annotate src/fftw-3.3.8/genfft/trig.ml @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents bd3cc4d1df30
children
rev   line source
cannam@167 1 (*
cannam@167 2 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
cannam@167 3 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 4 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 5 *
cannam@167 6 * This program is free software; you can redistribute it and/or modify
cannam@167 7 * it under the terms of the GNU General Public License as published by
cannam@167 8 * the Free Software Foundation; either version 2 of the License, or
cannam@167 9 * (at your option) any later version.
cannam@167 10 *
cannam@167 11 * This program is distributed in the hope that it will be useful,
cannam@167 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 14 * GNU General Public License for more details.
cannam@167 15 *
cannam@167 16 * You should have received a copy of the GNU General Public License
cannam@167 17 * along with this program; if not, write to the Free Software
cannam@167 18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 19 *
cannam@167 20 *)
cannam@167 21
cannam@167 22 (* trigonometric transforms *)
cannam@167 23 open Util
cannam@167 24
cannam@167 25 (* DFT of real input *)
cannam@167 26 let rdft sign n input =
cannam@167 27 Fft.dft sign n (Complex.real @@ input)
cannam@167 28
cannam@167 29 (* DFT of hermitian input *)
cannam@167 30 let hdft sign n input =
cannam@167 31 Fft.dft sign n (Complex.hermitian n input)
cannam@167 32
cannam@167 33 (* DFT real transform of vectors of two real numbers,
cannam@167 34 multiplication by (NaN I), and summation *)
cannam@167 35 let dft_via_rdft sign n input =
cannam@167 36 let f = rdft sign n input
cannam@167 37 in fun i ->
cannam@167 38 Complex.plus
cannam@167 39 [Complex.real (f i);
cannam@167 40 Complex.times (Complex.nan Expr.I) (Complex.imag (f i))]
cannam@167 41
cannam@167 42 (* Discrete Hartley Transform *)
cannam@167 43 let dht sign n input =
cannam@167 44 let f = Fft.dft sign n (Complex.real @@ input) in
cannam@167 45 (fun i ->
cannam@167 46 Complex.plus [Complex.real (f i); Complex.imag (f i)])
cannam@167 47
cannam@167 48 let trigI n input =
cannam@167 49 let twon = 2 * n in
cannam@167 50 let input' = Complex.hermitian twon input
cannam@167 51 in
cannam@167 52 Fft.dft 1 twon input'
cannam@167 53
cannam@167 54 let interleave_zero input = fun i ->
cannam@167 55 if (i mod 2) == 0
cannam@167 56 then Complex.zero
cannam@167 57 else
cannam@167 58 input ((i - 1) / 2)
cannam@167 59
cannam@167 60 let trigII n input =
cannam@167 61 let fourn = 4 * n in
cannam@167 62 let input' = Complex.hermitian fourn (interleave_zero input)
cannam@167 63 in
cannam@167 64 Fft.dft 1 fourn input'
cannam@167 65
cannam@167 66 let trigIII n input =
cannam@167 67 let fourn = 4 * n in
cannam@167 68 let twon = 2 * n in
cannam@167 69 let input' = Complex.hermitian fourn
cannam@167 70 (fun i ->
cannam@167 71 if (i == 0) then
cannam@167 72 Complex.real (input 0)
cannam@167 73 else if (i == twon) then
cannam@167 74 Complex.uminus (Complex.real (input 0))
cannam@167 75 else
cannam@167 76 Complex.antihermitian twon input i)
cannam@167 77 in
cannam@167 78 let dft = Fft.dft 1 fourn input'
cannam@167 79 in fun k -> dft (2 * k + 1)
cannam@167 80
cannam@167 81 let zero_extend n input = fun i ->
cannam@167 82 if (i >= 0 && i < n)
cannam@167 83 then input i
cannam@167 84 else Complex.zero
cannam@167 85
cannam@167 86 let trigIV n input =
cannam@167 87 let fourn = 4 * n
cannam@167 88 and eightn = 8 * n in
cannam@167 89 let input' = Complex.hermitian eightn
cannam@167 90 (zero_extend fourn (Complex.antihermitian fourn
cannam@167 91 (interleave_zero input)))
cannam@167 92 in
cannam@167 93 let dft = Fft.dft 1 eightn input'
cannam@167 94 in fun k -> dft (2 * k + 1)
cannam@167 95
cannam@167 96 let make_dct scale nshift trig =
cannam@167 97 fun n input ->
cannam@167 98 trig (n - nshift) (Complex.real @@ (Complex.times scale) @@
cannam@167 99 (zero_extend n input))
cannam@167 100 (*
cannam@167 101 * DCT-I: y[k] = sum x[j] cos(pi * j * k / n)
cannam@167 102 *)
cannam@167 103 let dctI = make_dct Complex.one 1 trigI
cannam@167 104
cannam@167 105 (*
cannam@167 106 * DCT-II: y[k] = sum x[j] cos(pi * (j + 1/2) * k / n)
cannam@167 107 *)
cannam@167 108 let dctII = make_dct Complex.one 0 trigII
cannam@167 109
cannam@167 110 (*
cannam@167 111 * DCT-III: y[k] = sum x[j] cos(pi * j * (k + 1/2) / n)
cannam@167 112 *)
cannam@167 113 let dctIII = make_dct Complex.half 0 trigIII
cannam@167 114
cannam@167 115 (*
cannam@167 116 * DCT-IV y[k] = sum x[j] cos(pi * (j + 1/2) * (k + 1/2) / n)
cannam@167 117 *)
cannam@167 118 let dctIV = make_dct Complex.half 0 trigIV
cannam@167 119
cannam@167 120 let shift s input = fun i -> input (i - s)
cannam@167 121
cannam@167 122 (* DST-x input := TRIG-x (input / i) *)
cannam@167 123 let make_dst scale nshift kshift jshift trig =
cannam@167 124 fun n input ->
cannam@167 125 Complex.real @@
cannam@167 126 (shift (- jshift)
cannam@167 127 (trig (n + nshift) (Complex.uminus @@
cannam@167 128 (Complex.times Complex.i) @@
cannam@167 129 (Complex.times scale) @@
cannam@167 130 Complex.real @@
cannam@167 131 (shift kshift (zero_extend n input)))))
cannam@167 132
cannam@167 133 (*
cannam@167 134 * DST-I: y[k] = sum x[j] sin(pi * j * k / n)
cannam@167 135 *)
cannam@167 136 let dstI = make_dst Complex.one 1 1 1 trigI
cannam@167 137
cannam@167 138 (*
cannam@167 139 * DST-II: y[k] = sum x[j] sin(pi * (j + 1/2) * k / n)
cannam@167 140 *)
cannam@167 141 let dstII = make_dst Complex.one 0 0 1 trigII
cannam@167 142
cannam@167 143 (*
cannam@167 144 * DST-III: y[k] = sum x[j] sin(pi * j * (k + 1/2) / n)
cannam@167 145 *)
cannam@167 146 let dstIII = make_dst Complex.half 0 1 0 trigIII
cannam@167 147
cannam@167 148 (*
cannam@167 149 * DST-IV y[k] = sum x[j] sin(pi * (j + 1/2) * (k + 1/2) / n)
cannam@167 150 *)
cannam@167 151 let dstIV = make_dst Complex.half 0 0 0 trigIV
cannam@167 152