
344 */
|
cannam@167
|
345
|
cannam@167
|
346 /* copy real A into real B, using output stride of A and input stride of B */
|
cannam@167
|
347 typedef struct {
|
cannam@167
|
348 dotens2_closure k;
|
cannam@167
|
349 R *ra;
|
cannam@167
|
350 R *rb;
|
cannam@167
|
351 } cpyr_closure;
|
cannam@167
|
352
|
cannam@167
|
353 static void cpyr0(dotens2_closure *k_,
|
cannam@167
|
354 int indxa, int ondxa, int indxb, int ondxb)
|
cannam@167
|
355 {
|
cannam@167
|
356 cpyr_closure *k = (cpyr_closure *)k_;
|
cannam@167
|
357 k->rb[indxb] = k->ra[ondxa];
|
cannam@167
|
358 UNUSED(indxa); UNUSED(ondxb);
|
cannam@167
|
359 }
|
cannam@167
|
360
|
cannam@167
|
361 static void cpyr(R *ra, bench_tensor *sza, R *rb, bench_tensor *szb)
|
cannam@167
|
362 {
|
cannam@167
|
363 cpyr_closure k;
|
cannam@167
|
364 k.k.apply = cpyr0;
|
cannam@167
|
365 k.ra = ra; k.rb = rb;
|
cannam@167
|
366 bench_dotens2(sza, szb, &k.k);
|
cannam@167
|
367 }
|
cannam@167
|
368
|
cannam@167
|
369 static void dofft(info *nfo, R *in, R *out)
|
cannam@167
|
370 {
|
cannam@167
|
371 cpyr(in, nfo->pckdsz, (R *) nfo->p->in, nfo->totalsz);
|
cannam@167
|
372 after_problem_rcopy_from(nfo->p, (bench_real *)nfo->p->in);
|
cannam@167
|
373 doit(1, nfo->p);
|
cannam@167
|
374 after_problem_rcopy_to(nfo->p, (bench_real *)nfo->p->out);
|
cannam@167
|
375 cpyr((R *) nfo->p->out, nfo->totalsz, out, nfo->pckdsz);
|
cannam@167
|
376 }
|
cannam@167
|
377
|
cannam@167
|
378 static double racmp(R *a, R *b, int n, const char *test, double tol)
|
cannam@167
|
379 {
|
cannam@167
|
380 double d = raerror(a, b, n);
|
cannam@167
|
381 if (d > tol) {
|
cannam@167
|
382 ovtpvt_err("Found relative error %e (%s)\n", d, test);
|
cannam@167
|
383 {
|
cannam@167
|
384 int i, N;
|
cannam@167
|
385 N = n > 300 && verbose <= 2 ? 300 : n;
|
cannam@167
|
386 for (i = 0; i < N; ++i)
|
cannam@167
|
387 ovtpvt_err("%8d %16.12f %16.12f\n", i,
|
cannam@167
|
388 (double) a[i],
|
cannam@167
|
389 (double) b[i]);
|
cannam@167
|
390 }
|
cannam@167
|
391 bench_exit(EXIT_FAILURE);
|
cannam@167
|
392 }
|
cannam@167
|
393 return d;
|
cannam@167
|
394 }
|
cannam@167
|
395
|
cannam@167
|
396 /***********************************************************************/
|
cannam@167
|
397
|
cannam@167
|
398 typedef struct {
|
cannam@167
|
399 int n; /* physical size */
|
cannam@167
|
400 int n0; /* "logical" transform size */
|
cannam@167
|
401 int i0, k0; /* shifts of input/output */
|
cannam@167
|
402 trigfun ti, ts; /* impulse/shift trig functions */
|
cannam@167
|
403 } dim_stuff;
|
cannam@167
|
404
|
cannam@167
|
405 static void impulse_response(int rnk, dim_stuff *d, R impulse_amp,
|
cannam@167
|
406 R *A, int N)
|
cannam@167
|
407 {
|
cannam@167
|
408 if (rnk == 0)
|
cannam@167
|
409 A[0] = impulse_amp;
|
cannam@167
|
410 else {
|
cannam@167
|
411 int i;
|
cannam@167
|
412 N /= d->n;
|
cannam@167
|
413 for (i = 0; i < d->n; ++i) {
|
cannam@167
|
414 impulse_response(rnk - 1, d + 1,
|
cannam@167
|
415 impulse_amp * d->ti(d->i0, d->k0 + i, d->n0),
|
cannam@167
|
416 A + i * N, N);
|
cannam@167
|
417 }
|
cannam@167
|
418 }
|
cannam@167
|
419 }
|
cannam@167
|
420
|
cannam@167
|
421 /***************************************************************************/
|
cannam@167
|
422
|
cannam@167
|
423 /*
|
cannam@167
|
424 * Implementation of the FFT tester described in
|
cannam@167
|
425 *
|
cannam@167
|
426 * Funda Ergün. Testing multivariate linear functions: Overcoming the
|
cannam@167
|
427 * generator bottleneck. In Proceedings of the Twenty-Seventh Annual
|
cannam@167
|
428 * ACM Symposium on the Theory of Computing, pages 407-416, Las Vegas,
|
cannam@167
|
429 * Nevada, 29 May--1 June 1995.
