annotate src/fftw-3.3.8/doc/html/Reversing-array-dimensions.html @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents bd3cc4d1df30
children
rev   line source
cannam@167 1 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
cannam@167 2 <html>
cannam@167 3 <!-- This manual is for FFTW
cannam@167 4 (version 3.3.8, 24 May 2018).
cannam@167 5
cannam@167 6 Copyright (C) 2003 Matteo Frigo.
cannam@167 7
cannam@167 8 Copyright (C) 2003 Massachusetts Institute of Technology.
cannam@167 9
cannam@167 10 Permission is granted to make and distribute verbatim copies of this
cannam@167 11 manual provided the copyright notice and this permission notice are
cannam@167 12 preserved on all copies.
cannam@167 13
cannam@167 14 Permission is granted to copy and distribute modified versions of this
cannam@167 15 manual under the conditions for verbatim copying, provided that the
cannam@167 16 entire resulting derived work is distributed under the terms of a
cannam@167 17 permission notice identical to this one.
cannam@167 18
cannam@167 19 Permission is granted to copy and distribute translations of this manual
cannam@167 20 into another language, under the above conditions for modified versions,
cannam@167 21 except that this permission notice may be stated in a translation
cannam@167 22 approved by the Free Software Foundation. -->
cannam@167 23 <!-- Created by GNU Texinfo 6.3, http://www.gnu.org/software/texinfo/ -->
cannam@167 24 <head>
cannam@167 25 <title>FFTW 3.3.8: Reversing array dimensions</title>
cannam@167 26
cannam@167 27 <meta name="description" content="FFTW 3.3.8: Reversing array dimensions">
cannam@167 28 <meta name="keywords" content="FFTW 3.3.8: Reversing array dimensions">
cannam@167 29 <meta name="resource-type" content="document">
cannam@167 30 <meta name="distribution" content="global">
cannam@167 31 <meta name="Generator" content="makeinfo">
cannam@167 32 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
cannam@167 33 <link href="index.html#Top" rel="start" title="Top">
cannam@167 34 <link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
cannam@167 35 <link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
cannam@167 36 <link href="Calling-FFTW-from-Modern-Fortran.html#Calling-FFTW-from-Modern-Fortran" rel="up" title="Calling FFTW from Modern Fortran">
cannam@167 37 <link href="FFTW-Fortran-type-reference.html#FFTW-Fortran-type-reference" rel="next" title="FFTW Fortran type reference">
cannam@167 38 <link href="Extended-and-quadruple-precision-in-Fortran.html#Extended-and-quadruple-precision-in-Fortran" rel="prev" title="Extended and quadruple precision in Fortran">
cannam@167 39 <style type="text/css">
cannam@167 40 <!--
cannam@167 41 a.summary-letter {text-decoration: none}
cannam@167 42 blockquote.indentedblock {margin-right: 0em}
cannam@167 43 blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
cannam@167 44 blockquote.smallquotation {font-size: smaller}
cannam@167 45 div.display {margin-left: 3.2em}
cannam@167 46 div.example {margin-left: 3.2em}
cannam@167 47 div.lisp {margin-left: 3.2em}
cannam@167 48 div.smalldisplay {margin-left: 3.2em}
cannam@167 49 div.smallexample {margin-left: 3.2em}
cannam@167 50 div.smalllisp {margin-left: 3.2em}
cannam@167 51 kbd {font-style: oblique}
cannam@167 52 pre.display {font-family: inherit}
cannam@167 53 pre.format {font-family: inherit}
cannam@167 54 pre.menu-comment {font-family: serif}
cannam@167 55 pre.menu-preformatted {font-family: serif}
cannam@167 56 pre.smalldisplay {font-family: inherit; font-size: smaller}
cannam@167 57 pre.smallexample {font-size: smaller}
cannam@167 58 pre.smallformat {font-family: inherit; font-size: smaller}
cannam@167 59 pre.smalllisp {font-size: smaller}
