annotate src/fftw-3.3.8/libbench2/verify-lib.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents bd3cc4d1df30
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * This program is free software; you can redistribute it and/or modify
cannam@167 6 * it under the terms of the GNU General Public License as published by
cannam@167 7 * the Free Software Foundation; either version 2 of the License, or
cannam@167 8 * (at your option) any later version.
cannam@167 9 *
cannam@167 10 * This program is distributed in the hope that it will be useful,
cannam@167 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 13 * GNU General Public License for more details.
cannam@167 14 *
cannam@167 15 * You should have received a copy of the GNU General Public License
cannam@167 16 * along with this program; if not, write to the Free Software
cannam@167 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 18 *
cannam@167 19 */
cannam@167 20
cannam@167 21
cannam@167 22 #include "verify.h"
cannam@167 23 #include <math.h>
cannam@167 24 #include <stdlib.h>
cannam@167 25 #include <stdio.h>
cannam@167 26
cannam@167 27 /*
cannam@167 28 * Utility functions:
cannam@167 29 */
cannam@167 30 static double dabs(double x) { return (x < 0.0) ? -x : x; }
cannam@167 31 static double dmin(double x, double y) { return (x < y) ? x : y; }
cannam@167 32 static double norm2(double x, double y) { return dmax(dabs(x), dabs(y)); }
cannam@167 33
cannam@167 34 double dmax(double x, double y) { return (x > y) ? x : y; }
cannam@167 35
cannam@167 36 static double aerror(C *a, C *b, int n)
cannam@167 37 {
cannam@167 38 if (n > 0) {
cannam@167 39 /* compute the relative Linf error */
cannam@167 40 double e = 0.0, mag = 0.0;
cannam@167 41 int i;
cannam@167 42
cannam@167 43 for (i = 0; i < n; ++i) {
cannam@167 44 e = dmax(e, norm2(c_re(a[i]) - c_re(b[i]),
cannam@167 45 c_im(a[i]) - c_im(b[i])));
cannam@167 46 mag = dmax(mag,
cannam@167 47 dmin(norm2(c_re(a[i]), c_im(a[i])),
cannam@167 48 norm2(c_re(b[i]), c_im(b[i]))));
cannam@167 49 }
cannam@167 50 e /= mag;
cannam@167 51
cannam@167 52 #ifdef HAVE_ISNAN
cannam@167 53 BENCH_ASSERT(!isnan(e));
cannam@167 54 #endif
cannam@167 55 return e;
cannam@167 56 } else
cannam@167 57 return 0.0;
cannam@167 58 }
cannam@167 59
cannam@167 60 #ifdef HAVE_DRAND48
cannam@167 61 # if defined(HAVE_DECL_DRAND48) && !HAVE_DECL_DRAND48
cannam@167 62 extern double drand48(void);
cannam@167 63 # endif
cannam@167 64 double mydrand(void)
cannam@167 65 {
cannam@167 66 return drand48() - 0.5;
cannam@167 67 }
cannam@167 68 #else
cannam@167 69 double mydrand(void)
cannam@167 70 {
cannam@167 71 double d = rand();
cannam@167 72 return (d / (double) RAND_MAX) - 0.5;
cannam@167 73 }
cannam@167 74 #endif
cannam@167 75
cannam@167 76 void arand(C *a, int n)
cannam@167 77 {
cannam@167 78 int i;
cannam@167 79
cannam@167 80 /* generate random inputs */
cannam@167 81 for (i = 0; i < n; ++i) {
cannam@167 82 c_re(a[i]) = mydrand();
cannam@167 83 c_im(a[i]) = mydrand();