|
cannam@167
|
430 *
|
cannam@167
|
431 * Also: F. Ergun, S. R. Kumar, and D. Sivakumar, "Self-testing without
|
cannam@167
|
432 * the generator bottleneck," SIAM J. on Computing 29 (5), 1630-51 (2000).
|
cannam@167
|
433 */
|
cannam@167
|
434
|
cannam@167
|
435 static double rlinear(int n, info *nfo, R *inA, R *inB, R *inC, R *outA,
|
cannam@167
|
436 R *outB, R *outC, R *tmp, int rounds, double tol)
|
cannam@167
|
437 {
|
cannam@167
|
438 double e = 0.0;
|
cannam@167
|
439 int j;
|
cannam@167
|
440
|
cannam@167
|
441 for (j = 0; j < rounds; ++j) {
|
cannam@167
|
442 R alpha, beta;
|
cannam@167
|
443 alpha = mydrand();
|
cannam@167
|
444 beta = mydrand();
|
cannam@167
|
445 rarand(inA, n);
|
cannam@167
|
446 rarand(inB, n);
|
cannam@167
|
447 dofft(nfo, inA, outA);
|
cannam@167
|
448 dofft(nfo, inB, outB);
|
cannam@167
|
449
|
cannam@167
|
450 rascale(outA, alpha, n);
|
cannam@167
|
451 rascale(outB, beta, n);
|
cannam@167
|
452 raadd(tmp, outA, outB, n);
|
cannam@167
|
453 rascale(inA, alpha, n);
|
cannam@167
|
454 rascale(inB, beta, n);
|
cannam@167
|
455 raadd(inC, inA, inB, n);
|
cannam@167
|
456 dofft(nfo, inC, outC);
|
cannam@167
|
457
|
cannam@167
|
458 e = dmax(e, racmp(outC, tmp, n, "linear", tol));
|
cannam@167
|
459 }
|
cannam@167
|
460 return e;
|
cannam@167
|
461 }
|
cannam@167
|
462
|
cannam@167
|
463 static double rimpulse(dim_stuff *d, R impulse_amp,
|
cannam@167
|
464 int n, int vecn, info *nfo,
|
cannam@167
|
465 R *inA, R *inB, R *inC,
|
cannam@167
|
466 R *outA, R *outB, R *outC,
|
cannam@167
|
467 R *tmp, int rounds, double tol)
|
cannam@167
|
468 {
|
cannam@167
|
469 double e = 0.0;
|
cannam@167
|
470 int N = n * vecn;
|
cannam@167
|
471 int i;
|
cannam@167
|
472 int j;
|
cannam@167
|
473
|
cannam@167
|
474 /* test 2: check that the unit impulse is transformed properly */
|
cannam@167
|
475
|
cannam@167
|
476 for (i = 0; i < N; ++i) {
|
cannam@167
|
477 /* pls */
|
cannam@167
|
478 inA[i] = 0.0;
|
cannam@167
|
479 }
|
cannam@167
|
480 for (i = 0; i < vecn; ++i) {
|
cannam@167
|
481 inA[i * n] = (i+1) / (double)(vecn+1);
|
cannam@167
|
482
|
cannam@167
|
483 /* transform of the pls */
|
cannam@167
|
484 impulse_response(nfo->probsz->rnk, d, impulse_amp * inA[i * n],
|
cannam@167
|
485 outA + i * n, n);
|
cannam@167
|
486 }
|
cannam@167
|
487
|
cannam@167
|
488 dofft(nfo, inA, tmp);
|
cannam@167
|
489 e = dmax(e, racmp(tmp, outA, N, "impulse 1", tol));
|
cannam@167
|
490
|
cannam@167
|
491 for (j = 0; j < rounds; ++j) {
|
cannam@167
|
492 rarand(inB, N);
|
cannam@167
|
493 rasub(inC, inA, inB, N);
|
cannam@167
|
494 dofft(nfo, inB, outB);
|
cannam@167
|
495 dofft(nfo, inC, outC);
|
cannam@167
|
496 raadd(tmp, outB, outC, N);
|
cannam@167
|
497 e = dmax(e, racmp(tmp, outA, N, "impulse", tol));
|
cannam@167
|
498 }
|
cannam@167
|
499 return e;
|
cannam@167
|
500 }
|
cannam@167
|
501
|
cannam@167
|
502 static double t_shift(int n, int vecn, info *nfo,
|
cannam@167
|
503 R *inA, R *inB, R *outA, R *outB, R *tmp,
|
cannam@167
|
504 int rounds, double tol,
