| cannam@167 | 1 /* | 
| cannam@167 | 2  * Copyright (c) 2003, 2007-14 Matteo Frigo | 
| cannam@167 | 3  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | 
| cannam@167 | 4  * | 
| cannam@167 | 5  * This program is free software; you can redistribute it and/or modify | 
| cannam@167 | 6  * it under the terms of the GNU General Public License as published by | 
| cannam@167 | 7  * the Free Software Foundation; either version 2 of the License, or | 
| cannam@167 | 8  * (at your option) any later version. | 
| cannam@167 | 9  * | 
| cannam@167 | 10  * This program is distributed in the hope that it will be useful, | 
| cannam@167 | 11  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
| cannam@167 | 12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
| cannam@167 | 13  * GNU General Public License for more details. | 
| cannam@167 | 14  * | 
| cannam@167 | 15  * You should have received a copy of the GNU General Public License | 
| cannam@167 | 16  * along with this program; if not, write to the Free Software | 
| cannam@167 | 17  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | 
| cannam@167 | 18  * | 
| cannam@167 | 19  */ | 
| cannam@167 | 20 | 
| cannam@167 | 21 /* out of place 2D copy routines */ | 
| cannam@167 | 22 #include "kernel/ifftw.h" | 
| cannam@167 | 23 | 
| cannam@167 | 24 #if defined(__x86_64__) || defined(_M_X64) || defined(_M_AMD64) | 
| cannam@167 | 25 #  ifdef HAVE_XMMINTRIN_H | 
| cannam@167 | 26 #    include <xmmintrin.h> | 
| cannam@167 | 27 #    define WIDE_TYPE __m128 | 
| cannam@167 | 28 #  endif | 
| cannam@167 | 29 #endif | 
| cannam@167 | 30 | 
| cannam@167 | 31 #ifndef WIDE_TYPE | 
| cannam@167 | 32 /* fall back to double, which means that WIDE_TYPE will be unused */ | 
| cannam@167 | 33 #  define WIDE_TYPE double | 
| cannam@167 | 34 #endif | 
| cannam@167 | 35 | 
| cannam@167 | 36 void X(cpy2d)(R *I, R *O, | 
| cannam@167 | 37 	      INT n0, INT is0, INT os0, | 
| cannam@167 | 38 	      INT n1, INT is1, INT os1, | 
| cannam@167 | 39 	      INT vl) | 
| cannam@167 | 40 { | 
| cannam@167 | 41      INT i0, i1, v; | 
| cannam@167 | 42 | 
| cannam@167 | 43      switch (vl) { | 
| cannam@167 | 44 	 case 1: | 
| cannam@167 | 45 	      for (i1 = 0; i1 < n1; ++i1) | 
| cannam@167 | 46 		   for (i0 = 0; i0 < n0; ++i0) { | 
| cannam@167 | 47 			R x0 = I[i0 * is0 + i1 * is1]; | 
| cannam@167 | 48 			O[i0 * os0 + i1 * os1] = x0; | 
| cannam@167 | 49 		   } | 
| cannam@167 | 50 	      break; | 
| cannam@167 | 51 	 case 2: | 
| cannam@167 | 52 	      if (1 | 
| cannam@167 | 53 		  && (2 * sizeof(R) == sizeof(WIDE_TYPE)) | 
| cannam@167 | 54 		  && (sizeof(WIDE_TYPE) > sizeof(double)) | 
| cannam@167 | 55 		  && (((size_t)I) % sizeof(WIDE_TYPE) == 0) | 
| cannam@167 | 56 		  && (((size_t)O) % sizeof(WIDE_TYPE) == 0) | 
| cannam@167 | 57 		  && ((is0 & 1) == 0) | 
| cannam@167 | 58 		  && ((is1 & 1) == 0) | 
| cannam@167 | 59 		  && ((os0 & 1) == 0) | 
| cannam@167 | 60 		  && ((os1 & 1) == 0)) { | 
| cannam@167 | 61 		   /* copy R[2] as WIDE_TYPE if WIDE_TYPE is large | 
| cannam@167 | 62 		      enough to hold R[2], and if the input is | 
| cannam@167 | 63 		      properly aligned.  This is a win when R==double | 
| cannam@167 | 64 		      and WIDE_TYPE is 128 bits. */ | 
| cannam@167 | 65 		   for (i1 = 0; i1 < n1; ++i1) | 
| cannam@167 | 66 			for (i0 = 0; i0 < n0; ++i0) { | 
