cannam@167
|
1 /*
|
cannam@167
|
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
|
cannam@167
|
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
cannam@167
|
4 *
|
cannam@167
|
5 * This program is free software; you can redistribute it and/or modify
|
cannam@167
|
6 * it under the terms of the GNU General Public License as published by
|
cannam@167
|
7 * the Free Software Foundation; either version 2 of the License, or
|
cannam@167
|
8 * (at your option) any later version.
|
cannam@167
|
9 *
|
cannam@167
|
10 * This program is distributed in the hope that it will be useful,
|
cannam@167
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
cannam@167
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
cannam@167
|
13 * GNU General Public License for more details.
|
cannam@167
|
14 *
|
cannam@167
|
15 * You should have received a copy of the GNU General Public License
|
cannam@167
|
16 * along with this program; if not, write to the Free Software
|
cannam@167
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
cannam@167
|
18 *
|
cannam@167
|
19 */
|
cannam@167
|
20
|
cannam@167
|
21 /* out of place 2D copy routines */
|
cannam@167
|
22 #include "kernel/ifftw.h"
|
cannam@167
|
23
|
cannam@167
|
24 #if defined(__x86_64__) || defined(_M_X64) || defined(_M_AMD64)
|
cannam@167
|
25 # ifdef HAVE_XMMINTRIN_H
|
cannam@167
|
26 # include <xmmintrin.h>
|
cannam@167
|
27 # define WIDE_TYPE __m128
|
cannam@167
|
28 # endif
|
cannam@167
|
29 #endif
|
cannam@167
|
30
|
cannam@167
|
31 #ifndef WIDE_TYPE
|
cannam@167
|
32 /* fall back to double, which means that WIDE_TYPE will be unused */
|
cannam@167
|
33 # define WIDE_TYPE double
|
cannam@167
|
34 #endif
|
cannam@167
|
35
|
cannam@167
|
36 void X(cpy2d)(R *I, R *O,
|
cannam@167
|
37 INT n0, INT is0, INT os0,
|
cannam@167
|
38 INT n1, INT is1, INT os1,
|
cannam@167
|
39 INT vl)
|
cannam@167
|
40 {
|
cannam@167
|
41 INT i0, i1, v;
|
cannam@167
|
42
|
cannam@167
|
43 switch (vl) {
|
cannam@167
|
44 case 1:
|
cannam@167
|
45 for (i1 = 0; i1 < n1; ++i1)
|
cannam@167
|
46 for (i0 = 0; i0 < n0; ++i0) {
|
cannam@167
|
47 R x0 = I[i0 * is0 + i1 * is1];
|
cannam@167
|
48 O[i0 * os0 + i1 * os1] = x0;
|
cannam@167
|
49 }
|
cannam@167
|
50 break;
|
cannam@167
|
51 case 2:
|
cannam@167
|
52 if (1
|
cannam@167
|
53 && (2 * sizeof(R) == sizeof(WIDE_TYPE))
|
cannam@167
|
54 && (sizeof(WIDE_TYPE) > sizeof(double))
|
cannam@167
|
55 && (((size_t)I) % sizeof(WIDE_TYPE) == 0)
|
cannam@167
|
56 && (((size_t)O) % sizeof(WIDE_TYPE) == 0)
|
cannam@167
|
57 && ((is0 & 1) == 0)
|
cannam@167
|
58 && ((is1 & 1) == 0)
|
cannam@167
|
59 && ((os0 & 1) == 0)
|
cannam@167
|
60 && ((os1 & 1) == 0)) {
|
cannam@167
|
61 /* copy R[2] as WIDE_TYPE if WIDE_TYPE is large
|
cannam@167
|
62 enough to hold R[2], and if the input is
|
cannam@167
|
63 properly aligned. This is a win when R==double
|
cannam@167
|
64 and WIDE_TYPE is 128 bits. */
|
cannam@167
|
65 for (i1 = 0; i1 < n1; ++i1)
|
cannam@167
|
66 for (i0 = 0; i0 < n0; ++i0) {
|
cannam@167
|
67 *(WIDE_TYPE *)&O[i0 * os0 + i1 * os1] =
|
cannam@167
|
68 *(WIDE_TYPE *)&I[i0 * is0 + i1 * is1];
|
cannam@167
|
69 }
|
cannam@167
|
70 } else if (1
|
cannam@167
|
71 && (2 * sizeof(R) == sizeof(double))
|
cannam@167
|
72 && (((size_t)I) % sizeof(double) == 0)
|
cannam@167
|
73 && (((size_t)O) % sizeof(double) == 0)
|
cannam@167
|
74 && ((is0 & 1) == 0)
|
cannam@167
|
75 && ((is1 & 1) == 0)
|
cannam@167
|
76 && ((os0 & 1) == 0)
|
cannam@167
|
77 && ((os1 & 1) == 0)) {
|
cannam@167
|
78 /* copy R[2] as double if double is large enough to
|
cannam@167
|
79 hold R[2], and if the input is properly aligned.
