cannam@167
|
1 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
|
cannam@167
|
2 <html>
|
cannam@167
|
3 <!-- This manual is for FFTW
|
cannam@167
|
4 (version 3.3.8, 24 May 2018).
|
cannam@167
|
5
|
cannam@167
|
6 Copyright (C) 2003 Matteo Frigo.
|
cannam@167
|
7
|
cannam@167
|
8 Copyright (C) 2003 Massachusetts Institute of Technology.
|
cannam@167
|
9
|
cannam@167
|
10 Permission is granted to make and distribute verbatim copies of this
|
cannam@167
|
11 manual provided the copyright notice and this permission notice are
|
cannam@167
|
12 preserved on all copies.
|
cannam@167
|
13
|
cannam@167
|
14 Permission is granted to copy and distribute modified versions of this
|
cannam@167
|
15 manual under the conditions for verbatim copying, provided that the
|
cannam@167
|
16 entire resulting derived work is distributed under the terms of a
|
cannam@167
|
17 permission notice identical to this one.
|
cannam@167
|
18
|
cannam@167
|
19 Permission is granted to copy and distribute translations of this manual
|
cannam@167
|
20 into another language, under the above conditions for modified versions,
|
cannam@167
|
21 except that this permission notice may be stated in a translation
|
cannam@167
|
22 approved by the Free Software Foundation. -->
|
cannam@167
|
23 <!-- Created by GNU Texinfo 6.3, http://www.gnu.org/software/texinfo/ -->
|
cannam@167
|
24 <head>
|
cannam@167
|
25 <title>FFTW 3.3.8: Real even/odd DFTs (cosine/sine transforms)</title>
|
cannam@167
|
26
|
cannam@167
|
27 <meta name="description" content="FFTW 3.3.8: Real even/odd DFTs (cosine/sine transforms)">
|
cannam@167
|
28 <meta name="keywords" content="FFTW 3.3.8: Real even/odd DFTs (cosine/sine transforms)">
|
cannam@167
|
29 <meta name="resource-type" content="document">
|
cannam@167
|
30 <meta name="distribution" content="global">
|
cannam@167
|
31 <meta name="Generator" content="makeinfo">
|
cannam@167
|
32 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
|
cannam@167
|
33 <link href="index.html#Top" rel="start" title="Top">
|
cannam@167
|
34 <link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
|
cannam@167
|
35 <link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
|
cannam@167
|
36 <link href="More-DFTs-of-Real-Data.html#More-DFTs-of-Real-Data" rel="up" title="More DFTs of Real Data">
|
cannam@167
|
37 <link href="The-Discrete-Hartley-Transform.html#The-Discrete-Hartley-Transform" rel="next" title="The Discrete Hartley Transform">
|
cannam@167
|
38 <link href="The-Halfcomplex_002dformat-DFT.html#The-Halfcomplex_002dformat-DFT" rel="prev" title="The Halfcomplex-format DFT">
|
cannam@167
|
39 <style type="text/css">
|
cannam@167
|
40 <!--
|
cannam@167
|
41 a.summary-letter {text-decoration: none}
|
cannam@167
|
42 blockquote.indentedblock {margin-right: 0em}
|
cannam@167
|
43 blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
|
cannam@167
|
44 blockquote.smallquotation {font-size: smaller}
|
cannam@167
|
45 div.display {margin-left: 3.2em}
|
cannam@167
|
46 div.example {margin-left: 3.2em}
|
cannam@167
|
47 div.lisp {margin-left: 3.2em}
|
cannam@167
|
48 div.smalldisplay {margin-left: 3.2em}
|
cannam@167
|
49 div.smallexample {margin-left: 3.2em}
|
cannam@167
|
50 div.smalllisp {margin-left: 3.2em}
|
cannam@167
|
51 kbd {font-style: oblique}
|
cannam@167
|
52 pre.display {font-family: inherit}
|