cannam@167 60 span.nolinebreak {white-space: nowrap}
cannam@167 61 span.roman {font-family: initial; font-weight: normal}
cannam@167 62 span.sansserif {font-family: sans-serif; font-weight: normal}
cannam@167 63 ul.no-bullet {list-style: none}
cannam@167 64 -->
cannam@167 65 </style>
cannam@167 66
cannam@167 67
cannam@167 68 </head>
cannam@167 69
cannam@167 70 <body lang="en">
cannam@167 71 <a name="Reversing-array-dimensions"></a>
cannam@167 72 <div class="header">
cannam@167 73 <p>
cannam@167 74 Next: <a href="FFTW-Fortran-type-reference.html#FFTW-Fortran-type-reference" accesskey="n" rel="next">FFTW Fortran type reference</a>, Previous: <a href="Overview-of-Fortran-interface.html#Overview-of-Fortran-interface" accesskey="p" rel="prev">Overview of Fortran interface</a>, Up: <a href="Calling-FFTW-from-Modern-Fortran.html#Calling-FFTW-from-Modern-Fortran" accesskey="u" rel="up">Calling FFTW from Modern Fortran</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
cannam@167 75 </div>
cannam@167 76 <hr>
cannam@167 77 <a name="Reversing-array-dimensions-1"></a>
cannam@167 78 <h3 class="section">7.2 Reversing array dimensions</h3>
cannam@167 79
cannam@167 80 <a name="index-row_002dmajor-6"></a>
cannam@167 81 <a name="index-column_002dmajor-1"></a>
cannam@167 82 <p>A minor annoyance in calling FFTW from Fortran is that FFTW&rsquo;s array
cannam@167 83 dimensions are defined in the C convention (row-major order), while
cannam@167 84 Fortran&rsquo;s array dimensions are the opposite convention (column-major
cannam@167 85 order). See <a href="Multi_002ddimensional-Array-Format.html#Multi_002ddimensional-Array-Format">Multi-dimensional Array Format</a>. This is just a
cannam@167 86 bookkeeping difference, with no effect on performance. The only
cannam@167 87 consequence of this is that, whenever you create an FFTW plan for a
cannam@167 88 multi-dimensional transform, you must always <em>reverse the
cannam@167 89 ordering of the dimensions</em>.
cannam@167 90 </p>
cannam@167 91 <p>For example, consider the three-dimensional (L&nbsp;&times;&nbsp;M&nbsp;&times;&nbsp;N
cannam@167 92 ) arrays:
cannam@167 93 </p>
cannam@167 94 <div class="example">
cannam@167 95 <pre class="example"> complex(C_DOUBLE_COMPLEX), dimension(L,M,N) :: in, out
cannam@167 96 </pre></div>
cannam@167 97
cannam@167 98 <p>To plan a DFT for these arrays using <code>fftw_plan_dft_3d</code>, you could do:
cannam@167 99 </p>
cannam@167 100 <a name="index-fftw_005fplan_005fdft_005f3d-2"></a>
cannam@167 101 <div class="example">
cannam@167 102 <pre class="example"> plan = fftw_plan_dft_3d(N,M,L, in,out, FFTW_FORWARD,FFTW_ESTIMATE)
cannam@167 103 </pre></div>
cannam@167 104
cannam@167 105 <p>That is, from FFTW&rsquo;s perspective this is a N&nbsp;&times;&nbsp;M&nbsp;&times;&nbsp;L
cannam@167 106 array.
cannam@167 107 <em>No data transposition need occur</em>, as this is <em>only
cannam@167 108 notation</em>. Similarly, to use the more generic routine
cannam@167 109 <code>fftw_plan_dft</code> with the same arrays, you could do:
cannam@167 110 </p>
cannam@167 111 <div class="example">
cannam@167 112 <pre class="example"> integer(C_INT), dimension(3) :: n = [N,M,L]
cannam@167 113 plan = fftw_plan_dft_3d(3, n, in,out, FFTW_FORWARD,FFTW_ESTIMATE)
cannam@167 114 </pre></div>
cannam@167 115
cannam@167 116 <p>Note, by the way, that this is different from the legacy Fortran
cannam@167 117 interface (see <a href="Fortran_002dinterface-routines.html#Fortran_002dinterface-routines">Fortran-interface routines</a>), which automatically
cannam@167 118 reverses the order of the array dimension for you. Here, you are
cannam@167 119 calling the C interface directly, so there is no &ldquo;translation&rdquo; layer.