cannam@167 84 }
cannam@167 85 }
cannam@167 86
cannam@167 87 /* make array real */
cannam@167 88 void mkreal(C *A, int n)
cannam@167 89 {
cannam@167 90 int i;
cannam@167 91
cannam@167 92 for (i = 0; i < n; ++i) {
cannam@167 93 c_im(A[i]) = 0.0;
cannam@167 94 }
cannam@167 95 }
cannam@167 96
cannam@167 97 static void assign_conj(C *Ac, C *A, int rank, const bench_iodim *dim, int stride)
cannam@167 98 {
cannam@167 99 if (rank == 0) {
cannam@167 100 c_re(*Ac) = c_re(*A);
cannam@167 101 c_im(*Ac) = -c_im(*A);
cannam@167 102 }
cannam@167 103 else {
cannam@167 104 int i, n0 = dim[rank - 1].n, s = stride;
cannam@167 105 rank -= 1;
cannam@167 106 stride *= n0;
cannam@167 107 assign_conj(Ac, A, rank, dim, stride);
cannam@167 108 for (i = 1; i < n0; ++i)
cannam@167 109 assign_conj(Ac + (n0 - i) * s, A + i * s, rank, dim, stride);
cannam@167 110 }
cannam@167 111 }
cannam@167 112
cannam@167 113 /* make array hermitian */
cannam@167 114 void mkhermitian(C *A, int rank, const bench_iodim *dim, int stride)
cannam@167 115 {
cannam@167 116 if (rank == 0)
cannam@167 117 c_im(*A) = 0.0;
cannam@167 118 else {
cannam@167 119 int i, n0 = dim[rank - 1].n, s = stride;
cannam@167 120 rank -= 1;
cannam@167 121 stride *= n0;
cannam@167 122 mkhermitian(A, rank, dim, stride);
cannam@167 123 for (i = 1; 2*i < n0; ++i)
cannam@167 124 assign_conj(A + (n0 - i) * s, A + i * s, rank, dim, stride);
cannam@167 125 if (2*i == n0)
cannam@167 126 mkhermitian(A + i * s, rank, dim, stride);
cannam@167 127 }
cannam@167 128 }
cannam@167 129
cannam@167 130 void mkhermitian1(C *a, int n)
cannam@167 131 {
cannam@167 132 bench_iodim d;
cannam@167 133
cannam@167 134 d.n = n;
cannam@167 135 d.is = d.os = 1;
cannam@167 136 mkhermitian(a, 1, &d, 1);
cannam@167 137 }
cannam@167 138
cannam@167 139 /* C = A */
cannam@167 140 void acopy(C *c, C *a, int n)
cannam@167 141 {
cannam@167 142 int i;
cannam@167 143
cannam@167 144 for (i = 0; i < n; ++i) {
cannam@167 145 c_re(c[i]) = c_re(a[i]);
cannam@167 146 c_im(c[i]) = c_im(a[i]);
cannam@167 147 }
cannam@167 148 }
cannam@167 149
cannam@167 150 /* C = A + B */
cannam@167 151 void aadd(C *c, C *a, C *b, int n)
cannam@167 152 {
cannam@167 153 int i;
cannam@167 154
cannam@167 155 for (i = 0; i < n; ++i) {
cannam@167 156 c_re(c[i]) = c_re(a[i]) + c_re(b[i]);
cannam@167 157 c_im(c[i]) = c_im(a[i]) + c_im(b[i]);
cannam@167 158 }
cannam@167 159 }
cannam@167 160
cannam@167 161 /* C = A - B */
cannam@167 162 void asub(C *c, C *a, C *b, int n)
cannam@167 163 {
cannam@167 164 int i;
cannam@167 165
cannam@167 166 for (i = 0; i < n; ++i) {
cannam@167 167 c_re(c[i]) = c_re(a[i]) - c_re(b[i]);
cannam@167 168 c_im(c[i]) = c_im(a[i]) - c_im(b[i]);
cannam@167 169 }
cannam@167 170 }
cannam@167 171
cannam@167 172 /* B = rotate left A (complex) */
cannam@167 173 void arol(C *b, C *a, int n, int nb, int na)
cannam@167 174 {
cannam@167 175 int i, ib, ia;
cannam@167 176
cannam@167 177 for (ib = 0; ib < nb; ++ib) {
cannam@167 178 for (i = 0; i < n - 1; ++i)