|
cannam@167
|
505 dim_stuff *d)
|
cannam@167
|
506 {
|
cannam@167
|
507 double e = 0.0;
|
cannam@167
|
508 int nb, na, dim, N = n * vecn;
|
cannam@167
|
509 int i, j;
|
cannam@167
|
510 bench_tensor *sz = nfo->probsz;
|
cannam@167
|
511
|
cannam@167
|
512 /* test 3: check the time-shift property */
|
cannam@167
|
513 /* the paper performs more tests, but this code should be fine too */
|
cannam@167
|
514
|
cannam@167
|
515 nb = 1;
|
cannam@167
|
516 na = n;
|
cannam@167
|
517
|
cannam@167
|
518 /* check shifts across all SZ dimensions */
|
cannam@167
|
519 for (dim = 0; dim < sz->rnk; ++dim) {
|
cannam@167
|
520 int ncur = sz->dims[dim].n;
|
cannam@167
|
521
|
cannam@167
|
522 na /= ncur;
|
cannam@167
|
523
|
cannam@167
|
524 for (j = 0; j < rounds; ++j) {
|
cannam@167
|
525 rarand(inA, N);
|
cannam@167
|
526
|
cannam@167
|
527 for (i = 0; i < vecn; ++i) {
|
cannam@167
|
528 rarolr(inB + i * n, inA + i*n, ncur, nb,na,
|
cannam@167
|
529 nfo->p->k[dim]);
|
cannam@167
|
530 }
|
cannam@167
|
531 dofft(nfo, inA, outA);
|
cannam@167
|
532 dofft(nfo, inB, outB);
|
cannam@167
|
533 for (i = 0; i < vecn; ++i)
|
cannam@167
|
534 raphase_shift(tmp + i * n, outA + i * n, ncur,
|
cannam@167
|
535 nb, na, d[dim].n0, d[dim].k0, d[dim].ts);
|
cannam@167
|
536 e = dmax(e, racmp(tmp, outB, N, "time shift", tol));
|
cannam@167
|
537 }
|
cannam@167
|
538
|
cannam@167
|
539 nb *= ncur;
|
cannam@167
|
540 }
|
cannam@167
|
541 return e;
|
cannam@167
|
542 }
|
cannam@167
|
543
|
cannam@167
|
544 /***********************************************************************/
|
cannam@167
|
545
|
cannam@167
|
546 void verify_r2r(bench_problem *p, int rounds, double tol, errors *e)
|
cannam@167
|
547 {
|
cannam@167
|
548 R *inA, *inB, *inC, *outA, *outB, *outC, *tmp;
|
cannam@167
|
549 info nfo;
|
cannam@167
|
550 int n, vecn, N;
|
cannam@167
|
551 double impulse_amp = 1.0;
|
cannam@167
|
552 dim_stuff *d;
|
cannam@167
|
553 int i;
|
cannam@167
|
554
|
cannam@167
|
555 if (rounds == 0)
|
cannam@167
|
556 rounds = 20; /* default value */
|
cannam@167
|
557
|
cannam@167
|
558 n = tensor_sz(p->sz);
|
cannam@167
|
559 vecn = tensor_sz(p->vecsz);
|
cannam@167
|
560 N = n * vecn;
|
cannam@167
|
561
|
cannam@167
|
562 d = (dim_stuff *) bench_malloc(sizeof(dim_stuff) * p->sz->rnk);
|
cannam@167
|
563 for (i = 0; i < p->sz->rnk; ++i) {
|
cannam@167
|
564 int n0, i0, k0;
|
cannam@167
|
565 trigfun ti, ts;
|
cannam@167
|
566
|
cannam@167
|
567 d[i].n = n0 = p->sz->dims[i].n;
|
cannam@167
|
568 if (p->k[i] > R2R_DHT)
|
cannam@167
|
569 n0 = 2 * (n0 + (p->k[i] == R2R_REDFT00 ? -1 :
|
cannam@167
|
570 (p->k[i] == R2R_RODFT00 ? 1 : 0)));
|
cannam@167
|
571
|
cannam@167
|
572 switch (p->k[i]) {
|
cannam@167
|
573 case R2R_R2HC:
|
cannam@167
|
574 i0 = k0 = 0;
|
cannam@167
|
575 ti = realhalf;
|
cannam@167
|
576 ts = coshalf;
|
cannam@167
|
577 break;
|
cannam@167
|
578 case R2R_DHT:
|
cannam@167
|
579 i0 = k0 = 0;
|
cannam@167
|
580 ti = unity;
|
cannam@167
|
581 ts = cos00;
|
cannam@167
|
582 break;
|