cannam@167
|
53 pre.format {font-family: inherit}
|
cannam@167
|
54 pre.menu-comment {font-family: serif}
|
cannam@167
|
55 pre.menu-preformatted {font-family: serif}
|
cannam@167
|
56 pre.smalldisplay {font-family: inherit; font-size: smaller}
|
cannam@167
|
57 pre.smallexample {font-size: smaller}
|
cannam@167
|
58 pre.smallformat {font-family: inherit; font-size: smaller}
|
cannam@167
|
59 pre.smalllisp {font-size: smaller}
|
cannam@167
|
60 span.nolinebreak {white-space: nowrap}
|
cannam@167
|
61 span.roman {font-family: initial; font-weight: normal}
|
cannam@167
|
62 span.sansserif {font-family: sans-serif; font-weight: normal}
|
cannam@167
|
63 ul.no-bullet {list-style: none}
|
cannam@167
|
64 -->
|
cannam@167
|
65 </style>
|
cannam@167
|
66
|
cannam@167
|
67
|
cannam@167
|
68 </head>
|
cannam@167
|
69
|
cannam@167
|
70 <body lang="en">
|
cannam@167
|
71 <a name="Real-even_002fodd-DFTs-_0028cosine_002fsine-transforms_0029"></a>
|
cannam@167
|
72 <div class="header">
|
cannam@167
|
73 <p>
|
cannam@167
|
74 Next: <a href="The-Discrete-Hartley-Transform.html#The-Discrete-Hartley-Transform" accesskey="n" rel="next">The Discrete Hartley Transform</a>, Previous: <a href="The-Halfcomplex_002dformat-DFT.html#The-Halfcomplex_002dformat-DFT" accesskey="p" rel="prev">The Halfcomplex-format DFT</a>, Up: <a href="More-DFTs-of-Real-Data.html#More-DFTs-of-Real-Data" accesskey="u" rel="up">More DFTs of Real Data</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
|
cannam@167
|
75 </div>
|
cannam@167
|
76 <hr>
|
cannam@167
|
77 <a name="Real-even_002fodd-DFTs-_0028cosine_002fsine-transforms_0029-1"></a>
|
cannam@167
|
78 <h4 class="subsection">2.5.2 Real even/odd DFTs (cosine/sine transforms)</h4>
|
cannam@167
|
79
|
cannam@167
|
80 <p>The Fourier transform of a real-even function <em>f(-x) = f(x)</em> is
|
cannam@167
|
81 real-even, and <em>i</em> times the Fourier transform of a real-odd
|
cannam@167
|
82 function <em>f(-x) = -f(x)</em> is real-odd. Similar results hold for a
|
cannam@167
|
83 discrete Fourier transform, and thus for these symmetries the need for
|
cannam@167
|
84 complex inputs/outputs is entirely eliminated. Moreover, one gains a
|
cannam@167
|
85 factor of two in speed/space from the fact that the data are real, and
|
cannam@167
|
86 an additional factor of two from the even/odd symmetry: only the
|
cannam@167
|
87 non-redundant (first) half of the array need be stored. The result is
|
cannam@167
|
88 the real-even DFT (<em>REDFT</em>) and the real-odd DFT (<em>RODFT</em>), also
|
cannam@167
|
89 known as the discrete cosine and sine transforms (<em>DCT</em> and
|
cannam@167
|
90 <em>DST</em>), respectively.
|
cannam@167
|
91 <a name="index-real_002deven-DFT"></a>
|
cannam@167
|
92 <a name="index-REDFT"></a>
|
cannam@167
|
93 <a name="index-real_002dodd-DFT"></a>
|
cannam@167
|
94 <a name="index-RODFT"></a>
|
cannam@167
|
95 <a name="index-discrete-cosine-transform"></a>
|
cannam@167
|
96 <a name="index-DCT"></a>
|
cannam@167
|
97 <a name="index-discrete-sine-transform"></a>
|
cannam@167
|
98 <a name="index-DST"></a>
|
cannam@167
|
99 </p>
|
cannam@167
|
100
|
cannam@167
|
101 <p>(In this section, we describe the 1d transforms; multi-dimensional
|
cannam@167
|
102 transforms are just a separable product of these transforms operating
|
cannam@167
|
103 along each dimension.)