cannam@167 179 for (ia = 0; ia < na; ++ia) {
cannam@167 180 C *pb = b + (ib * n + i) * na + ia;
cannam@167 181 C *pa = a + (ib * n + i + 1) * na + ia;
cannam@167 182 c_re(*pb) = c_re(*pa);
cannam@167 183 c_im(*pb) = c_im(*pa);
cannam@167 184 }
cannam@167 185
cannam@167 186 for (ia = 0; ia < na; ++ia) {
cannam@167 187 C *pb = b + (ib * n + n - 1) * na + ia;
cannam@167 188 C *pa = a + ib * n * na + ia;
cannam@167 189 c_re(*pb) = c_re(*pa);
cannam@167 190 c_im(*pb) = c_im(*pa);
cannam@167 191 }
cannam@167 192 }
cannam@167 193 }
cannam@167 194
cannam@167 195 void aphase_shift(C *b, C *a, int n, int nb, int na, double sign)
cannam@167 196 {
cannam@167 197 int j, jb, ja;
cannam@167 198 trigreal twopin;
cannam@167 199 twopin = K2PI / n;
cannam@167 200
cannam@167 201 for (jb = 0; jb < nb; ++jb)
cannam@167 202 for (j = 0; j < n; ++j) {
cannam@167 203 trigreal s = sign * SIN(j * twopin);
cannam@167 204 trigreal c = COS(j * twopin);
cannam@167 205
cannam@167 206 for (ja = 0; ja < na; ++ja) {
cannam@167 207 int k = (jb * n + j) * na + ja;
cannam@167 208 c_re(b[k]) = c_re(a[k]) * c - c_im(a[k]) * s;
cannam@167 209 c_im(b[k]) = c_re(a[k]) * s + c_im(a[k]) * c;
cannam@167 210 }
cannam@167 211 }
cannam@167 212 }
cannam@167 213
cannam@167 214 /* A = alpha * A (complex, in place) */
cannam@167 215 void ascale(C *a, C alpha, int n)
cannam@167 216 {
cannam@167 217 int i;
cannam@167 218
cannam@167 219 for (i = 0; i < n; ++i) {
cannam@167 220 R xr = c_re(a[i]), xi = c_im(a[i]);
cannam@167 221 c_re(a[i]) = xr * c_re(alpha) - xi * c_im(alpha);
cannam@167 222 c_im(a[i]) = xr * c_im(alpha) + xi * c_re(alpha);
cannam@167 223 }
cannam@167 224 }
cannam@167 225
cannam@167 226
cannam@167 227 double acmp(C *a, C *b, int n, const char *test, double tol)
cannam@167 228 {
cannam@167 229 double d = aerror(a, b, n);
cannam@167 230 if (d > tol) {
cannam@167 231 ovtpvt_err("Found relative error %e (%s)\n", d, test);
cannam@167 232
cannam@167 233 {
cannam@167 234 int i, N;
cannam@167 235 N = n > 300 && verbose <= 2 ? 300 : n;
cannam@167 236 for (i = 0; i < N; ++i)
cannam@167 237 ovtpvt_err("%8d %16.12f %16.12f %16.12f %16.12f\n", i,
cannam@167 238 (double) c_re(a[i]), (double) c_im(a[i]),
cannam@167 239 (double) c_re(b[i]), (double) c_im(b[i]));
cannam@167 240 }
cannam@167 241
cannam@167 242 bench_exit(EXIT_FAILURE);
cannam@167 243 }
cannam@167 244 return d;
cannam@167 245 }
cannam@167 246
cannam@167 247
cannam@167 248 /*
cannam@167 249 * Implementation of the FFT tester described in
cannam@167 250 *
cannam@167 251 * Funda Ergün. Testing multivariate linear functions: Overcoming the
cannam@167 252 * generator bottleneck. In Proceedings of the Twenty-Seventh Annual
cannam@167 253 * ACM Symposium on the Theory of Computing, pages 407-416, Las Vegas,
cannam@167 254 * Nevada, 29 May--1 June 1995.
cannam@167 255 *
cannam@167 256 * Also: F. Ergun, S. R. Kumar, and D. Sivakumar, "Self-testing without
cannam@167 257 * the generator bottleneck," SIAM J. on Computing 29 (5), 1630-51 (2000).