cannam@167
|
583 case R2R_HC2R:
|
cannam@167
|
584 i0 = k0 = 0;
|
cannam@167
|
585 ti = unity;
|
cannam@167
|
586 ts = cos00;
|
cannam@167
|
587 break;
|
cannam@167
|
588 case R2R_REDFT00:
|
cannam@167
|
589 i0 = k0 = 0;
|
cannam@167
|
590 ti = ts = cos00;
|
cannam@167
|
591 break;
|
cannam@167
|
592 case R2R_REDFT01:
|
cannam@167
|
593 i0 = k0 = 0;
|
cannam@167
|
594 ti = ts = cos01;
|
cannam@167
|
595 break;
|
cannam@167
|
596 case R2R_REDFT10:
|
cannam@167
|
597 i0 = k0 = 0;
|
cannam@167
|
598 ti = cos10; impulse_amp *= 2.0;
|
cannam@167
|
599 ts = cos00;
|
cannam@167
|
600 break;
|
cannam@167
|
601 case R2R_REDFT11:
|
cannam@167
|
602 i0 = k0 = 0;
|
cannam@167
|
603 ti = cos11; impulse_amp *= 2.0;
|
cannam@167
|
604 ts = cos01;
|
cannam@167
|
605 break;
|
cannam@167
|
606 case R2R_RODFT00:
|
cannam@167
|
607 i0 = k0 = 1;
|
cannam@167
|
608 ti = sin00; impulse_amp *= 2.0;
|
cannam@167
|
609 ts = cos00;
|
cannam@167
|
610 break;
|
cannam@167
|
611 case R2R_RODFT01:
|
cannam@167
|
612 i0 = 1; k0 = 0;
|
cannam@167
|
613 ti = sin01; impulse_amp *= n == 1 ? 1.0 : 2.0;
|
cannam@167
|
614 ts = cos01;
|
cannam@167
|
615 break;
|
cannam@167
|
616 case R2R_RODFT10:
|
cannam@167
|
617 i0 = 0; k0 = 1;
|
cannam@167
|
618 ti = sin10; impulse_amp *= 2.0;
|
cannam@167
|
619 ts = cos00;
|
cannam@167
|
620 break;
|
cannam@167
|
621 case R2R_RODFT11:
|
cannam@167
|
622 i0 = k0 = 0;
|
cannam@167
|
623 ti = sin11; impulse_amp *= 2.0;
|
cannam@167
|
624 ts = cos01;
|
cannam@167
|
625 break;
|
cannam@167
|
626 default:
|
cannam@167
|
627 BENCH_ASSERT(0);
|
cannam@167
|
628 return;
|
cannam@167
|
629 }
|
cannam@167
|
630
|
cannam@167
|
631 d[i].n0 = n0;
|
cannam@167
|
632 d[i].i0 = i0;
|
cannam@167
|
633 d[i].k0 = k0;
|
cannam@167
|
634 d[i].ti = ti;
|
cannam@167
|
635 d[i].ts = ts;
|
cannam@167
|
636 }
|
cannam@167
|
637
|
cannam@167
|
638
|
cannam@167
|
639 inA = (R *) bench_malloc(N * sizeof(R));
|
cannam@167
|
640 inB = (R *) bench_malloc(N * sizeof(R));
|
cannam@167
|
641 inC = (R *) bench_malloc(N * sizeof(R));
|
cannam@167
|
642 outA = (R *) bench_malloc(N * sizeof(R));
|
cannam@167
|
643 outB = (R *) bench_malloc(N * sizeof(R));
|
cannam@167
|
644 outC = (R *) bench_malloc(N * sizeof(R));
|
cannam@167
|
645 tmp = (R *) bench_malloc(N * sizeof(R));
|
cannam@167
|
646
|
cannam@167
|
647 nfo.p = p;
|
cannam@167
|
648 nfo.probsz = p->sz;
|
cannam@167
|
649 nfo.totalsz = tensor_append(p->vecsz, nfo.probsz);
|
cannam@167
|
650 nfo.pckdsz = verify_pack(nfo.totalsz, 1);
|
cannam@167
|
651 nfo.pckdvecsz = verify_pack(p->vecsz, tensor_sz(nfo.probsz));
|
cannam@167
|
652
|
cannam@167
|
653 e->i = rimpulse(d, impulse_amp, n, vecn, &nfo,
|
cannam@167
|
654 inA, inB, inC, outA, outB, outC, tmp, rounds, tol);
|
cannam@167
|
655 e->l = rlinear(N, &nfo, inA, inB, inC, outA, outB, outC, tmp, rounds,tol);
|
cannam@167
|
656 e->s = t_shift(n, vecn, &nfo, inA, inB, outA, outB, tmp,
|
cannam@167
|
657 rounds, tol, d);
|
cannam@167
|
658
|
cannam@167
|
659 /* grr, verify-lib.c:preserves_input() only works for complex */