|
cannam@167
|
80 This case applies when R==float */
|
cannam@167
|
81 for (i1 = 0; i1 < n1; ++i1)
|
cannam@167
|
82 for (i0 = 0; i0 < n0; ++i0) {
|
cannam@167
|
83 *(double *)&O[i0 * os0 + i1 * os1] =
|
cannam@167
|
84 *(double *)&I[i0 * is0 + i1 * is1];
|
cannam@167
|
85 }
|
cannam@167
|
86 } else {
|
cannam@167
|
87 for (i1 = 0; i1 < n1; ++i1)
|
cannam@167
|
88 for (i0 = 0; i0 < n0; ++i0) {
|
cannam@167
|
89 R x0 = I[i0 * is0 + i1 * is1];
|
cannam@167
|
90 R x1 = I[i0 * is0 + i1 * is1 + 1];
|
cannam@167
|
91 O[i0 * os0 + i1 * os1] = x0;
|
cannam@167
|
92 O[i0 * os0 + i1 * os1 + 1] = x1;
|
cannam@167
|
93 }
|
cannam@167
|
94 }
|
cannam@167
|
95 break;
|
cannam@167
|
96 default:
|
cannam@167
|
97 for (i1 = 0; i1 < n1; ++i1)
|
cannam@167
|
98 for (i0 = 0; i0 < n0; ++i0)
|
cannam@167
|
99 for (v = 0; v < vl; ++v) {
|
cannam@167
|
100 R x0 = I[i0 * is0 + i1 * is1 + v];
|
cannam@167
|
101 O[i0 * os0 + i1 * os1 + v] = x0;
|
cannam@167
|
102 }
|
cannam@167
|
103 break;
|
cannam@167
|
104 }
|
cannam@167
|
105 }
|
cannam@167
|
106
|
cannam@167
|
107 /* like cpy2d, but read input contiguously if possible */
|
cannam@167
|
108 void X(cpy2d_ci)(R *I, R *O,
|
cannam@167
|
109 INT n0, INT is0, INT os0,
|
cannam@167
|
110 INT n1, INT is1, INT os1,
|
cannam@167
|
111 INT vl)
|
cannam@167
|
112 {
|
cannam@167
|
113 if (IABS(is0) < IABS(is1)) /* inner loop is for n0 */
|
cannam@167
|
114 X(cpy2d) (I, O, n0, is0, os0, n1, is1, os1, vl);
|
cannam@167
|
115 else
|
cannam@167
|
116 X(cpy2d) (I, O, n1, is1, os1, n0, is0, os0, vl);
|
cannam@167
|
117 }
|
cannam@167
|
118
|
cannam@167
|
119 /* like cpy2d, but write output contiguously if possible */
|
cannam@167
|
120 void X(cpy2d_co)(R *I, R *O,
|
cannam@167
|
121 INT n0, INT is0, INT os0,
|
cannam@167
|
122 INT n1, INT is1, INT os1,
|
cannam@167
|
123 INT vl)
|
cannam@167
|
124 {
|
cannam@167
|
125 if (IABS(os0) < IABS(os1)) /* inner loop is for n0 */
|
cannam@167
|
126 X(cpy2d) (I, O, n0, is0, os0, n1, is1, os1, vl);
|
cannam@167
|
127 else
|
cannam@167
|
128 X(cpy2d) (I, O, n1, is1, os1, n0, is0, os0, vl);
|
cannam@167
|
129 }
|
cannam@167
|
130
|
cannam@167
|
131
|
cannam@167
|
132 /* tiled copy routines */
|
cannam@167
|
133 struct cpy2d_closure {
|
cannam@167
|
134 R *I, *O;
|
cannam@167
|
135 INT is0, os0, is1, os1, vl;
|
cannam@167
|
136 R *buf;
|
cannam@167
|
137 };
|
cannam@167
|
138
|
cannam@167
|
139 static void dotile(INT n0l, INT n0u, INT n1l, INT n1u, void *args)
|
cannam@167
|
140 {
|
cannam@167
|
141 struct cpy2d_closure *k = (struct cpy2d_closure *)args;
|
cannam@167
|
142 X(cpy2d)(k->I + n0l * k->is0 + n1l * k->is1,
