annotate src/fftw-3.3.8/genfft/fft.ml @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents bd3cc4d1df30
children
rev   line source
cannam@167 1 (*
cannam@167 2 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
cannam@167 3 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 4 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 5 *
cannam@167 6 * This program is free software; you can redistribute it and/or modify
cannam@167 7 * it under the terms of the GNU General Public License as published by
cannam@167 8 * the Free Software Foundation; either version 2 of the License, or
cannam@167 9 * (at your option) any later version.
cannam@167 10 *
cannam@167 11 * This program is distributed in the hope that it will be useful,
cannam@167 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 14 * GNU General Public License for more details.
cannam@167 15 *
cannam@167 16 * You should have received a copy of the GNU General Public License
cannam@167 17 * along with this program; if not, write to the Free Software
cannam@167 18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 19 *
cannam@167 20 *)
cannam@167 21
cannam@167 22
cannam@167 23 (* This is the part of the generator that actually computes the FFT
cannam@167 24 in symbolic form *)
cannam@167 25
cannam@167 26 open Complex
cannam@167 27 open Util
cannam@167 28
cannam@167 29 (* choose a suitable factor of n *)
cannam@167 30 let choose_factor n =
cannam@167 31 (* first choice: i such that gcd(i, n / i) = 1, i as big as possible *)
cannam@167 32 let choose1 n =
cannam@167 33 let rec loop i f =
cannam@167 34 if (i * i > n) then f
cannam@167 35 else if ((n mod i) == 0 && gcd i (n / i) == 1) then loop (i + 1) i
cannam@167 36 else loop (i + 1) f
cannam@167 37 in loop 1 1
cannam@167 38
cannam@167 39 (* second choice: the biggest factor i of n, where i < sqrt(n), if any *)
cannam@167 40 and choose2 n =
cannam@167 41 let rec loop i f =
cannam@167 42 if (i * i > n) then f
cannam@167 43 else if ((n mod i) == 0) then loop (i + 1) i
cannam@167 44 else loop (i + 1) f
cannam@167 45 in loop 1 1
cannam@167 46
cannam@167 47 in let i = choose1 n in
cannam@167 48 if (i > 1) then i
cannam@167 49 else choose2 n
cannam@167 50
cannam@167 51 let is_power_of_two n = (n > 0) && ((n - 1) land n == 0)
cannam@167 52
cannam@167 53 let rec dft_prime sign n input =
cannam@167 54 let sum filter i =
cannam@167 55 sigma 0 n (fun j ->
cannam@167 56 let coeff = filter (exp n (sign * i * j))
cannam@167 57 in coeff @* (input j)) in
cannam@167 58 let computation_even = array n (sum identity)
cannam@167 59 and computation_odd =
cannam@167 60 let sumr = array n (sum real)
cannam@167 61 and sumi = array n (sum ((times Complex.i) @@ imag)) in
cannam@167 62 array n (fun i ->
cannam@167 63 if (i = 0) then
cannam@167 64 (* expose some common subexpressions *)
cannam@167 65 input 0 @+
cannam@167 66 sigma 1 ((n + 1) / 2) (fun j -> input j @+ input (n - j))
cannam@167 67 else
cannam@167 68 let i' = min i (n - i) in
cannam@167 69 if (i < n - i) then
cannam@167 70 sumr i' @+ sumi i'
cannam@167 71 else
cannam@167 72 sumr i' @- sumi i') in
cannam@167 73 if (n >= !Magic.rader_min) then
cannam@167 74 dft_rader sign n input
cannam@167 75 else if (n == 2) then
cannam@167 76 computation_even
cannam@167 77 else
cannam@167 78 computation_odd
cannam@167 79
cannam@167 80
cannam@167 81 and dft_rader sign p input =
cannam@167 82 let half =
cannam@167 83 let one_half = inverse_int 2 in
cannam@167 84 times one_half
cannam@167 85
cannam@167 86 and make_product n a b =
cannam@167 87 let scale_factor = inverse_int n in
cannam@167 88 array n (fun i -> a i @* (scale_factor @* b i)) in
cannam@167 89
cannam@167 90 (* generates a convolution using ffts. (all arguments are the
cannam@167 91 same as to gen_convolution, below) *)
cannam@167 92 let gen_convolution_by_fft n a b addtoall =
cannam@167 93 let fft_a = dft 1 n a
cannam@167 94 and fft_b = dft 1 n b in
cannam@167 95
cannam@167 96 let fft_ab = make_product n fft_a fft_b