cannam@167 258 */
cannam@167 259
cannam@167 260 static double impulse0(dofft_closure *k,
cannam@167 261 int n, int vecn,
cannam@167 262 C *inA, C *inB, C *inC,
cannam@167 263 C *outA, C *outB, C *outC,
cannam@167 264 C *tmp, int rounds, double tol)
cannam@167 265 {
cannam@167 266 int N = n * vecn;
cannam@167 267 double e = 0.0;
cannam@167 268 int j;
cannam@167 269
cannam@167 270 k->apply(k, inA, tmp);
cannam@167 271 e = dmax(e, acmp(tmp, outA, N, "impulse 1", tol));
cannam@167 272
cannam@167 273 for (j = 0; j < rounds; ++j) {
cannam@167 274 arand(inB, N);
cannam@167 275 asub(inC, inA, inB, N);
cannam@167 276 k->apply(k, inB, outB);
cannam@167 277 k->apply(k, inC, outC);
cannam@167 278 aadd(tmp, outB, outC, N);
cannam@167 279 e = dmax(e, acmp(tmp, outA, N, "impulse", tol));
cannam@167 280 }
cannam@167 281 return e;
cannam@167 282 }
cannam@167 283
cannam@167 284 double impulse(dofft_closure *k,
cannam@167 285 int n, int vecn,
cannam@167 286 C *inA, C *inB, C *inC,
cannam@167 287 C *outA, C *outB, C *outC,
cannam@167 288 C *tmp, int rounds, double tol)
cannam@167 289 {
cannam@167 290 int i, j;
cannam@167 291 double e = 0.0;
cannam@167 292
cannam@167 293 /* check impulsive input */
cannam@167 294 for (i = 0; i < vecn; ++i) {
cannam@167 295 R x = (sqrt(n)*(i+1)) / (double)(vecn+1);
cannam@167 296 for (j = 0; j < n; ++j) {
cannam@167 297 c_re(inA[j + i * n]) = 0;
cannam@167 298 c_im(inA[j + i * n]) = 0;
cannam@167 299 c_re(outA[j + i * n]) = x;
cannam@167 300 c_im(outA[j + i * n]) = 0;
cannam@167 301 }
cannam@167 302 c_re(inA[i * n]) = x;
cannam@167 303 c_im(inA[i * n]) = 0;
cannam@167 304 }
cannam@167 305
cannam@167 306 e = dmax(e, impulse0(k, n, vecn, inA, inB, inC, outA, outB, outC,
cannam@167 307 tmp, rounds, tol));
cannam@167 308
cannam@167 309 /* check constant input */
cannam@167 310 for (i = 0; i < vecn; ++i) {
cannam@167 311 R x = (i+1) / ((double)(vecn+1) * sqrt(n));
cannam@167 312 for (j = 0; j < n; ++j) {
cannam@167 313 c_re(inA[j + i * n]) = x;
cannam@167 314 c_im(inA[j + i * n]) = 0;
cannam@167 315 c_re(outA[j + i * n]) = 0;
cannam@167 316 c_im(outA[j + i * n]) = 0;
cannam@167 317 }
cannam@167 318 c_re(outA[i * n]) = n * x;
cannam@167 319 c_im(outA[i * n]) = 0;
cannam@167 320 }
cannam@167 321
cannam@167 322 e = dmax(e, impulse0(k, n, vecn, inA, inB, inC, outA, outB, outC,
cannam@167 323 tmp, rounds, tol));
cannam@167 324 return e;
cannam@167 325 }
cannam@167 326
cannam@167 327 double linear(dofft_closure *k, int realp,
cannam@167 328 int n, C *inA, C *inB, C *inC, C *outA,
cannam@167 329 C *outB, C *outC, C *tmp, int rounds, double tol)
cannam@167 330 {
cannam@167 331 int j;
cannam@167 332 double e = 0.0;
cannam@167 333
cannam@167 334 for (j = 0; j < rounds; ++j) {
cannam@167 335 C alpha, beta;
cannam@167 336 c_re(alpha) = mydrand();
cannam@167 337 c_im(alpha) = realp ? 0.0 : mydrand();
cannam@167 338 c_re(beta) = mydrand();
cannam@167 339 c_im(beta) = realp ? 0.0 : mydrand();
cannam@167 340 arand(inA, n);
cannam@167 341 arand(inB, n);
cannam@167 342 k->apply(k, inA, outA);
cannam@167 343 k->apply(k, inB, outB);
cannam@167 344
cannam@167 345 ascale(outA, alpha, n);
cannam@167 346 ascale(outB, beta, n);
cannam@167 347 aadd(tmp, outA, outB, n);
cannam@167 348 ascale(inA, alpha, n);
cannam@167 349 ascale(inB, beta, n);
cannam@167 350 aadd(inC, inA, inB, n);
cannam@167 351 k->apply(k, inC, outC);