|
cannam@167
|
104 </p>
|
cannam@167
|
105 <p>Because of the discrete sampling, one has an additional choice: is the
|
cannam@167
|
106 data even/odd around a sampling point, or around the point halfway
|
cannam@167
|
107 between two samples? The latter corresponds to <em>shifting</em> the
|
cannam@167
|
108 samples by <em>half</em> an interval, and gives rise to several transform
|
cannam@167
|
109 variants denoted by REDFT<em>ab</em> and RODFT<em>ab</em>: <em>a</em> and
|
cannam@167
|
110 <em>b</em> are <em>0</em> or <em>1</em>, and indicate whether the input
|
cannam@167
|
111 (<em>a</em>) and/or output (<em>b</em>) are shifted by half a sample
|
cannam@167
|
112 (<em>1</em> means it is shifted). These are also known as types I-IV of
|
cannam@167
|
113 the DCT and DST, and all four types are supported by FFTW’s r2r
|
cannam@167
|
114 interface.<a name="DOCF3" href="#FOOT3"><sup>3</sup></a>
|
cannam@167
|
115 </p>
|
cannam@167
|
116 <p>The r2r kinds for the various REDFT and RODFT types supported by FFTW,
|
cannam@167
|
117 along with the boundary conditions at both ends of the <em>input</em>
|
cannam@167
|
118 array (<code>n</code> real numbers <code>in[j=0..n-1]</code>), are:
|
cannam@167
|
119 </p>
|
cannam@167
|
120 <ul>
|
cannam@167
|
121 <li> <code>FFTW_REDFT00</code> (DCT-I): even around <em>j=0</em> and even around <em>j=n-1</em>.
|
cannam@167
|
122 <a name="index-FFTW_005fREDFT00"></a>
|
cannam@167
|
123
|
cannam@167
|
124 </li><li> <code>FFTW_REDFT10</code> (DCT-II, “the” DCT): even around <em>j=-0.5</em> and even around <em>j=n-0.5</em>.
|
cannam@167
|
125 <a name="index-FFTW_005fREDFT10"></a>
|
cannam@167
|
126
|
cannam@167
|
127 </li><li> <code>FFTW_REDFT01</code> (DCT-III, “the” IDCT): even around <em>j=0</em> and odd around <em>j=n</em>.
|
cannam@167
|
128 <a name="index-FFTW_005fREDFT01"></a>
|
cannam@167
|
129 <a name="index-IDCT"></a>
|
cannam@167
|
130
|
cannam@167
|
131 </li><li> <code>FFTW_REDFT11</code> (DCT-IV): even around <em>j=-0.5</em> and odd around <em>j=n-0.5</em>.
|
cannam@167
|
132 <a name="index-FFTW_005fREDFT11"></a>
|
cannam@167
|
133
|
cannam@167
|
134 </li><li> <code>FFTW_RODFT00</code> (DST-I): odd around <em>j=-1</em> and odd around <em>j=n</em>.
|
cannam@167
|
135 <a name="index-FFTW_005fRODFT00"></a>
|
cannam@167
|
136
|
cannam@167
|
137 </li><li> <code>FFTW_RODFT10</code> (DST-II): odd around <em>j=-0.5</em> and odd around <em>j=n-0.5</em>.
|
cannam@167
|
138 <a name="index-FFTW_005fRODFT10"></a>
|
cannam@167
|
139
|
cannam@167
|
140 </li><li> <code>FFTW_RODFT01</code> (DST-III): odd around <em>j=-1</em> and even around <em>j=n-1</em>.
|
cannam@167
|
141 <a name="index-FFTW_005fRODFT01"></a>
|
cannam@167
|
142
|
cannam@167
|
143 </li><li> <code>FFTW_RODFT11</code> (DST-IV): odd around <em>j=-0.5</em> and even around <em>j=n-0.5</em>.
|
cannam@167
|
144 <a name="index-FFTW_005fRODFT11"></a>
|
cannam@167
|
145
|
cannam@167
|
146 </li></ul>
|
cannam@167
|
147
|
cannam@167
|
148 <p>Note that these symmetries apply to the “logical” array being
|
cannam@167
|
149 transformed; <strong>there are no constraints on your physical input
|
cannam@167
|
150 data</strong>. So, for example, if you specify a size-5 REDFT00 (DCT-I) of the
|
cannam@167
|
151 data <em>abcde</em>, it corresponds to the DFT of the logical even array
|
cannam@167
|
152 <em>abcdedcb</em> of size 8. A size-4 REDFT10 (DCT-II) of the data
|
cannam@167
|
153 <em>abcd</em> corresponds to the size-8 logical DFT of the even array
|
cannam@167
|
154 <em>abcddcba</em>, shifted by half a sample.