cannam@167 97 and dc_term i = if (i == 0) then addtoall else zero in
cannam@167 98
cannam@167 99 let fft_ab1 = array n (fun i -> fft_ab i @+ dc_term i)
cannam@167 100 and sum = fft_a 0 in
cannam@167 101 let conv = dft (-1) n fft_ab1 in
cannam@167 102 (sum, conv)
cannam@167 103
cannam@167 104 (* alternate routine for convolution. Seems to work better for
cannam@167 105 small sizes. I have no idea why. *)
cannam@167 106 and gen_convolution_by_fft_alt n a b addtoall =
cannam@167 107 let ap = array n (fun i -> half (a i @+ a ((n - i) mod n)))
cannam@167 108 and am = array n (fun i -> half (a i @- a ((n - i) mod n)))
cannam@167 109 and bp = array n (fun i -> half (b i @+ b ((n - i) mod n)))
cannam@167 110 and bm = array n (fun i -> half (b i @- b ((n - i) mod n)))
cannam@167 111 in
cannam@167 112
cannam@167 113 let fft_ap = dft 1 n ap
cannam@167 114 and fft_am = dft 1 n am
cannam@167 115 and fft_bp = dft 1 n bp
cannam@167 116 and fft_bm = dft 1 n bm in
cannam@167 117
cannam@167 118 let fft_abpp = make_product n fft_ap fft_bp
cannam@167 119 and fft_abpm = make_product n fft_ap fft_bm
cannam@167 120 and fft_abmp = make_product n fft_am fft_bp
cannam@167 121 and fft_abmm = make_product n fft_am fft_bm
cannam@167 122 and sum = fft_ap 0 @+ fft_am 0
cannam@167 123 and dc_term i = if (i == 0) then addtoall else zero in
cannam@167 124
cannam@167 125 let fft_ab1 = array n (fun i -> (fft_abpp i @+ fft_abmm i) @+ dc_term i)
cannam@167 126 and fft_ab2 = array n (fun i -> fft_abpm i @+ fft_abmp i) in
cannam@167 127 let conv1 = dft (-1) n fft_ab1
cannam@167 128 and conv2 = dft (-1) n fft_ab2 in
cannam@167 129 let conv = array n (fun i ->
cannam@167 130 conv1 i @+ conv2 i) in
cannam@167 131 (sum, conv)
cannam@167 132
cannam@167 133 (* generator of assignment list assigning conv to the convolution of
cannam@167 134 a and b, all of which are of length n. addtoall is added to
cannam@167 135 all of the elements of the result. Returns (sum, convolution) pair
cannam@167 136 where sum is the sum of the elements of a. *)
cannam@167 137
cannam@167 138 in let gen_convolution =
cannam@167 139 if (p <= !Magic.alternate_convolution) then
cannam@167 140 gen_convolution_by_fft_alt
cannam@167 141 else
cannam@167 142 gen_convolution_by_fft
cannam@167 143
cannam@167 144 (* fft generator for prime n = p using Rader's algorithm for
cannam@167 145 turning the fft into a convolution, which then can be
cannam@167 146 performed in a variety of ways *)
cannam@167 147 in
cannam@167 148 let g = find_generator p in
cannam@167 149 let ginv = pow_mod g (p - 2) p in
cannam@167 150 let input_perm = array p (fun i -> input (pow_mod g i p))
cannam@167 151 and omega_perm = array p (fun i -> exp p (sign * (pow_mod ginv i p)))
cannam@167 152 and output_perm = array p (fun i -> pow_mod ginv i p)
cannam@167 153 in let (sum, conv) =
cannam@167 154 (gen_convolution (p - 1) input_perm omega_perm (input 0))
cannam@167 155 in array p (fun i ->
cannam@167 156 if (i = 0) then
cannam@167 157 input 0 @+ sum
cannam@167 158 else
cannam@167 159 let i' = suchthat 0 (fun i' -> i = output_perm i')
cannam@167 160 in conv i')
cannam@167 161
cannam@167 162 (* our modified version of the conjugate-pair split-radix algorithm,
cannam@167 163 which reduces the number of multiplications by rescaling the
cannam@167 164 sub-transforms (power-of-two n's only) *)
cannam@167 165 and newsplit sign n input =
cannam@167 166 let rec s n k = (* recursive scale factor *)
cannam@167 167 if n <= 4 then
cannam@167 168 one
cannam@167 169 else
cannam@167 170 let k4 = (abs k) mod (n / 4) in
cannam@167 171 let k4' = if k4 <= (n / 8) then k4 else (n/4 - k4) in
cannam@167 172 (s (n / 4) k4') @* (real (exp n k4'))
cannam@167 173
cannam@167 174 and sinv n k = (* 1 / s(n,k) *)
cannam@167 175 if n <= 4 then
cannam@167 176 one
cannam@167 177 else
cannam@167 178 let k4 = (abs k) mod (n / 4) in
cannam@167 179 let k4' = if k4 <= (n / 8) then k4 else (n/4 - k4) in
cannam@167 180 (sinv (n / 4) k4') @* (sec n k4')
cannam@167 181