cannam@167 352
cannam@167 353 e = dmax(e, acmp(outC, tmp, n, "linear", tol));
cannam@167 354 }
cannam@167 355 return e;
cannam@167 356 }
cannam@167 357
cannam@167 358
cannam@167 359
cannam@167 360 double tf_shift(dofft_closure *k,
cannam@167 361 int realp, const bench_tensor *sz,
cannam@167 362 int n, int vecn, double sign,
cannam@167 363 C *inA, C *inB, C *outA, C *outB, C *tmp,
cannam@167 364 int rounds, double tol, int which_shift)
cannam@167 365 {
cannam@167 366 int nb, na, dim, N = n * vecn;
cannam@167 367 int i, j;
cannam@167 368 double e = 0.0;
cannam@167 369
cannam@167 370 /* test 3: check the time-shift property */
cannam@167 371 /* the paper performs more tests, but this code should be fine too */
cannam@167 372
cannam@167 373 nb = 1;
cannam@167 374 na = n;
cannam@167 375
cannam@167 376 /* check shifts across all SZ dimensions */
cannam@167 377 for (dim = 0; dim < sz->rnk; ++dim) {
cannam@167 378 int ncur = sz->dims[dim].n;
cannam@167 379
cannam@167 380 na /= ncur;
cannam@167 381
cannam@167 382 for (j = 0; j < rounds; ++j) {
cannam@167 383 arand(inA, N);
cannam@167 384
cannam@167 385 if (which_shift == TIME_SHIFT) {
cannam@167 386 for (i = 0; i < vecn; ++i) {
cannam@167 387 if (realp) mkreal(inA + i * n, n);
cannam@167 388 arol(inB + i * n, inA + i * n, ncur, nb, na);
cannam@167 389 }
cannam@167 390 k->apply(k, inA, outA);
cannam@167 391 k->apply(k, inB, outB);
cannam@167 392 for (i = 0; i < vecn; ++i)
cannam@167 393 aphase_shift(tmp + i * n, outB + i * n, ncur,
cannam@167 394 nb, na, sign);
cannam@167 395 e = dmax(e, acmp(tmp, outA, N, "time shift", tol));
cannam@167 396 } else {
cannam@167 397 for (i = 0; i < vecn; ++i) {
cannam@167 398 if (realp)
cannam@167 399 mkhermitian(inA + i * n, sz->rnk, sz->dims, 1);
cannam@167 400 aphase_shift(inB + i * n, inA + i * n, ncur,
cannam@167 401 nb, na, -sign);
cannam@167 402 }
cannam@167 403 k->apply(k, inA, outA);
cannam@167 404 k->apply(k, inB, outB);
cannam@167 405 for (i = 0; i < vecn; ++i)
cannam@167 406 arol(tmp + i * n, outB + i * n, ncur, nb, na);
cannam@167 407 e = dmax(e, acmp(tmp, outA, N, "freq shift", tol));
cannam@167 408 }
cannam@167 409 }
cannam@167 410
cannam@167 411 nb *= ncur;
cannam@167 412 }
cannam@167 413 return e;
cannam@167 414 }
cannam@167 415
cannam@167 416
cannam@167 417 void preserves_input(dofft_closure *k, aconstrain constrain,
cannam@167 418 int n, C *inA, C *inB, C *outB, int rounds)
cannam@167 419 {
cannam@167 420 int j;
cannam@167 421 int recopy_input = k->recopy_input;
cannam@167 422
cannam@167 423 k->recopy_input = 1;
cannam@167 424 for (j = 0; j < rounds; ++j) {
cannam@167 425 arand(inA, n);
cannam@167 426 if (constrain)
cannam@167 427 constrain(inA, n);
cannam@167 428
cannam@167 429 acopy(inB, inA, n);
cannam@167 430 k->apply(k, inB, outB);
cannam@167 431 acmp(inB, inA, n, "preserves_input", 0.0);
cannam@167 432 }
cannam@167 433 k->recopy_input = recopy_input;
cannam@167 434 }
cannam@167 435
cannam@167 436
cannam@167 437 /* Make a copy of the size tensor, with the same dimensions, but with
cannam@167 438 the strides corresponding to a "packed" row-major array with the
cannam@167 439 given stride. */
cannam@167 440 bench_tensor *verify_pack(const bench_tensor *sz, int s)
cannam@167 441 {
cannam@167 442 bench_tensor *x = tensor_copy(sz);
cannam@167 443 if (BENCH_FINITE_RNK(x->rnk) && x->rnk > 0) {
cannam@167 444 int i;