| cannam@167 | 67 			     *(WIDE_TYPE *)&O[i0 * os0 + i1 * os1] = | 
| cannam@167 | 68 				  *(WIDE_TYPE *)&I[i0 * is0 + i1 * is1]; | 
| cannam@167 | 69 			} | 
| cannam@167 | 70 	      } else if (1 | 
| cannam@167 | 71 		  && (2 * sizeof(R) == sizeof(double)) | 
| cannam@167 | 72 		  && (((size_t)I) % sizeof(double) == 0) | 
| cannam@167 | 73 		  && (((size_t)O) % sizeof(double) == 0) | 
| cannam@167 | 74 		  && ((is0 & 1) == 0) | 
| cannam@167 | 75 		  && ((is1 & 1) == 0) | 
| cannam@167 | 76 		  && ((os0 & 1) == 0) | 
| cannam@167 | 77 		  && ((os1 & 1) == 0)) { | 
| cannam@167 | 78 		   /* copy R[2] as double if double is large enough to | 
| cannam@167 | 79 		      hold R[2], and if the input is properly aligned. | 
| cannam@167 | 80 		      This case applies when R==float */ | 
| cannam@167 | 81 		   for (i1 = 0; i1 < n1; ++i1) | 
| cannam@167 | 82 			for (i0 = 0; i0 < n0; ++i0) { | 
| cannam@167 | 83 			     *(double *)&O[i0 * os0 + i1 * os1] = | 
| cannam@167 | 84 				  *(double *)&I[i0 * is0 + i1 * is1]; | 
| cannam@167 | 85 			} | 
| cannam@167 | 86 	      } else { | 
| cannam@167 | 87 		   for (i1 = 0; i1 < n1; ++i1) | 
| cannam@167 | 88 			for (i0 = 0; i0 < n0; ++i0) { | 
| cannam@167 | 89 			     R x0 = I[i0 * is0 + i1 * is1]; | 
| cannam@167 | 90 			     R x1 = I[i0 * is0 + i1 * is1 + 1]; | 
| cannam@167 | 91 			     O[i0 * os0 + i1 * os1] = x0; | 
| cannam@167 | 92  			     O[i0 * os0 + i1 * os1 + 1] = x1; | 
| cannam@167 | 93 			} | 
| cannam@167 | 94 	      } | 
| cannam@167 | 95 	      break; | 
| cannam@167 | 96 	 default: | 
| cannam@167 | 97 	      for (i1 = 0; i1 < n1; ++i1) | 
| cannam@167 | 98 		   for (i0 = 0; i0 < n0; ++i0) | 
| cannam@167 | 99 			for (v = 0; v < vl; ++v) { | 
| cannam@167 | 100 			     R x0 = I[i0 * is0 + i1 * is1 + v]; | 
| cannam@167 | 101 			     O[i0 * os0 + i1 * os1 + v] = x0; | 
| cannam@167 | 102 			} | 
| cannam@167 | 103 	      break; | 
| cannam@167 | 104      } | 
| cannam@167 | 105 } | 
| cannam@167 | 106 | 
| cannam@167 | 107 /* like cpy2d, but read input contiguously if possible */ | 
| cannam@167 | 108 void X(cpy2d_ci)(R *I, R *O, | 
| cannam@167 | 109 		 INT n0, INT is0, INT os0, | 
| cannam@167 | 110 		 INT n1, INT is1, INT os1, | 
| cannam@167 | 111 		 INT vl) | 
| cannam@167 | 112 { | 
| cannam@167 | 113      if (IABS(is0) < IABS(is1))	/* inner loop is for n0 */ | 
| cannam@167 | 114 	  X(cpy2d) (I, O, n0, is0, os0, n1, is1, os1, vl); | 
| cannam@167 | 115      else | 
| cannam@167 | 116 	  X(cpy2d) (I, O, n1, is1, os1, n0, is0, os0, vl); | 
| cannam@167 | 117 } | 
| cannam@167 | 118 | 
| cannam@167 | 119 /* like cpy2d, but write output contiguously if possible */ | 
| cannam@167 | 120 void X(cpy2d_co)(R *I, R *O, | 
| cannam@167 | 121 		 INT n0, INT is0, INT os0, | 
| cannam@167 | 122 		 INT n1, INT is1, INT os1, | 
| cannam@167 | 123 		 INT vl) | 
| cannam@167 | 124 { | 
| cannam@167 | 125      if (IABS(os0) < IABS(os1))	/* inner loop is for n0 */ | 
| cannam@167 | 126 	  X(cpy2d) (I, O, n0, is0, os0, n1, is1, os1, vl); | 
| cannam@167 | 127      else | 
| cannam@167 | 128 	  X(cpy2d) (I, O, n1, is1, os1, n0, is0, os0, vl); | 
| cannam@167 | 129 } | 
| cannam@167 | 130 | 
| cannam@167 | 131 | 
| cannam@167 | 132 /* tiled copy routines */ | 
| cannam@167 | 133 struct cpy2d_closure { | 
| cannam@167 | 134      R *I, *O; | 
| cannam@167 | 135      INT is0, os0, is1, os1, vl; | 
