annotate src/fftw-3.3.8/kernel/primes.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents bd3cc4d1df30
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * This program is free software; you can redistribute it and/or modify
cannam@167 6 * it under the terms of the GNU General Public License as published by
cannam@167 7 * the Free Software Foundation; either version 2 of the License, or
cannam@167 8 * (at your option) any later version.
cannam@167 9 *
cannam@167 10 * This program is distributed in the hope that it will be useful,
cannam@167 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 13 * GNU General Public License for more details.
cannam@167 14 *
cannam@167 15 * You should have received a copy of the GNU General Public License
cannam@167 16 * along with this program; if not, write to the Free Software
cannam@167 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 18 *
cannam@167 19 */
cannam@167 20
cannam@167 21
cannam@167 22 #include "kernel/ifftw.h"
cannam@167 23
cannam@167 24 /***************************************************************************/
cannam@167 25
cannam@167 26 /* Rader's algorithm requires lots of modular arithmetic, and if we
cannam@167 27 aren't careful we can have errors due to integer overflows. */
cannam@167 28
cannam@167 29 /* Compute (x * y) mod p, but watch out for integer overflows; we must
cannam@167 30 have 0 <= {x, y} < p.
cannam@167 31
cannam@167 32 If overflow is common, this routine is somewhat slower than
cannam@167 33 e.g. using 'long long' arithmetic. However, it has the advantage
cannam@167 34 of working when INT is 64 bits, and is also faster when overflow is
cannam@167 35 rare. FFTW calls this via the MULMOD macro, which further
cannam@167 36 optimizes for the case of small integers.
cannam@167 37 */
cannam@167 38
cannam@167 39 #define ADD_MOD(x, y, p) ((x) >= (p) - (y)) ? ((x) + ((y) - (p))) : ((x) + (y))
cannam@167 40
cannam@167 41 INT X(safe_mulmod)(INT x, INT y, INT p)
cannam@167 42 {
cannam@167 43 INT r;
cannam@167 44
cannam@167 45 if (y > x)
cannam@167 46 return X(safe_mulmod)(y, x, p);
cannam@167 47
cannam@167 48 A(0 <= y && x < p);
cannam@167 49
cannam@167 50 r = 0;
cannam@167 51 while (y) {
cannam@167 52 r = ADD_MOD(r, x*(y&1), p); y >>= 1;
cannam@167 53 x = ADD_MOD(x, x, p);
cannam@167 54 }
cannam@167 55
cannam@167 56 return r;
cannam@167 57 }
cannam@167 58
cannam@167 59 /***************************************************************************/
cannam@167 60
cannam@167 61 /* Compute n^m mod p, where m >= 0 and p > 0. If we really cared, we
cannam@167 62 could make this tail-recursive. */
cannam@167 63
cannam@167 64 INT X(power_mod)(INT n, INT m, INT p)
cannam@167 65 {
cannam@167 66 A(p > 0);
cannam@167 67 if (m == 0)
cannam@167 68 return 1;
cannam@167 69 else if (m % 2 == 0) {
cannam@167 70 INT x = X(power_mod)(n, m / 2, p);
cannam@167 71 return MULMOD(x, x, p);
cannam@167 72 }
cannam@167 73 else
cannam@167 74 return MULMOD(n, X(power_mod)(n, m - 1, p), p);
cannam@167 75 }
cannam@167 76
cannam@167 77 /* the following two routines were contributed by Greg Dionne. */
cannam@167 78 static INT get_prime_factors(INT n, INT *primef)
cannam@167 79 {
cannam@167 80 INT i;
cannam@167 81 INT size = 0;
cannam@167 82
cannam@167 83 A(n % 2 == 0); /* this routine is designed only for even n */
cannam@167 84 primef[size++] = (INT)2;
cannam@167 85 do {
cannam@167 86 n >>= 1;
cannam@167 87 } while ((n & 1) == 0);
cannam@167 88
cannam@167 89 if (n == 1)
cannam@167 90 return size;
cannam@167 91
cannam@167 92 for (i = 3; i * i <= n; i += 2)
cannam@167 93 if (!(n % i)) {
cannam@167 94 primef[size++] = i;
cannam@167 95 do {
cannam@167 96 n /= i;