|
cannam@167
|
660 if (!p->in_place && !p->destroy_input) {
|
cannam@167
|
661 bench_tensor *totalsz_swap, *pckdsz_swap;
|
cannam@167
|
662 totalsz_swap = tensor_copy_swapio(nfo.totalsz);
|
cannam@167
|
663 pckdsz_swap = tensor_copy_swapio(nfo.pckdsz);
|
cannam@167
|
664
|
cannam@167
|
665 for (i = 0; i < rounds; ++i) {
|
cannam@167
|
666 rarand(inA, N);
|
cannam@167
|
667 dofft(&nfo, inA, outB);
|
cannam@167
|
668 cpyr((R *) nfo.p->in, totalsz_swap, inB, pckdsz_swap);
|
cannam@167
|
669 racmp(inB, inA, N, "preserves_input", 0.0);
|
cannam@167
|
670 }
|
cannam@167
|
671
|
cannam@167
|
672 tensor_destroy(totalsz_swap);
|
cannam@167
|
673 tensor_destroy(pckdsz_swap);
|
cannam@167
|
674 }
|
cannam@167
|
675
|
cannam@167
|
676 tensor_destroy(nfo.totalsz);
|
cannam@167
|
677 tensor_destroy(nfo.pckdsz);
|
cannam@167
|
678 tensor_destroy(nfo.pckdvecsz);
|
cannam@167
|
679 bench_free(tmp);
|
cannam@167
|
680 bench_free(outC);
|
cannam@167
|
681 bench_free(outB);
|
cannam@167
|
682 bench_free(outA);
|
cannam@167
|
683 bench_free(inC);
|
cannam@167
|
684 bench_free(inB);
|
cannam@167
|
685 bench_free(inA);
|
cannam@167
|
686 bench_free(d);
|
cannam@167
|
687 }
|
cannam@167
|
688
|
cannam@167
|
689
|
cannam@167
|
690 typedef struct {
|
cannam@167
|
691 dofft_closure k;
|
cannam@167
|
692 bench_problem *p;
|
cannam@167
|
693 int n0;
|
cannam@167
|
694 } dofft_r2r_closure;
|
cannam@167
|
695
|
cannam@167
|
696 static void cpyr1(int n, R *in, int is, R *out, int os, R scale)
|
cannam@167
|
697 {
|
cannam@167
|
698 int i;
|
cannam@167
|
699 for (i = 0; i < n; ++i)
|
cannam@167
|
700 out[i * os] = in[i * is] * scale;
|
cannam@167
|
701 }
|
cannam@167
|
702
|
cannam@167
|
703 static void mke00(C *a, int n, int c)
|
cannam@167
|
704 {
|
cannam@167
|
705 int i;
|
cannam@167
|
706 for (i = 1; i + i < n; ++i)
|
cannam@167
|
707 a[n - i][c] = a[i][c];
|
cannam@167
|
708 }
|
cannam@167
|
709
|
cannam@167
|
710 static void mkre00(C *a, int n)
|
cannam@167
|
711 {
|
cannam@167
|
712 mkreal(a, n);
|
cannam@167
|
713 mke00(a, n, 0);
|
cannam@167
|
714 }
|
cannam@167
|
715
|
cannam@167
|
716 static void mkimag(C *a, int n)
|
cannam@167
|
717 {
|
cannam@167
|
718 int i;
|
cannam@167
|
719 for (i = 0; i < n; ++i)
|
cannam@167
|
720 c_re(a[i]) = 0.0;
|
cannam@167
|
721 }
|
cannam@167
|
722
|
cannam@167
|
723 static void mko00(C *a, int n, int c)
|
cannam@167
|
724 {
|
cannam@167
|
725 int i;
|
cannam@167
|
726 a[0][c] = 0.0;
|
cannam@167
|
727 for (i = 1; i + i < n; ++i)
|
cannam@167
|
728 a[n - i][c] = -a[i][c];
|
cannam@167
|
729 if (i + i == n)
|
cannam@167
|
730 a[i][c] = 0.0;
|
cannam@167
|
731 }
|
cannam@167
|
732
|
cannam@167
|
733 static void mkro00(C *a, int n)
|
cannam@167
|
734 {
|
cannam@167
|
735 mkreal(a, n);
|
cannam@167
|
736 mko00(a, n, 0);
|
cannam@167
|
737 }
|
cannam@167
|
738
|
cannam@167
|
739 static void mkio00(C *a, int n)
|
cannam@167
|
740 {
|
cannam@167
|
741 mkimag(a, n);
|
cannam@167
|
742 mko00(a, n, 1);
|
cannam@167
|
743 }
|
cannam@167
|
744
|
