annotate src/fftw-3.3.8/genfft/conv.ml @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents bd3cc4d1df30
children
rev   line source
cannam@167 1 (*
cannam@167 2 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
cannam@167 3 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 4 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 5 *
cannam@167 6 * This program is free software; you can redistribute it and/or modify
cannam@167 7 * it under the terms of the GNU General Public License as published by
cannam@167 8 * the Free Software Foundation; either version 2 of the License, or
cannam@167 9 * (at your option) any later version.
cannam@167 10 *
cannam@167 11 * This program is distributed in the hope that it will be useful,
cannam@167 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 14 * GNU General Public License for more details.
cannam@167 15 *
cannam@167 16 * You should have received a copy of the GNU General Public License
cannam@167 17 * along with this program; if not, write to the Free Software
cannam@167 18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 19 *
cannam@167 20 *)
cannam@167 21
cannam@167 22 open Complex
cannam@167 23 open Util
cannam@167 24
cannam@167 25 let polyphase m a ph i = a (m * i + ph)
cannam@167 26
cannam@167 27 let rec divmod n i =
cannam@167 28 if (i < 0) then
cannam@167 29 let (a, b) = divmod n (i + n)
cannam@167 30 in (a - 1, b)
cannam@167 31 else (i / n, i mod n)
cannam@167 32
cannam@167 33 let unpolyphase m a i = let (x, y) = divmod m i in a y x
cannam@167 34
cannam@167 35 let lift2 f a b i = f (a i) (b i)
cannam@167 36
cannam@167 37 (* convolution of signals A and B *)
cannam@167 38 let rec conv na a nb b =
cannam@167 39 let rec naive na a nb b i =
cannam@167 40 sigma 0 na (fun j -> (a j) @* (b (i - j)))
cannam@167 41
cannam@167 42 and recur na a nb b =
cannam@167 43 if (na <= 1 || nb <= 1) then
cannam@167 44 naive na a nb b
cannam@167 45 else
cannam@167 46 let p = polyphase 2 in
cannam@167 47 let ee = conv (na - na / 2) (p a 0) (nb - nb / 2) (p b 0)
cannam@167 48 and eo = conv (na - na / 2) (p a 0) (nb / 2) (p b 1)
cannam@167 49 and oe = conv (na / 2) (p a 1) (nb - nb / 2) (p b 0)
cannam@167 50 and oo = conv (na / 2) (p a 1) (nb / 2) (p b 1) in
cannam@167 51 unpolyphase 2 (function
cannam@167 52 0 -> fun i -> (ee i) @+ (oo (i - 1))
cannam@167 53 | 1 -> fun i -> (eo i) @+ (oe i)
cannam@167 54 | _ -> failwith "recur")
cannam@167 55
cannam@167 56
cannam@167 57 (* Karatsuba variant 1: (a+bx)(c+dx) = (ac+bdxx)+((a+b)(c+d)-ac-bd)x *)
cannam@167 58 and karatsuba1 na a nb b =
cannam@167 59 let p = polyphase 2 in
cannam@167 60 let ae = p a 0 and nae = na - na / 2
cannam@167 61 and ao = p a 1 and nao = na / 2
cannam@167 62 and be = p b 0 and nbe = nb - nb / 2
cannam@167 63 and bo = p b 1 and nbo = nb / 2 in
cannam@167 64 let ae = infinite nae ae and ao = infinite nao ao
cannam@167 65 and be = infinite nbe be and bo = infinite nbo bo in
cannam@167 66 let aeo = lift2 (@+) ae ao and naeo = nae
cannam@167 67 and beo = lift2 (@+) be bo and nbeo = nbe in
cannam@167 68 let ee = conv nae ae nbe be
cannam@167 69 and oo = conv nao ao nbo bo
cannam@167 70 and eoeo = conv naeo aeo nbeo beo in
cannam@167 71
cannam@167 72 let q = function
cannam@167 73 0 -> fun i -> (ee i) @+ (oo (i - 1))
cannam@167 74 | 1 -> fun i -> (eoeo i) @- ((ee i) @+ (oo i))
cannam@167 75 | _ -> failwith "karatsuba1" in
cannam@167 76 unpolyphase 2 q
cannam@167 77
cannam@167 78 (* Karatsuba variant 2:
cannam@167 79 (a+bx)(c+dx) = ((a+b)c-b(c-dxx))+x((a+b)c-a(c-d)) *)
cannam@167 80 and karatsuba2 na a nb b =
cannam@167 81 let p = polyphase 2 in
cannam@167 82 let ae = p a 0 and nae = na - na / 2
cannam@167 83 and ao = p a 1 and nao = na / 2
cannam@167 84 and be = p b 0 and nbe = nb - nb / 2
cannam@167 85 and bo = p b 1 and nbo = nb / 2 in
cannam@167 86 let ae = infinite nae ae and ao = infinite nao ao
cannam@167 87 and be = infinite nbe be and bo = infinite nbo bo in
cannam@167 88
cannam@167 89 let c1 = conv nae (lift2 (@+) ae ao) nbe be
cannam@167 90 and c2 = conv nao ao (nbo + 1) (fun i -> be i @- bo (i - 1))
cannam@167 91 and c3 = conv nae ae nbe (lift2 (@-) be bo) in
cannam@167 92
cannam@167 93 let q = function
cannam@167 94 0 -> lift2 (@-) c1 c2
cannam@167 95 | 1 -> lift2 (@-) c1 c3
cannam@167 96 | _ -> failwith "karatsuba2" in
cannam@167 97 unpolyphase 2 q
cannam@167 98
cannam@167 99 and karatsuba na a nb b =
cannam@167 100 let m = na + nb - 1 in
cannam@167 101 if (m < !Magic.karatsuba_min) then
cannam@167 102 recur na a nb b
cannam@167 103 else
cannam@167 104 match !Magic.karatsuba_variant with
cannam@167 105 1 -> karatsuba1 na a nb b
cannam@167 106 | 2 -> karatsuba2 na a nb b
cannam@167 107 | _ -> failwith "unknown karatsuba variant"
cannam@167 108
cannam@167 109 and via_circular na a nb b =
cannam@167 110 let m = na + nb - 1 in
cannam@167 111 if (m < !Magic.circular_min) then
cannam@167 112 karatsuba na a nb b
cannam@167 113 else
cannam@167 114 let rec find_min n = if n >= m then n else find_min (2 * n) in
cannam@167 115 circular (find_min 1) a b
cannam@167 116
cannam@167 117 in
cannam@167 118 let a = infinite na a and b = infinite nb b in
cannam@167 119 let res = array (na + nb - 1) (via_circular na a nb b) in
cannam@167 120 infinite (na + nb - 1) res
cannam@167 121
cannam@167 122 and circular n a b =
cannam@167 123 let via_dft n a b =
cannam@167 124 let fa = Fft.dft (-1) n a
cannam@167 125 and fb = Fft.dft (-1) n b
cannam@167 126 and scale = inverse_int n in
cannam@167 127 let fab i = ((fa i) @* (fb i)) @* scale in
cannam@167 128 Fft.dft 1 n fab
cannam@167 129
cannam@167 130 in via_dft n a b