cannam@167 182 in let sdiv2 n k = (s n k) @* (sinv (2*n) k) (* s(n,k) / s(2*n,k) *)
cannam@167 183 and sdiv4 n k = (* s(n,k) / s(4*n,k) *)
cannam@167 184 let k4 = (abs k) mod n in
cannam@167 185 sec (4*n) (if k4 <= (n / 2) then k4 else (n - k4))
cannam@167 186
cannam@167 187 in let t n k = (exp n k) @* (sdiv4 (n/4) k)
cannam@167 188
cannam@167 189 and dft1 input = input
cannam@167 190 and dft2 input = array 2 (fun k -> (input 0) @+ ((input 1) @* exp 2 k))
cannam@167 191
cannam@167 192 in let rec newsplit0 sign n input =
cannam@167 193 if (n == 1) then dft1 input
cannam@167 194 else if (n == 2) then dft2 input
cannam@167 195 else let u = newsplit0 sign (n / 2) (fun i -> input (i*2))
cannam@167 196 and z = newsplitS sign (n / 4) (fun i -> input (i*4 + 1))
cannam@167 197 and z' = newsplitS sign (n / 4) (fun i -> input ((n + i*4 - 1) mod n))
cannam@167 198 and twid = array n (fun k -> s (n/4) k @* exp n (sign * k)) in
cannam@167 199 let w = array n (fun k -> twid k @* z (k mod (n / 4)))
cannam@167 200 and w' = array n (fun k -> conj (twid k) @* z' (k mod (n / 4))) in
cannam@167 201 let ww = array n (fun k -> w k @+ w' k) in
cannam@167 202 array n (fun k -> u (k mod (n / 2)) @+ ww k)
cannam@167 203
cannam@167 204 and newsplitS sign n input =
cannam@167 205 if (n == 1) then dft1 input
cannam@167 206 else if (n == 2) then dft2 input
cannam@167 207 else let u = newsplitS2 sign (n / 2) (fun i -> input (i*2))
cannam@167 208 and z = newsplitS sign (n / 4) (fun i -> input (i*4 + 1))
cannam@167 209 and z' = newsplitS sign (n / 4) (fun i -> input ((n + i*4 - 1) mod n)) in
cannam@167 210 let w = array n (fun k -> t n (sign * k) @* z (k mod (n / 4)))
cannam@167 211 and w' = array n (fun k -> conj (t n (sign * k)) @* z' (k mod (n / 4))) in
cannam@167 212 let ww = array n (fun k -> w k @+ w' k) in
cannam@167 213 array n (fun k -> u (k mod (n / 2)) @+ ww k)
cannam@167 214
cannam@167 215 and newsplitS2 sign n input =
cannam@167 216 if (n == 1) then dft1 input
cannam@167 217 else if (n == 2) then dft2 input
cannam@167 218 else let u = newsplitS4 sign (n / 2) (fun i -> input (i*2))
cannam@167 219 and z = newsplitS sign (n / 4) (fun i -> input (i*4 + 1))
cannam@167 220 and z' = newsplitS sign (n / 4) (fun i -> input ((n + i*4 - 1) mod n)) in
cannam@167 221 let w = array n (fun k -> t n (sign * k) @* z (k mod (n / 4)))
cannam@167 222 and w' = array n (fun k -> conj (t n (sign * k)) @* z' (k mod (n / 4))) in
cannam@167 223 let ww = array n (fun k -> (w k @+ w' k) @* (sdiv2 n k)) in
cannam@167 224 array n (fun k -> u (k mod (n / 2)) @+ ww k)
cannam@167 225
cannam@167 226 and newsplitS4 sign n input =
cannam@167 227 if (n == 1) then dft1 input
cannam@167 228 else if (n == 2) then
cannam@167 229 let f = dft2 input
cannam@167 230 in array 2 (fun k -> (f k) @* (sinv 8 k))
cannam@167 231 else let u = newsplitS2 sign (n / 2) (fun i -> input (i*2))
cannam@167 232 and z = newsplitS sign (n / 4) (fun i -> input (i*4 + 1))
cannam@167 233 and z' = newsplitS sign (n / 4) (fun i -> input ((n + i*4 - 1) mod n)) in
cannam@167 234 let w = array n (fun k -> t n (sign * k) @* z (k mod (n / 4)))
cannam@167 235 and w' = array n (fun k -> conj (t n (sign * k)) @* z' (k mod (n / 4))) in
cannam@167 236 let ww = array n (fun k -> w k @+ w' k) in
cannam@167 237 array n (fun k -> (u (k mod (n / 2)) @+ ww k) @* (sdiv4 n k))
cannam@167 238
cannam@167 239 in newsplit0 sign n input
cannam@167 240
cannam@167 241 and dft sign n input =
cannam@167 242 let rec cooley_tukey sign n1 n2 input =
cannam@167 243 let tmp1 =
cannam@167 244 array n2 (fun i2 ->
cannam@167 245 dft sign n1 (fun i1 -> input (i1 * n2 + i2))) in
cannam@167 246 let tmp2 =
cannam@167 247 array n1 (fun i1 ->
cannam@167 248 array n2 (fun i2 ->
cannam@167 249 exp n (sign * i1 * i2) @* tmp1 i2 i1)) in
cannam@167 250 let tmp3 = array n1 (fun i1 -> dft sign n2 (tmp2 i1)) in
cannam@167 251 (fun i -> tmp3 (i mod n1) (i / n1))
cannam@167 252
cannam@167 253 (*
cannam@167 254 * This is "exponent -1" split-radix by Dan Bernstein.