cannam@167
|
745 static void mkre01(C *a, int n) /* n should be be multiple of 4 */
|
cannam@167
|
746 {
|
cannam@167
|
747 R a0;
|
cannam@167
|
748 a0 = c_re(a[0]);
|
cannam@167
|
749 mko00(a, n/2, 0);
|
cannam@167
|
750 c_re(a[n/2]) = -(c_re(a[0]) = a0);
|
cannam@167
|
751 mkre00(a, n);
|
cannam@167
|
752 }
|
cannam@167
|
753
|
cannam@167
|
754 static void mkro01(C *a, int n) /* n should be be multiple of 4 */
|
cannam@167
|
755 {
|
cannam@167
|
756 c_re(a[0]) = c_im(a[0]) = 0.0;
|
cannam@167
|
757 mkre00(a, n/2);
|
cannam@167
|
758 mkro00(a, n);
|
cannam@167
|
759 }
|
cannam@167
|
760
|
cannam@167
|
761 static void mkoddonly(C *a, int n)
|
cannam@167
|
762 {
|
cannam@167
|
763 int i;
|
cannam@167
|
764 for (i = 0; i < n; i += 2)
|
cannam@167
|
765 c_re(a[i]) = c_im(a[i]) = 0.0;
|
cannam@167
|
766 }
|
cannam@167
|
767
|
cannam@167
|
768 static void mkre10(C *a, int n)
|
cannam@167
|
769 {
|
cannam@167
|
770 mkoddonly(a, n);
|
cannam@167
|
771 mkre00(a, n);
|
cannam@167
|
772 }
|
cannam@167
|
773
|
cannam@167
|
774 static void mkio10(C *a, int n)
|
cannam@167
|
775 {
|
cannam@167
|
776 mkoddonly(a, n);
|
cannam@167
|
777 mkio00(a, n);
|
cannam@167
|
778 }
|
cannam@167
|
779
|
cannam@167
|
780 static void mkre11(C *a, int n)
|
cannam@167
|
781 {
|
cannam@167
|
782 mkoddonly(a, n);
|
cannam@167
|
783 mko00(a, n/2, 0);
|
cannam@167
|
784 mkre00(a, n);
|
cannam@167
|
785 }
|
cannam@167
|
786
|
cannam@167
|
787 static void mkro11(C *a, int n)
|
cannam@167
|
788 {
|
cannam@167
|
789 mkoddonly(a, n);
|
cannam@167
|
790 mkre00(a, n/2);
|
cannam@167
|
791 mkro00(a, n);
|
cannam@167
|
792 }
|
cannam@167
|
793
|
cannam@167
|
794 static void mkio11(C *a, int n)
|
cannam@167
|
795 {
|
cannam@167
|
796 mkoddonly(a, n);
|
cannam@167
|
797 mke00(a, n/2, 1);
|
cannam@167
|
798 mkio00(a, n);
|
cannam@167
|
799 }
|
cannam@167
|
800
|
cannam@167
|
801 static void r2r_apply(dofft_closure *k_, bench_complex *in, bench_complex *out)
|
cannam@167
|
802 {
|
cannam@167
|
803 dofft_r2r_closure *k = (dofft_r2r_closure *)k_;
|
cannam@167
|
804 bench_problem *p = k->p;
|
cannam@167
|
805 bench_real *ri, *ro;
|
cannam@167
|
806 int n, is, os;
|
cannam@167
|
807
|
cannam@167
|
808 n = p->sz->dims[0].n;
|
cannam@167
|
809 is = p->sz->dims[0].is;
|
cannam@167
|
810 os = p->sz->dims[0].os;
|
cannam@167
|
811
|
cannam@167
|
812 ri = (bench_real *) p->in;
|
cannam@167
|
813 ro = (bench_real *) p->out;
|
cannam@167
|
814
|
cannam@167
|
815 switch (p->k[0]) {
|
cannam@167
|
816 case R2R_R2HC:
|
cannam@167
|
817 cpyr1(n, &c_re(in[0]), 2, ri, is, 1.0);
|
cannam@167
|
818 break;
|
cannam@167
|
819 case R2R_HC2R:
|
cannam@167
|
820 cpyr1(n/2 + 1, &c_re(in[0]), 2, ri, is, 1.0);
|
cannam@167
|
821 cpyr1((n+1)/2 - 1, &c_im(in[n-1]), -2, ri + is*(n-1), -is, 1.0);
|
cannam@167
|
822 break;
|
cannam@167
|
823 case R2R_REDFT00:
|
cannam@167
|
824 cpyr1(n, &c_re(in[0]), 2, ri, is, 1.0);
|
cannam@167
|
825 break;
|
cannam@167
|
826 case R2R_RODFT00:
|
cannam@167
|
827 cpyr1(n, &c_re(in[1]), 2, ri, is, 1.0);
|
cannam@167
