cannam@167
|
1 /*
|
cannam@167
|
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
|
cannam@167
|
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
cannam@167
|
4 *
|
cannam@167
|
5 * This program is free software; you can redistribute it and/or modify
|
cannam@167
|
6 * it under the terms of the GNU General Public License as published by
|
cannam@167
|
7 * the Free Software Foundation; either version 2 of the License, or
|
cannam@167
|
8 * (at your option) any later version.
|
cannam@167
|
9 *
|
cannam@167
|
10 * This program is distributed in the hope that it will be useful,
|
cannam@167
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
cannam@167
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
cannam@167
|
13 * GNU General Public License for more details.
|
cannam@167
|
14 *
|
cannam@167
|
15 * You should have received a copy of the GNU General Public License
|
cannam@167
|
16 * along with this program; if not, write to the Free Software
|
cannam@167
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
cannam@167
|
18 *
|
cannam@167
|
19 */
|
cannam@167
|
20
|
cannam@167
|
21
|
cannam@167
|
22 #include "verify.h"
|
cannam@167
|
23
|
cannam@167
|
24 /* copy A into B, using output stride of A and input stride of B */
|
cannam@167
|
25 typedef struct {
|
cannam@167
|
26 dotens2_closure k;
|
cannam@167
|
27 R *ra; R *ia;
|
cannam@167
|
28 R *rb; R *ib;
|
cannam@167
|
29 int scalea, scaleb;
|
cannam@167
|
30 } cpy_closure;
|
cannam@167
|
31
|
cannam@167
|
32 static void cpy0(dotens2_closure *k_,
|
cannam@167
|
33 int indxa, int ondxa, int indxb, int ondxb)
|
cannam@167
|
34 {
|
cannam@167
|
35 cpy_closure *k = (cpy_closure *)k_;
|
cannam@167
|
36 k->rb[indxb * k->scaleb] = k->ra[ondxa * k->scalea];
|
cannam@167
|
37 k->ib[indxb * k->scaleb] = k->ia[ondxa * k->scalea];
|
cannam@167
|
38 UNUSED(indxa); UNUSED(ondxb);
|
cannam@167
|
39 }
|
cannam@167
|
40
|
cannam@167
|
41 static void cpy(R *ra, R *ia, const bench_tensor *sza, int scalea,
|
cannam@167
|
42 R *rb, R *ib, const bench_tensor *szb, int scaleb)
|
cannam@167
|
43 {
|
cannam@167
|
44 cpy_closure k;
|
cannam@167
|
45 k.k.apply = cpy0;
|
cannam@167
|
46 k.ra = ra; k.ia = ia; k.rb = rb; k.ib = ib;
|
cannam@167
|
47 k.scalea = scalea; k.scaleb = scaleb;
|
cannam@167
|
48 bench_dotens2(sza, szb, &k.k);
|
cannam@167
|
49 }
|
cannam@167
|
50
|
cannam@167
|
51 typedef struct {
|
cannam@167
|
52 dofft_closure k;
|
cannam@167
|
53 bench_problem *p;
|
cannam@167
|
54 } dofft_dft_closure;
|
cannam@167
|
55
|
cannam@167
|
56 static void dft_apply(dofft_closure *k_, bench_complex *in, bench_complex *out)
|
cannam@167
|
57 {
|
cannam@167
|
58 dofft_dft_closure *k = (dofft_dft_closure *)k_;
|
cannam@167
|
59 bench_problem *p = k->p;
|
cannam@167
|
60 bench_tensor *totalsz, *pckdsz;
|
cannam@167
|
61 bench_tensor *totalsz_swap, *pckdsz_swap;
|
cannam@167
|
62 bench_real *ri, *ii, *ro, *io;
|
cannam@167
|
63 int totalscale;
|
cannam@167
|
64
|
cannam@167
|
65 totalsz = tensor_append(p->vecsz, p->sz);
|
cannam@167
|
66 pckdsz = verify_pack(totalsz, 2);
|
cannam@167
|
67 ri = (bench_real *) p->in;
|
cannam@167
|
68 ro = (bench_real *) p->out;
|
cannam@167
|
69
|
cannam@167
|
70 totalsz_swap = tensor_copy_swapio(totalsz);
|
cannam@167
|
71 pckdsz_swap = tensor_copy_swapio(pckdsz);
|
cannam@167
|
72
|
cannam@167
|
73 /* confusion: the stride is the distance between complex elements
|
cannam@167
|
74 when using interleaved format, but it is the distance between
|
cannam@167
|
75 real elements when using split format */
|
cannam@167
|
76 if (p->split) {
|
cannam@167
|
77 ii = p->ini ? (bench_real *) p->ini : ri + p->iphyssz;
|
cannam@167
|
78 io = p->outi ? (bench_real *) p->outi : ro + p->ophyssz;
|
cannam@167
|
79 totalscale = 1;
|
cannam@167
|
80 } else {
|
cannam@167
|
81 ii = p->ini ? (bench_real *) p->ini : ri + 1;
|
cannam@167
|
82 io = p->outi ? (bench_real *) p->outi : ro + 1;
|
cannam@167
|
83 totalscale = 2;
|
cannam@167
|