|
cannam@167
|
143 k->O + n0l * k->os0 + n1l * k->os1,
|
cannam@167
|
144 n0u - n0l, k->is0, k->os0,
|
cannam@167
|
145 n1u - n1l, k->is1, k->os1,
|
cannam@167
|
146 k->vl);
|
cannam@167
|
147 }
|
cannam@167
|
148
|
cannam@167
|
149 static void dotile_buf(INT n0l, INT n0u, INT n1l, INT n1u, void *args)
|
cannam@167
|
150 {
|
cannam@167
|
151 struct cpy2d_closure *k = (struct cpy2d_closure *)args;
|
cannam@167
|
152
|
cannam@167
|
153 /* copy from I to buf */
|
cannam@167
|
154 X(cpy2d_ci)(k->I + n0l * k->is0 + n1l * k->is1,
|
cannam@167
|
155 k->buf,
|
cannam@167
|
156 n0u - n0l, k->is0, k->vl,
|
cannam@167
|
157 n1u - n1l, k->is1, k->vl * (n0u - n0l),
|
cannam@167
|
158 k->vl);
|
cannam@167
|
159
|
cannam@167
|
160 /* copy from buf to O */
|
cannam@167
|
161 X(cpy2d_co)(k->buf,
|
cannam@167
|
162 k->O + n0l * k->os0 + n1l * k->os1,
|
cannam@167
|
163 n0u - n0l, k->vl, k->os0,
|
cannam@167
|
164 n1u - n1l, k->vl * (n0u - n0l), k->os1,
|
cannam@167
|
165 k->vl);
|
cannam@167
|
166 }
|
cannam@167
|
167
|
cannam@167
|
168
|
cannam@167
|
169 void X(cpy2d_tiled)(R *I, R *O,
|
cannam@167
|
170 INT n0, INT is0, INT os0,
|
cannam@167
|
171 INT n1, INT is1, INT os1, INT vl)
|
cannam@167
|
172 {
|
cannam@167
|
173 INT tilesz = X(compute_tilesz)(vl,
|
cannam@167
|
174 1 /* input array */
|
cannam@167
|
175 + 1 /* ouput array */);
|
cannam@167
|
176 struct cpy2d_closure k;
|
cannam@167
|
177 k.I = I;
|
cannam@167
|
178 k.O = O;
|
cannam@167
|
179 k.is0 = is0;
|
cannam@167
|
180 k.os0 = os0;
|
cannam@167
|
181 k.is1 = is1;
|
cannam@167
|
182 k.os1 = os1;
|
cannam@167
|
183 k.vl = vl;
|
cannam@167
|
184 k.buf = 0; /* unused */
|
cannam@167
|
185 X(tile2d)(0, n0, 0, n1, tilesz, dotile, &k);
|
cannam@167
|
186 }
|
cannam@167
|
187
|
cannam@167
|
188 void X(cpy2d_tiledbuf)(R *I, R *O,
|
cannam@167
|
189 INT n0, INT is0, INT os0,
|
cannam@167
|
190 INT n1, INT is1, INT os1, INT vl)
|
cannam@167
|
191 {
|
cannam@167
|
192 R buf[CACHESIZE / (2 * sizeof(R))];
|
cannam@167
|
193 /* input and buffer in cache, or
|
cannam@167
|
194 output and buffer in cache */
|
cannam@167
|
195 INT tilesz = X(compute_tilesz)(vl, 2);
|
cannam@167
|
196 struct cpy2d_closure k;
|
cannam@167
|
197 k.I = I;
|
cannam@167
|
198 k.O = O;
|
cannam@167
|
199 k.is0 = is0;
|
cannam@167
|
200 k.os0 = os0;
|
cannam@167
|
201 k.is1 = is1;
|
cannam@167
|
202 k.os1 = os1;
|
cannam@167
|
203 k.vl = vl;
|
cannam@167
|
204 k.buf = buf;
|
cannam@167
|
205 A(tilesz * tilesz * vl * sizeof(R) <= sizeof(buf));
|
cannam@167
|
206 X(tile2d)(0, n0, 0, n1, tilesz, dotile_buf, &k);
|
cannam@167
|
207 }
|