|
828 break;
|
cannam@167
|
829 case R2R_REDFT01:
|
cannam@167
|
830 cpyr1(n, &c_re(in[0]), 2, ri, is, 1.0);
|
cannam@167
|
831 break;
|
cannam@167
|
832 case R2R_REDFT10:
|
cannam@167
|
833 cpyr1(n, &c_re(in[1]), 4, ri, is, 1.0);
|
cannam@167
|
834 break;
|
cannam@167
|
835 case R2R_RODFT01:
|
cannam@167
|
836 cpyr1(n, &c_re(in[1]), 2, ri, is, 1.0);
|
cannam@167
|
837 break;
|
cannam@167
|
838 case R2R_RODFT10:
|
cannam@167
|
839 cpyr1(n, &c_im(in[1]), 4, ri, is, 1.0);
|
cannam@167
|
840 break;
|
cannam@167
|
841 case R2R_REDFT11:
|
cannam@167
|
842 cpyr1(n, &c_re(in[1]), 4, ri, is, 1.0);
|
cannam@167
|
843 break;
|
cannam@167
|
844 case R2R_RODFT11:
|
cannam@167
|
845 cpyr1(n, &c_re(in[1]), 4, ri, is, 1.0);
|
cannam@167
|
846 break;
|
cannam@167
|
847 default:
|
cannam@167
|
848 BENCH_ASSERT(0); /* not yet implemented */
|
cannam@167
|
849 }
|
cannam@167
|
850
|
cannam@167
|
851 after_problem_rcopy_from(p, ri);
|
cannam@167
|
852 doit(1, p);
|
cannam@167
|
853 after_problem_rcopy_to(p, ro);
|
cannam@167
|
854
|
cannam@167
|
855 switch (p->k[0]) {
|
cannam@167
|
856 case R2R_R2HC:
|
cannam@167
|
857 if (k->k.recopy_input)
|
cannam@167
|
858 cpyr1(n, ri, is, &c_re(in[0]), 2, 1.0);
|
cannam@167
|
859 cpyr1(n/2 + 1, ro, os, &c_re(out[0]), 2, 1.0);
|
cannam@167
|
860 cpyr1((n+1)/2 - 1, ro + os*(n-1), -os, &c_im(out[1]), 2, 1.0);
|
cannam@167
|
861 c_im(out[0]) = 0.0;
|
cannam@167
|
862 if (n % 2 == 0)
|
cannam@167
|
863 c_im(out[n/2]) = 0.0;
|
cannam@167
|
864 mkhermitian1(out, n);
|
cannam@167
|
865 break;
|
cannam@167
|
866 case R2R_HC2R:
|
cannam@167
|
867 if (k->k.recopy_input) {
|
cannam@167
|
868 cpyr1(n/2 + 1, ri, is, &c_re(in[0]), 2, 1.0);
|
cannam@167
|
869 cpyr1((n+1)/2 - 1, ri + is*(n-1), -is, &c_im(in[1]), 2,1.0);
|
cannam@167
|
870 }
|
cannam@167
|
871 cpyr1(n, ro, os, &c_re(out[0]), 2, 1.0);
|
cannam@167
|
872 mkreal(out, n);
|
cannam@167
|
873 break;
|
cannam@167
|
874 case R2R_REDFT00:
|
cannam@167
|
875 if (k->k.recopy_input)
|
cannam@167
|
876 cpyr1(n, ri, is, &c_re(in[0]), 2, 1.0);
|
cannam@167
|
877 cpyr1(n, ro, os, &c_re(out[0]), 2, 1.0);
|
cannam@167
|
878 mkre00(out, k->n0);
|
cannam@167
|
879 break;
|
cannam@167
|
880 case R2R_RODFT00:
|
cannam@167
|
881 if (k->k.recopy_input)
|
cannam@167
|
882 cpyr1(n, ri, is, &c_im(in[1]), 2, -1.0);
|
cannam@167
|
883 cpyr1(n, ro, os, &c_im(out[1]), 2, -1.0);
|
cannam@167
|
884 mkio00(out, k->n0);
|
cannam@167
|
885 break;
|
cannam@167
|
886 case R2R_REDFT01:
|
cannam@167
|
887 if (k->k.recopy_input)
|
cannam@167
|
888 cpyr1(n, ri, is, &c_re(in[0]), 2, 1.0);
|
cannam@167
|
889 cpyr1(n, ro, os, &c_re(out[1]), 4, 2.0);
|
cannam@167
|
890 mkre10(out, k->n0);
|
cannam@167
|
891 break;
|
cannam@167
|
892 case R2R_REDFT10:
|
cannam@167
|
893 if (k->k.recopy_input)
|
cannam@167
|
894 cpyr1(n, ri, is, &c_re(in[1]), 4, 2.0);
|
cannam@167
|
895 cpyr1(n, ro, os, &c_re(out[0]), 2, 1.0);
|
cannam@167
|
896 mkre01(out, k->n0);
|
cannam@167
|
897 break;
|
cannam@167
|
898 case R2R_RODFT01:
|
cannam@167
|
899 if (k->k.recopy_input)