|
cannam@167
|
155 </p>
|
cannam@167
|
156 <p>All of these transforms are invertible. The inverse of R*DFT00 is
|
cannam@167
|
157 R*DFT00; of R*DFT10 is R*DFT01 and vice versa (these are often called
|
cannam@167
|
158 simply “the” DCT and IDCT, respectively); and of R*DFT11 is R*DFT11.
|
cannam@167
|
159 However, the transforms computed by FFTW are unnormalized, exactly
|
cannam@167
|
160 like the corresponding real and complex DFTs, so computing a transform
|
cannam@167
|
161 followed by its inverse yields the original array scaled by <em>N</em>,
|
cannam@167
|
162 where <em>N</em> is the <em>logical</em> DFT size. For REDFT00,
|
cannam@167
|
163 <em>N=2(n-1)</em>; for RODFT00, <em>N=2(n+1)</em>; otherwise, <em>N=2n</em>.
|
cannam@167
|
164 <a name="index-normalization-3"></a>
|
cannam@167
|
165 <a name="index-IDCT-1"></a>
|
cannam@167
|
166 </p>
|
cannam@167
|
167
|
cannam@167
|
168 <p>Note that the boundary conditions of the transform output array are
|
cannam@167
|
169 given by the input boundary conditions of the inverse transform.
|
cannam@167
|
170 Thus, the above transforms are all inequivalent in terms of
|
cannam@167
|
171 input/output boundary conditions, even neglecting the 0.5 shift
|
cannam@167
|
172 difference.
|
cannam@167
|
173 </p>
|
cannam@167
|
174 <p>FFTW is most efficient when <em>N</em> is a product of small factors; note
|
cannam@167
|
175 that this <em>differs</em> from the factorization of the physical size
|
cannam@167
|
176 <code>n</code> for REDFT00 and RODFT00! There is another oddity: <code>n=1</code>
|
cannam@167
|
177 REDFT00 transforms correspond to <em>N=0</em>, and so are <em>not
|
cannam@167
|
178 defined</em> (the planner will return <code>NULL</code>). Otherwise, any positive
|
cannam@167
|
179 <code>n</code> is supported.
|
cannam@167
|
180 </p>
|
cannam@167
|
181 <p>For the precise mathematical definitions of these transforms as used by
|
cannam@167
|
182 FFTW, see <a href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes">What FFTW Really Computes</a>. (For people accustomed to
|
cannam@167
|
183 the DCT/DST, FFTW’s definitions have a coefficient of <em>2</em> in front
|
cannam@167
|
184 of the cos/sin functions so that they correspond precisely to an
|
cannam@167
|
185 even/odd DFT of size <em>N</em>. Some authors also include additional
|
cannam@167
|
186 multiplicative factors of
|
cannam@167
|
187 √2
|
cannam@167
|
188 for selected inputs and outputs; this makes
|
cannam@167
|
189 the transform orthogonal, but sacrifices the direct equivalence to a
|
cannam@167
|
190 symmetric DFT.)
|
cannam@167
|
191 </p>
|
cannam@167
|
192 <a name="Which-type-do-you-need_003f"></a>
|
cannam@167
|
193 <h4 class="subsubheading">Which type do you need?</h4>
|
cannam@167
|
194
|
cannam@167
|
195 <p>Since the required flavor of even/odd DFT depends upon your problem,
|
cannam@167
|
196 you are the best judge of this choice, but we can make a few comments
|
cannam@167
|
197 on relative efficiency to help you in your selection. In particular,
|
cannam@167
|
198 R*DFT01 and R*DFT10 tend to be slightly faster than R*DFT11
|
cannam@167
|
199 (especially for odd sizes), while the R*DFT00 transforms are sometimes
|
cannam@167
|
200 significantly slower (especially for even sizes).<a name="DOCF4" href="#FOOT4"><sup>4</sup></a>
|
cannam@167
|
201 </p>
|
cannam@167
|
202 <p>Thus, if only the boundary conditions on the transform inputs are
|
cannam@167
|
203 specified, we generally recommend R*DFT10 over R*DFT00 and R*DFT01 over
|
cannam@167
|
204 R*DFT11 (unless the half-sample shift or the self-inverse property is
|
cannam@167
|
205 significant for your problem).