cannam@167 97 } while (!(n % i));
cannam@167 98 }
cannam@167 99 if (n == 1)
cannam@167 100 return size;
cannam@167 101 primef[size++] = n;
cannam@167 102 return size;
cannam@167 103 }
cannam@167 104
cannam@167 105 INT X(find_generator)(INT p)
cannam@167 106 {
cannam@167 107 INT n, i, size;
cannam@167 108 INT primef[16]; /* smallest number = 32589158477190044730 > 2^64 */
cannam@167 109 INT pm1 = p - 1;
cannam@167 110
cannam@167 111 if (p == 2)
cannam@167 112 return 1;
cannam@167 113
cannam@167 114 size = get_prime_factors(pm1, primef);
cannam@167 115 n = 2;
cannam@167 116 for (i = 0; i < size; i++)
cannam@167 117 if (X(power_mod)(n, pm1 / primef[i], p) == 1) {
cannam@167 118 i = -1;
cannam@167 119 n++;
cannam@167 120 }
cannam@167 121 return n;
cannam@167 122 }
cannam@167 123
cannam@167 124 /* Return first prime divisor of n (It would be at best slightly faster to
cannam@167 125 search a static table of primes; there are 6542 primes < 2^16.) */
cannam@167 126 INT X(first_divisor)(INT n)
cannam@167 127 {
cannam@167 128 INT i;
cannam@167 129 if (n <= 1)
cannam@167 130 return n;
cannam@167 131 if (n % 2 == 0)
cannam@167 132 return 2;
cannam@167 133 for (i = 3; i*i <= n; i += 2)
cannam@167 134 if (n % i == 0)
cannam@167 135 return i;
cannam@167 136 return n;
cannam@167 137 }
cannam@167 138
cannam@167 139 int X(is_prime)(INT n)
cannam@167 140 {
cannam@167 141 return(n > 1 && X(first_divisor)(n) == n);
cannam@167 142 }
cannam@167 143
cannam@167 144 INT X(next_prime)(INT n)
cannam@167 145 {
cannam@167 146 while (!X(is_prime)(n)) ++n;
cannam@167 147 return n;
cannam@167 148 }
cannam@167 149
cannam@167 150 int X(factors_into)(INT n, const INT *primes)
cannam@167 151 {
cannam@167 152 for (; *primes != 0; ++primes)
cannam@167 153 while ((n % *primes) == 0)
cannam@167 154 n /= *primes;
cannam@167 155 return (n == 1);
cannam@167 156 }
cannam@167 157
cannam@167 158 /* integer square root. Return floor(sqrt(N)) */
cannam@167 159 INT X(isqrt)(INT n)
cannam@167 160 {
cannam@167 161 INT guess, iguess;
cannam@167 162
cannam@167 163 A(n >= 0);
cannam@167 164 if (n == 0) return 0;
cannam@167 165
cannam@167 166 guess = n; iguess = 1;
cannam@167 167
cannam@167 168 do {
cannam@167 169 guess = (guess + iguess) / 2;
cannam@167 170 iguess = n / guess;
cannam@167 171 } while (guess > iguess);
cannam@167 172
cannam@167 173 return guess;
cannam@167 174 }
cannam@167 175
cannam@167 176 static INT isqrt_maybe(INT n)
cannam@167 177 {
cannam@167 178 INT guess = X(isqrt)(n);
cannam@167 179 return guess * guess == n ? guess : 0;
cannam@167 180 }
cannam@167 181
cannam@167 182 #define divides(a, b) (((b) % (a)) == 0)
cannam@167 183 INT X(choose_radix)(INT r, INT n)
cannam@167 184 {
cannam@167 185 if (r > 0) {
cannam@167 186 if (divides(r, n)) return r;
cannam@167 187 return 0;
cannam@167 188 } else if (r == 0) {
cannam@167 189 return X(first_divisor)(n);
cannam@167 190 } else {
cannam@167 191 /* r is negative. If n = (-r) * q^2, take q as the radix */
cannam@167 192 r = 0 - r;
cannam@167 193 return (n > r && divides(r, n)) ? isqrt_maybe(n / r) : 0;
cannam@167 194 }
cannam@167 195 }
cannam@167 196
cannam@167 197 /* return A mod N, works for all A including A < 0 */
cannam@167 198 INT X(modulo)(INT a, INT n)
cannam@167 199 {
cannam@167 200 A(n > 0);
cannam@167 201 if (a >= 0)
cannam@167 202 return a % n;
cannam@167 203 else
cannam@167 204 return (n - 1) - ((-(a + (INT)1)) % n);
cannam@167 205 }
cannam@167 206
cannam@167 207 /* TRUE if N factors into small primes */
cannam@167 208 int X(factors_into_small_primes)(INT n)
cannam@167 209 {
cannam@167 210 static const INT primes[] = { 2, 3, 5, 0 };
cannam@167 211 return X(factors_into)(n, primes);
cannam@167 212 }