84 }
|
cannam@167
|
85
|
cannam@167
|
86 cpy(&c_re(in[0]), &c_im(in[0]), pckdsz, 1,
|
cannam@167
|
87 ri, ii, totalsz, totalscale);
|
cannam@167
|
88 after_problem_ccopy_from(p, ri, ii);
|
cannam@167
|
89 doit(1, p);
|
cannam@167
|
90 after_problem_ccopy_to(p, ro, io);
|
cannam@167
|
91 if (k->k.recopy_input)
|
cannam@167
|
92 cpy(ri, ii, totalsz_swap, totalscale,
|
cannam@167
|
93 &c_re(in[0]), &c_im(in[0]), pckdsz_swap, 1);
|
cannam@167
|
94 cpy(ro, io, totalsz, totalscale,
|
cannam@167
|
95 &c_re(out[0]), &c_im(out[0]), pckdsz, 1);
|
cannam@167
|
96
|
cannam@167
|
97 tensor_destroy(totalsz);
|
cannam@167
|
98 tensor_destroy(pckdsz);
|
cannam@167
|
99 tensor_destroy(totalsz_swap);
|
cannam@167
|
100 tensor_destroy(pckdsz_swap);
|
cannam@167
|
101 }
|
cannam@167
|
102
|
cannam@167
|
103 void verify_dft(bench_problem *p, int rounds, double tol, errors *e)
|
cannam@167
|
104 {
|
cannam@167
|
105 C *inA, *inB, *inC, *outA, *outB, *outC, *tmp;
|
cannam@167
|
106 int n, vecn, N;
|
cannam@167
|
107 dofft_dft_closure k;
|
cannam@167
|
108
|
cannam@167
|
109 BENCH_ASSERT(p->kind == PROBLEM_COMPLEX);
|
cannam@167
|
110
|
cannam@167
|
111 k.k.apply = dft_apply;
|
cannam@167
|
112 k.k.recopy_input = 0;
|
cannam@167
|
113 k.p = p;
|
cannam@167
|
114
|
cannam@167
|
115 if (rounds == 0)
|
cannam@167
|
116 rounds = 20; /* default value */
|
cannam@167
|
117
|
cannam@167
|
118 n = tensor_sz(p->sz);
|
cannam@167
|
119 vecn = tensor_sz(p->vecsz);
|
cannam@167
|
120 N = n * vecn;
|
cannam@167
|
121
|
cannam@167
|
122 inA = (C *) bench_malloc(N * sizeof(C));
|
cannam@167
|
123 inB = (C *) bench_malloc(N * sizeof(C));
|
cannam@167
|
124 inC = (C *) bench_malloc(N * sizeof(C));
|
cannam@167
|
125 outA = (C *) bench_malloc(N * sizeof(C));
|
cannam@167
|
126 outB = (C *) bench_malloc(N * sizeof(C));
|
cannam@167
|
127 outC = (C *) bench_malloc(N * sizeof(C));
|
cannam@167
|
128 tmp = (C *) bench_malloc(N * sizeof(C));
|
cannam@167
|
129
|
cannam@167
|
130 e->i = impulse(&k.k, n, vecn, inA, inB, inC, outA, outB, outC,
|
cannam@167
|
131 tmp, rounds, tol);
|
cannam@167
|
132 e->l = linear(&k.k, 0, N, inA, inB, inC, outA, outB, outC,
|
cannam@167
|
133 tmp, rounds, tol);
|
cannam@167
|
134
|
cannam@167
|
135 e->s = 0.0;
|
cannam@167
|
136 e->s = dmax(e->s, tf_shift(&k.k, 0, p->sz, n, vecn, p->sign,
|
cannam@167
|
137 inA, inB, outA, outB,
|
cannam@167
|
138 tmp, rounds, tol, TIME_SHIFT));
|
cannam@167
|
139 e->s = dmax(e->s, tf_shift(&k.k, 0, p->sz, n, vecn, p->sign,
|
cannam@167
|
140 inA, inB, outA, outB,
|
cannam@167
|
141 tmp, rounds, tol, FREQ_SHIFT));
|
cannam@167
|
142
|
cannam@167
|
143 if (!p->in_place && !p->destroy_input)
|
cannam@167
|
144 preserves_input(&k.k, 0, N, inA, inB, outB, rounds);
|
cannam@167
|
145
|
cannam@167
|
146 bench_free(tmp);
|
cannam@167
|
147 bench_free(outC);
|
cannam@167
|
148 bench_free(outB);
|
cannam@167
|
149 bench_free(outA);
|
cannam@167
|
150 bench_free(inC);
|
cannam@167
|
151 bench_free(inB);
|
cannam@167
|
152 bench_free(inA);
|
cannam@167
|
153 }
|
cannam@167
|
154
|
cannam@167
|
155
|
cannam@167
|
156 void accuracy_dft(bench_problem *p, int rounds, int impulse_rounds,
|
cannam@167
|
157 double t[6])
|
cannam@167
|
158 {
|
cannam@167
|
159 dofft_dft_closure k;
|
cannam@167
|
160 int n;
|
cannam@167
|
161 C *a, *b;
|
cannam@167
|
162
|
cannam@167
|
163 BENCH_ASSERT(p->kind == PROBLEM_COMPLEX);
|
cannam@167
|
164 BENCH_ASSERT(p->sz->rnk == 1);
|
cannam@167
|
165 BENCH_ASSERT(p->vecsz->rnk == 0);
|
cannam@167
|
166
|
cannam@167
|
167 k.k.apply = dft_apply;
|
cannam@167
|
168 k.k.recopy_input = 0;
|
cannam@167
|
169 k.p = p;
|
cannam@167
|
170 n = tensor_sz(p->sz);
|
cannam@167
|
171
|
cannam@167
|
172 a = (C *) bench_malloc(n * sizeof(C));
|
cannam@167
|
173 b = (C *) bench_malloc(n * sizeof(C));
|
cannam@167
|
174 accuracy_test(&k.k, 0, p->sign, n, a, b, rounds, impulse_rounds, t);
|
cannam@167
|
175 bench_free(b);
|
cannam@167
|
176 bench_free(a);
|
cannam@167
|
177 }
|