|
cannam@167
|
206 </p>
|
cannam@167
|
207 <p>If performance is important to you and you are using only small sizes
|
cannam@167
|
208 (say <em>n<200</em>), e.g. for multi-dimensional transforms, then you
|
cannam@167
|
209 might consider generating hard-coded transforms of those sizes and types
|
cannam@167
|
210 that you are interested in (see <a href="Generating-your-own-code.html#Generating-your-own-code">Generating your own code</a>).
|
cannam@167
|
211 </p>
|
cannam@167
|
212 <p>We are interested in hearing what types of symmetric transforms you find
|
cannam@167
|
213 most useful.
|
cannam@167
|
214 </p>
|
cannam@167
|
215 <div class="footnote">
|
cannam@167
|
216 <hr>
|
cannam@167
|
217 <h4 class="footnotes-heading">Footnotes</h4>
|
cannam@167
|
218
|
cannam@167
|
219 <h3><a name="FOOT3" href="#DOCF3">(3)</a></h3>
|
cannam@167
|
220 <p>There are also type V-VIII transforms, which
|
cannam@167
|
221 correspond to a logical DFT of <em>odd</em> size <em>N</em>, independent of
|
cannam@167
|
222 whether the physical size <code>n</code> is odd, but we do not support these
|
cannam@167
|
223 variants.</p>
|
cannam@167
|
224 <h3><a name="FOOT4" href="#DOCF4">(4)</a></h3>
|
cannam@167
|
225 <p>R*DFT00 is
|
cannam@167
|
226 sometimes slower in FFTW because we discovered that the standard
|
cannam@167
|
227 algorithm for computing this by a pre/post-processed real DFT—the
|
cannam@167
|
228 algorithm used in FFTPACK, Numerical Recipes, and other sources for
|
cannam@167
|
229 decades now—has serious numerical problems: it already loses several
|
cannam@167
|
230 decimal places of accuracy for 16k sizes. There seem to be only two
|
cannam@167
|
231 alternatives in the literature that do not suffer similarly: a
|
cannam@167
|
232 recursive decomposition into smaller DCTs, which would require a large
|
cannam@167
|
233 set of codelets for efficiency and generality, or sacrificing a factor of
|
cannam@167
|
234 2
|
cannam@167
|
235 in speed to use a real DFT of twice the size. We currently
|
cannam@167
|
236 employ the latter technique for general <em>n</em>, as well as a limited
|
cannam@167
|
237 form of the former method: a split-radix decomposition when <em>n</em>
|
cannam@167
|
238 is odd (<em>N</em> a multiple of 4). For <em>N</em> containing many
|
cannam@167
|
239 factors of 2, the split-radix method seems to recover most of the
|
cannam@167
|
240 speed of the standard algorithm without the accuracy tradeoff.</p>
|
cannam@167
|
241 </div>
|
cannam@167
|
242 <hr>
|
cannam@167
|
243 <div class="header">
|
cannam@167
|
244 <p>
|
cannam@167
|
245 Next: <a href="The-Discrete-Hartley-Transform.html#The-Discrete-Hartley-Transform" accesskey="n" rel="next">The Discrete Hartley Transform</a>, Previous: <a href="The-Halfcomplex_002dformat-DFT.html#The-Halfcomplex_002dformat-DFT" accesskey="p" rel="prev">The Halfcomplex-format DFT</a>, Up: <a href="More-DFTs-of-Real-Data.html#More-DFTs-of-Real-Data" accesskey="u" rel="up">More DFTs of Real Data</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
|
cannam@167
|
246 </div>
|
cannam@167
|
247
|
cannam@167
|
248
|
cannam@167
|
249
|
cannam@167
|
250 </body>
|
cannam@167
|
251 </html>
|