cannam@167 255 *)
cannam@167 256 and split_radix_dit sign n input =
cannam@167 257 let f0 = dft sign (n / 2) (fun i -> input (i * 2))
cannam@167 258 and f10 = dft sign (n / 4) (fun i -> input (i * 4 + 1))
cannam@167 259 and f11 = dft sign (n / 4) (fun i -> input ((n + i * 4 - 1) mod n)) in
cannam@167 260 let g10 = array n (fun k ->
cannam@167 261 exp n (sign * k) @* f10 (k mod (n / 4)))
cannam@167 262 and g11 = array n (fun k ->
cannam@167 263 exp n (- sign * k) @* f11 (k mod (n / 4))) in
cannam@167 264 let g1 = array n (fun k -> g10 k @+ g11 k) in
cannam@167 265 array n (fun k -> f0 (k mod (n / 2)) @+ g1 k)
cannam@167 266
cannam@167 267 and split_radix_dif sign n input =
cannam@167 268 let n2 = n / 2 and n4 = n / 4 in
cannam@167 269 let x0 = array n2 (fun i -> input i @+ input (i + n2))
cannam@167 270 and x10 = array n4 (fun i -> input i @- input (i + n2))
cannam@167 271 and x11 = array n4 (fun i ->
cannam@167 272 input (i + n4) @- input (i + n2 + n4)) in
cannam@167 273 let x1 k i =
cannam@167 274 exp n (k * i * sign) @* (x10 i @+ exp 4 (k * sign) @* x11 i) in
cannam@167 275 let f0 = dft sign n2 x0
cannam@167 276 and f1 = array 4 (fun k -> dft sign n4 (x1 k)) in
cannam@167 277 array n (fun k ->
cannam@167 278 if k mod 2 = 0 then f0 (k / 2)
cannam@167 279 else let k' = k mod 4 in f1 k' ((k - k') / 4))
cannam@167 280
cannam@167 281 and prime_factor sign n1 n2 input =
cannam@167 282 let tmp1 = array n2 (fun i2 ->
cannam@167 283 dft sign n1 (fun i1 -> input ((i1 * n2 + i2 * n1) mod n)))
cannam@167 284 in let tmp2 = array n1 (fun i1 ->
cannam@167 285 dft sign n2 (fun k2 -> tmp1 k2 i1))
cannam@167 286 in fun i -> tmp2 (i mod n1) (i mod n2)
cannam@167 287
cannam@167 288 in let algorithm sign n =
cannam@167 289 let r = choose_factor n in
cannam@167 290 if List.mem n !Magic.rader_list then
cannam@167 291 (* special cases *)
cannam@167 292 dft_rader sign n
cannam@167 293 else if (r == 1) then (* n is prime *)
cannam@167 294 dft_prime sign n
cannam@167 295 else if (gcd r (n / r)) == 1 then
cannam@167 296 prime_factor sign r (n / r)
cannam@167 297 else if (n mod 4 = 0 && n > 4) then
cannam@167 298 if !Magic.newsplit && is_power_of_two n then
cannam@167 299 newsplit sign n
cannam@167 300 else if !Magic.dif_split_radix then
cannam@167 301 split_radix_dif sign n
cannam@167 302 else
cannam@167 303 split_radix_dit sign n
cannam@167 304 else
cannam@167 305 cooley_tukey sign r (n / r)
cannam@167 306 in
cannam@167 307 array n (algorithm sign n input)