|
cannam@167
|
900 cpyr1(n, ri, is, &c_re(in[1]), 2, 1.0);
|
cannam@167
|
901 cpyr1(n, ro, os, &c_im(out[1]), 4, -2.0);
|
cannam@167
|
902 mkio10(out, k->n0);
|
cannam@167
|
903 break;
|
cannam@167
|
904 case R2R_RODFT10:
|
cannam@167
|
905 if (k->k.recopy_input)
|
cannam@167
|
906 cpyr1(n, ri, is, &c_im(in[1]), 4, -2.0);
|
cannam@167
|
907 cpyr1(n, ro, os, &c_re(out[1]), 2, 1.0);
|
cannam@167
|
908 mkro01(out, k->n0);
|
cannam@167
|
909 break;
|
cannam@167
|
910 case R2R_REDFT11:
|
cannam@167
|
911 if (k->k.recopy_input)
|
cannam@167
|
912 cpyr1(n, ri, is, &c_re(in[1]), 4, 2.0);
|
cannam@167
|
913 cpyr1(n, ro, os, &c_re(out[1]), 4, 2.0);
|
cannam@167
|
914 mkre11(out, k->n0);
|
cannam@167
|
915 break;
|
cannam@167
|
916 case R2R_RODFT11:
|
cannam@167
|
917 if (k->k.recopy_input)
|
cannam@167
|
918 cpyr1(n, ri, is, &c_im(in[1]), 4, -2.0);
|
cannam@167
|
919 cpyr1(n, ro, os, &c_im(out[1]), 4, -2.0);
|
cannam@167
|
920 mkio11(out, k->n0);
|
cannam@167
|
921 break;
|
cannam@167
|
922 default:
|
cannam@167
|
923 BENCH_ASSERT(0); /* not yet implemented */
|
cannam@167
|
924 }
|
cannam@167
|
925 }
|
cannam@167
|
926
|
cannam@167
|
927 void accuracy_r2r(bench_problem *p, int rounds, int impulse_rounds,
|
cannam@167
|
928 double t[6])
|
cannam@167
|
929 {
|
cannam@167
|
930 dofft_r2r_closure k;
|
cannam@167
|
931 int n, n0 = 1;
|
cannam@167
|
932 C *a, *b;
|
cannam@167
|
933 aconstrain constrain = 0;
|
cannam@167
|
934
|
cannam@167
|
935 BENCH_ASSERT(p->kind == PROBLEM_R2R);
|
cannam@167
|
936 BENCH_ASSERT(p->sz->rnk == 1);
|
cannam@167
|
937 BENCH_ASSERT(p->vecsz->rnk == 0);
|
cannam@167
|
938
|
cannam@167
|
939 k.k.apply = r2r_apply;
|
cannam@167
|
940 k.k.recopy_input = 0;
|
cannam@167
|
941 k.p = p;
|
cannam@167
|
942 n = tensor_sz(p->sz);
|
cannam@167
|
943
|
cannam@167
|
944 switch (p->k[0]) {
|
cannam@167
|
945 case R2R_R2HC: constrain = mkreal; n0 = n; break;
|
cannam@167
|
946 case R2R_HC2R: constrain = mkhermitian1; n0 = n; break;
|
cannam@167
|
947 case R2R_REDFT00: constrain = mkre00; n0 = 2*(n-1); break;
|
cannam@167
|
948 case R2R_RODFT00: constrain = mkro00; n0 = 2*(n+1); break;
|
cannam@167
|
949 case R2R_REDFT01: constrain = mkre01; n0 = 4*n; break;
|
cannam@167
|
950 case R2R_REDFT10: constrain = mkre10; n0 = 4*n; break;
|
cannam@167
|
951 case R2R_RODFT01: constrain = mkro01; n0 = 4*n; break;
|
cannam@167
|
952 case R2R_RODFT10: constrain = mkio10; n0 = 4*n; break;
|
cannam@167
|
953 case R2R_REDFT11: constrain = mkre11; n0 = 8*n; break;
|
cannam@167
|
954 case R2R_RODFT11: constrain = mkro11; n0 = 8*n; break;
|
cannam@167
|
955 default: BENCH_ASSERT(0); /* not yet implemented */
|
cannam@167
|
956 }
|
cannam@167
|
957 k.n0 = n0;
|
cannam@167
|
958
|
cannam@167
|
959 a = (C *) bench_malloc(n0 * sizeof(C));
|
cannam@167
|
960 b = (C *) bench_malloc(n0 * sizeof(C));
|
cannam@167
|
961 accuracy_test(&k.k, constrain, -1, n0, a, b, rounds, impulse_rounds, t);
|
cannam@167
|
962 bench_free(b);
|
cannam@167
|
963 bench_free(a);
|
cannam@167
|
964 }
|