cannam@167 120 </p>
cannam@167 121 <a name="index-r2c_002fc2r-multi_002ddimensional-array-format-2"></a>
cannam@167 122 <p>An important thing to keep in mind is the implication of this for
cannam@167 123 multidimensional real-to-complex transforms (see <a href="Multi_002dDimensional-DFTs-of-Real-Data.html#Multi_002dDimensional-DFTs-of-Real-Data">Multi-Dimensional DFTs of Real Data</a>). In C, a multidimensional real-to-complex DFT
cannam@167 124 chops the last dimension roughly in half (N&nbsp;&times;&nbsp;M&nbsp;&times;&nbsp;L
cannam@167 125 real input
cannam@167 126 goes to N&nbsp;&times;&nbsp;M&nbsp;&times;&nbsp;L/2+1
cannam@167 127 complex output). In Fortran, because
cannam@167 128 the array dimension notation is reversed, the <em>first</em> dimension of
cannam@167 129 the complex data is chopped roughly in half. For example consider the
cannam@167 130 &lsquo;<samp>r2c</samp>&rsquo; transform of L&nbsp;&times;&nbsp;M&nbsp;&times;&nbsp;N
cannam@167 131 real input in Fortran:
cannam@167 132 </p>
cannam@167 133 <a name="index-fftw_005fplan_005fdft_005fr2c_005f3d-2"></a>
cannam@167 134 <a name="index-fftw_005fexecute_005fdft_005fr2c-1"></a>
cannam@167 135 <div class="example">
cannam@167 136 <pre class="example"> type(C_PTR) :: plan
cannam@167 137 real(C_DOUBLE), dimension(L,M,N) :: in
cannam@167 138 complex(C_DOUBLE_COMPLEX), dimension(L/2+1,M,N) :: out
cannam@167 139 plan = fftw_plan_dft_r2c_3d(N,M,L, in,out, FFTW_ESTIMATE)
cannam@167 140 ...
cannam@167 141 call fftw_execute_dft_r2c(plan, in, out)
cannam@167 142 </pre></div>
cannam@167 143
cannam@167 144 <a name="index-in_002dplace-9"></a>
cannam@167 145 <a name="index-padding-5"></a>
cannam@167 146 <p>Alternatively, for an in-place r2c transform, as described in the C
cannam@167 147 documentation we must <em>pad</em> the <em>first</em> dimension of the
cannam@167 148 real input with an extra two entries (which are ignored by FFTW) so as
cannam@167 149 to leave enough space for the complex output. The input is
cannam@167 150 <em>allocated</em> as a 2[L/2+1]&nbsp;&times;&nbsp;M&nbsp;&times;&nbsp;N
cannam@167 151 array, even though only
cannam@167 152 L&nbsp;&times;&nbsp;M&nbsp;&times;&nbsp;N
cannam@167 153 of it is actually used. In this example, we will
cannam@167 154 allocate the array as a pointer type, using &lsquo;<samp>fftw_alloc</samp>&rsquo; to
cannam@167 155 ensure aligned memory for maximum performance (see <a href="Allocating-aligned-memory-in-Fortran.html#Allocating-aligned-memory-in-Fortran">Allocating aligned memory in Fortran</a>); this also makes it easy to reference the
cannam@167 156 same memory as both a real array and a complex array.
cannam@167 157 </p>
cannam@167 158 <a name="index-fftw_005falloc_005fcomplex-4"></a>
cannam@167 159 <a name="index-c_005ff_005fpointer"></a>
cannam@167 160 <div class="example">
cannam@167 161 <pre class="example"> real(C_DOUBLE), pointer :: in(:,:,:)
cannam@167 162 complex(C_DOUBLE_COMPLEX), pointer :: out(:,:,:)
cannam@167 163 type(C_PTR) :: plan, data
cannam@167 164 data = fftw_alloc_complex(int((L/2+1) * M * N, C_SIZE_T))
cannam@167 165 call c_f_pointer(data, in, [2*(L/2+1),M,N])
cannam@167 166 call c_f_pointer(data, out, [L/2+1,M,N])
cannam@167 167 plan = fftw_plan_dft_r2c_3d(N,M,L, in,out, FFTW_ESTIMATE)
cannam@167 168 ...
cannam@167 169 call fftw_execute_dft_r2c(plan, in, out)
cannam@167 170 ...
cannam@167 171 call fftw_destroy_plan(plan)
cannam@167 172 call fftw_free(data)
cannam@167 173 </pre></div>
cannam@167 174
cannam@167 175 <hr>
cannam@167 176 <div class="header">
cannam@167 177 <p>
cannam@167 178 Next: <a href="FFTW-Fortran-type-reference.html#FFTW-Fortran-type-reference" accesskey="n" rel="next">FFTW Fortran type reference</a>, Previous: <a href="Overview-of-Fortran-interface.html#Overview-of-Fortran-interface" accesskey="p" rel="prev">Overview of Fortran interface</a>, Up: <a href="Calling-FFTW-from-Modern-Fortran.html#Calling-FFTW-from-Modern-Fortran" accesskey="u" rel="up">Calling FFTW from Modern Fortran</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
cannam@167 179 </div>
cannam@167 180
cannam@167 181
cannam@167 182
cannam@167 183 </body>
cannam@167 184 </html>