| cannam@167 | 136      R *buf; | 
| cannam@167 | 137 }; | 
| cannam@167 | 138 | 
| cannam@167 | 139 static void dotile(INT n0l, INT n0u, INT n1l, INT n1u, void *args) | 
| cannam@167 | 140 { | 
| cannam@167 | 141      struct cpy2d_closure *k = (struct cpy2d_closure *)args; | 
| cannam@167 | 142      X(cpy2d)(k->I + n0l * k->is0 + n1l * k->is1, | 
| cannam@167 | 143 	      k->O + n0l * k->os0 + n1l * k->os1, | 
| cannam@167 | 144 	      n0u - n0l, k->is0, k->os0, | 
| cannam@167 | 145 	      n1u - n1l, k->is1, k->os1, | 
| cannam@167 | 146 	      k->vl); | 
| cannam@167 | 147 } | 
| cannam@167 | 148 | 
| cannam@167 | 149 static void dotile_buf(INT n0l, INT n0u, INT n1l, INT n1u, void *args) | 
| cannam@167 | 150 { | 
| cannam@167 | 151      struct cpy2d_closure *k = (struct cpy2d_closure *)args; | 
| cannam@167 | 152 | 
| cannam@167 | 153      /* copy from I to buf */ | 
| cannam@167 | 154      X(cpy2d_ci)(k->I + n0l * k->is0 + n1l * k->is1, | 
| cannam@167 | 155 		 k->buf, | 
| cannam@167 | 156 		 n0u - n0l, k->is0, k->vl, | 
| cannam@167 | 157 		 n1u - n1l, k->is1, k->vl * (n0u - n0l), | 
| cannam@167 | 158 		 k->vl); | 
| cannam@167 | 159 | 
| cannam@167 | 160      /* copy from buf to O */ | 
| cannam@167 | 161      X(cpy2d_co)(k->buf, | 
| cannam@167 | 162 		 k->O + n0l * k->os0 + n1l * k->os1, | 
| cannam@167 | 163 		 n0u - n0l, k->vl, k->os0, | 
| cannam@167 | 164 		 n1u - n1l, k->vl * (n0u - n0l), k->os1, | 
| cannam@167 | 165 		 k->vl); | 
| cannam@167 | 166 } | 
| cannam@167 | 167 | 
| cannam@167 | 168 | 
| cannam@167 | 169 void X(cpy2d_tiled)(R *I, R *O, | 
| cannam@167 | 170 		    INT n0, INT is0, INT os0, | 
| cannam@167 | 171 		    INT n1, INT is1, INT os1, INT vl) | 
| cannam@167 | 172 { | 
| cannam@167 | 173      INT tilesz = X(compute_tilesz)(vl, | 
| cannam@167 | 174 				    1 /* input array */ | 
| cannam@167 | 175 				    + 1 /* ouput array */); | 
| cannam@167 | 176      struct cpy2d_closure k; | 
| cannam@167 | 177      k.I = I; | 
| cannam@167 | 178      k.O = O; | 
| cannam@167 | 179      k.is0 = is0; | 
| cannam@167 | 180      k.os0 = os0; | 
| cannam@167 | 181      k.is1 = is1; | 
| cannam@167 | 182      k.os1 = os1; | 
| cannam@167 | 183      k.vl = vl; | 
| cannam@167 | 184      k.buf = 0; /* unused */ | 
| cannam@167 | 185      X(tile2d)(0, n0, 0, n1, tilesz, dotile, &k); | 
| cannam@167 | 186 } | 
| cannam@167 | 187 | 
| cannam@167 | 188 void X(cpy2d_tiledbuf)(R *I, R *O, | 
| cannam@167 | 189 		       INT n0, INT is0, INT os0, | 
| cannam@167 | 190 		       INT n1, INT is1, INT os1, INT vl) | 
| cannam@167 | 191 { | 
| cannam@167 | 192      R buf[CACHESIZE / (2 * sizeof(R))]; | 
| cannam@167 | 193      /* input and buffer in cache, or | 
| cannam@167 | 194 	output and buffer in cache */ | 
| cannam@167 | 195      INT tilesz = X(compute_tilesz)(vl, 2); | 
| cannam@167 | 196      struct cpy2d_closure k; | 
| cannam@167 | 197      k.I = I; | 
| cannam@167 | 198      k.O = O; | 
| cannam@167 | 199      k.is0 = is0; | 
| cannam@167 | 200      k.os0 = os0; | 
| cannam@167 | 201      k.is1 = is1; | 
| cannam@167 | 202      k.os1 = os1; | 
| cannam@167 | 203      k.vl = vl; | 
| cannam@167 | 204      k.buf = buf; | 
| cannam@167 | 205      A(tilesz * tilesz * vl * sizeof(R) <= sizeof(buf)); | 
| cannam@167 | 206      X(tile2d)(0, n0, 0, n1, tilesz, dotile_buf, &k); | 
| cannam@167 | 207 } |