cannam@167 445 x->dims[x->rnk - 1].is = s;
cannam@167 446 x->dims[x->rnk - 1].os = s;
cannam@167 447 for (i = x->rnk - 1; i > 0; --i) {
cannam@167 448 x->dims[i - 1].is = x->dims[i].is * x->dims[i].n;
cannam@167 449 x->dims[i - 1].os = x->dims[i].os * x->dims[i].n;
cannam@167 450 }
cannam@167 451 }
cannam@167 452 return x;
cannam@167 453 }
cannam@167 454
cannam@167 455 static int all_zero(C *a, int n)
cannam@167 456 {
cannam@167 457 int i;
cannam@167 458 for (i = 0; i < n; ++i)
cannam@167 459 if (c_re(a[i]) != 0.0 || c_im(a[i]) != 0.0)
cannam@167 460 return 0;
cannam@167 461 return 1;
cannam@167 462 }
cannam@167 463
cannam@167 464 static int one_accuracy_test(dofft_closure *k, aconstrain constrain,
cannam@167 465 int sign, int n, C *a, C *b,
cannam@167 466 double t[6])
cannam@167 467 {
cannam@167 468 double err[6];
cannam@167 469
cannam@167 470 if (constrain)
cannam@167 471 constrain(a, n);
cannam@167 472
cannam@167 473 if (all_zero(a, n))
cannam@167 474 return 0;
cannam@167 475
cannam@167 476 k->apply(k, a, b);
cannam@167 477 fftaccuracy(n, a, b, sign, err);
cannam@167 478
cannam@167 479 t[0] += err[0];
cannam@167 480 t[1] += err[1] * err[1];
cannam@167 481 t[2] = dmax(t[2], err[2]);
cannam@167 482 t[3] += err[3];
cannam@167 483 t[4] += err[4] * err[4];
cannam@167 484 t[5] = dmax(t[5], err[5]);
cannam@167 485
cannam@167 486 return 1;
cannam@167 487 }
cannam@167 488
cannam@167 489 void accuracy_test(dofft_closure *k, aconstrain constrain,
cannam@167 490 int sign, int n, C *a, C *b, int rounds, int impulse_rounds,
cannam@167 491 double t[6])
cannam@167 492 {
cannam@167 493 int r, i;
cannam@167 494 int ntests = 0;
cannam@167 495 bench_complex czero = {0, 0};
cannam@167 496
cannam@167 497 for (i = 0; i < 6; ++i) t[i] = 0.0;
cannam@167 498
cannam@167 499 for (r = 0; r < rounds; ++r) {
cannam@167 500 arand(a, n);
cannam@167 501 if (one_accuracy_test(k, constrain, sign, n, a, b, t))
cannam@167 502 ++ntests;
cannam@167 503 }
cannam@167 504
cannam@167 505 /* impulses at beginning of array */
cannam@167 506 for (r = 0; r < impulse_rounds; ++r) {
cannam@167 507 if (r > n - r - 1)
cannam@167 508 continue;
cannam@167 509
cannam@167 510 caset(a, n, czero);
cannam@167 511 c_re(a[r]) = c_im(a[r]) = 1.0;
cannam@167 512
cannam@167 513 if (one_accuracy_test(k, constrain, sign, n, a, b, t))
cannam@167 514 ++ntests;
cannam@167 515 }
cannam@167 516
cannam@167 517 /* impulses at end of array */
cannam@167 518 for (r = 0; r < impulse_rounds; ++r) {
cannam@167 519 if (r <= n - r - 1)
cannam@167 520 continue;
cannam@167 521
cannam@167 522 caset(a, n, czero);
cannam@167 523 c_re(a[n - r - 1]) = c_im(a[n - r - 1]) = 1.0;
cannam@167 524
cannam@167 525 if (one_accuracy_test(k, constrain, sign, n, a, b, t))
cannam@167 526 ++ntests;
cannam@167 527 }
cannam@167 528
cannam@167 529 /* randomly-located impulses */
cannam@167 530 for (r = 0; r < impulse_rounds; ++r) {
cannam@167 531 caset(a, n, czero);
cannam@167 532 i = rand() % n;
cannam@167 533 c_re(a[i]) = c_im(a[i]) = 1.0;
cannam@167 534
cannam@167 535 if (one_accuracy_test(k, constrain, sign, n, a, b, t))
cannam@167 536 ++ntests;
cannam@167 537 }
cannam@167 538
cannam@167 539 t[0] /= ntests;
cannam@167 540 t[1] = sqrt(t[1] / ntests);
cannam@167 541 t[3] /= ntests;
cannam@167 542 t[4] = sqrt(t[4] / ntests);
cannam@167 543
cannam@167 544 fftaccuracy_done();
cannam@167 545 }