annotate src/fftw-3.3.8/genfft/assoctable.ml @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents bd3cc4d1df30
children
rev   line source
cannam@167 1 (*
cannam@167 2 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
cannam@167 3 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 4 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 5 *
cannam@167 6 * This program is free software; you can redistribute it and/or modify
cannam@167 7 * it under the terms of the GNU General Public License as published by
cannam@167 8 * the Free Software Foundation; either version 2 of the License, or
cannam@167 9 * (at your option) any later version.
cannam@167 10 *
cannam@167 11 * This program is distributed in the hope that it will be useful,
cannam@167 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 14 * GNU General Public License for more details.
cannam@167 15 *
cannam@167 16 * You should have received a copy of the GNU General Public License
cannam@167 17 * along with this program; if not, write to the Free Software
cannam@167 18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 19 *
cannam@167 20 *)
cannam@167 21
cannam@167 22 (*************************************************************
cannam@167 23 * Functional associative table
cannam@167 24 *************************************************************)
cannam@167 25
cannam@167 26 (*
cannam@167 27 * this module implements a functional associative table.
cannam@167 28 * The table is parametrized by an equality predicate and
cannam@167 29 * a hash function, with the restriction that (equal a b) ==>
cannam@167 30 * hash a == hash b.
cannam@167 31 * The table is purely functional and implemented using a binary
cannam@167 32 * search tree (not balanced for now)
cannam@167 33 *)
cannam@167 34
cannam@167 35 type ('a, 'b) elem =
cannam@167 36 Leaf
cannam@167 37 | Node of int * ('a, 'b) elem * ('a, 'b) elem * ('a * 'b) list
cannam@167 38
cannam@167 39 let empty = Leaf
cannam@167 40
cannam@167 41 let lookup hash equal key table =
cannam@167 42 let h = hash key in
cannam@167 43 let rec look = function
cannam@167 44 Leaf -> None
cannam@167 45 | Node (hash_key, left, right, this_list) ->
cannam@167 46 if (hash_key < h) then look left
cannam@167 47 else if (hash_key > h) then look right
cannam@167 48 else let rec loop = function
cannam@167 49 [] -> None
cannam@167 50 | (a, b) :: rest -> if (equal key a) then Some b else loop rest
cannam@167 51 in loop this_list
cannam@167 52 in look table
cannam@167 53
cannam@167 54 let insert hash key value table =
cannam@167 55 let h = hash key in
cannam@167 56 let rec ins = function
cannam@167 57 Leaf -> Node (h, Leaf, Leaf, [(key, value)])
cannam@167 58 | Node (hash_key, left, right, this_list) ->
cannam@167 59 if (hash_key < h) then
cannam@167 60 Node (hash_key, ins left, right, this_list)
cannam@167 61 else if (hash_key > h) then
cannam@167 62 Node (hash_key, left, ins right, this_list)
cannam@167 63 else
cannam@167 64 Node (hash_key, left, right, (key, value) :: this_list)
cannam@167 65 in ins table