cannam@167
|
1 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
|
cannam@167
|
2 <html>
|
cannam@167
|
3 <!-- This manual is for FFTW
|
cannam@167
|
4 (version 3.3.8, 24 May 2018).
|
cannam@167
|
5
|
cannam@167
|
6 Copyright (C) 2003 Matteo Frigo.
|
cannam@167
|
7
|
cannam@167
|
8 Copyright (C) 2003 Massachusetts Institute of Technology.
|
cannam@167
|
9
|
cannam@167
|
10 Permission is granted to make and distribute verbatim copies of this
|
cannam@167
|
11 manual provided the copyright notice and this permission notice are
|
cannam@167
|
12 preserved on all copies.
|
cannam@167
|
13
|
cannam@167
|
14 Permission is granted to copy and distribute modified versions of this
|
cannam@167
|
15 manual under the conditions for verbatim copying, provided that the
|
cannam@167
|
16 entire resulting derived work is distributed under the terms of a
|
cannam@167
|
17 permission notice identical to this one.
|
cannam@167
|
18
|
cannam@167
|
19 Permission is granted to copy and distribute translations of this manual
|
cannam@167
|
20 into another language, under the above conditions for modified versions,
|
cannam@167
|
21 except that this permission notice may be stated in a translation
|
cannam@167
|
22 approved by the Free Software Foundation. -->
|
cannam@167
|
23 <!-- Created by GNU Texinfo 6.3, http://www.gnu.org/software/texinfo/ -->
|
cannam@167
|
24 <head>
|
cannam@167
|
25 <title>FFTW 3.3.8: 1d Real-odd DFTs (DSTs)</title>
|
cannam@167
|
26
|
cannam@167
|
27 <meta name="description" content="FFTW 3.3.8: 1d Real-odd DFTs (DSTs)">
|
cannam@167
|
28 <meta name="keywords" content="FFTW 3.3.8: 1d Real-odd DFTs (DSTs)">
|
cannam@167
|
29 <meta name="resource-type" content="document">
|
cannam@167
|
30 <meta name="distribution" content="global">
|
cannam@167
|
31 <meta name="Generator" content="makeinfo">
|
cannam@167
|
32 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
|
cannam@167
|
33 <link href="index.html#Top" rel="start" title="Top">
|
cannam@167
|
34 <link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
|
cannam@167
|
35 <link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
|
cannam@167
|
36 <link href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" rel="up" title="What FFTW Really Computes">
|
cannam@167
|
37 <link href="1d-Discrete-Hartley-Transforms-_0028DHTs_0029.html#g_t1d-Discrete-Hartley-Transforms-_0028DHTs_0029" rel="next" title="1d Discrete Hartley Transforms (DHTs)">
|
cannam@167
|
38 <link href="1d-Real_002deven-DFTs-_0028DCTs_0029.html#g_t1d-Real_002deven-DFTs-_0028DCTs_0029" rel="prev" title="1d Real-even DFTs (DCTs)">
|
cannam@167
|
39 <style type="text/css">
|
cannam@167
|
40 <!--
|
cannam@167
|
41 a.summary-letter {text-decoration: none}
|
cannam@167
|
42 blockquote.indentedblock {margin-right: 0em}
|
cannam@167
|
43 blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
|
cannam@167
|
44 blockquote.smallquotation {font-size: smaller}
|
cannam@167
|
45 div.display {margin-left: 3.2em}
|
cannam@167
|
46 div.example {margin-left: 3.2em}
|
cannam@167
|
47 div.lisp {margin-left: 3.2em}
|
cannam@167
|
48 div.smalldisplay {margin-left: 3.2em}
|
cannam@167
|
49 div.smallexample {margin-left: 3.2em}
|
cannam@167
|
50 div.smalllisp {margin-left: 3.2em}
|
cannam@167
|
51 kbd {font-style: oblique}
|
cannam@167
|
52 pre.display {font-family: inherit}
|
cannam@167
|
53 pre.format {font-family: inherit}
|
cannam@167
|
54 pre.menu-comment {font-family: serif}
|
cannam@167
|
55 pre.menu-preformatted {font-family: serif}
|
cannam@167
|
56 pre.smalldisplay {font-family: inherit; font-size: smaller}
|
cannam@167
|
57 pre.smallexample {font-size: smaller}
|
cannam@167
|
58 pre.smallformat {font-family: inherit; font-size: smaller}
|
cannam@167
|
59 pre.smalllisp {font-size: smaller}
|
cannam@167
|
60 span.nolinebreak {white-space: nowrap}
|
cannam@167
|
61 span.roman {font-family: initial; font-weight: normal}
|
cannam@167
|
62 span.sansserif {font-family: sans-serif; font-weight: normal}
|
cannam@167
|
63 ul.no-bullet {list-style: none}
|
cannam@167
|
64 -->
|
cannam@167
|
65 </style>
|
cannam@167
|
66
|
cannam@167
|
67
|
cannam@167
|
68 </head>
|
cannam@167
|
69
|
cannam@167
|
70 <body lang="en">
|
cannam@167
|
71 <a name="g_t1d-Real_002dodd-DFTs-_0028DSTs_0029"></a>
|
cannam@167
|
72 <div class="header">
|
cannam@167
|
73 <p>
|
cannam@167
|
74 Next: <a href="1d-Discrete-Hartley-Transforms-_0028DHTs_0029.html#g_t1d-Discrete-Hartley-Transforms-_0028DHTs_0029" accesskey="n" rel="next">1d Discrete Hartley Transforms (DHTs)</a>, Previous: <a href="1d-Real_002deven-DFTs-_0028DCTs_0029.html#g_t1d-Real_002deven-DFTs-_0028DCTs_0029" accesskey="p" rel="prev">1d Real-even DFTs (DCTs)</a>, Up: <a href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" accesskey="u" rel="up">What FFTW Really Computes</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
|
cannam@167
|
75 </div>
|
cannam@167
|
76 <hr>
|
cannam@167
|
77 <a name="g_t1d-Real_002dodd-DFTs-_0028DSTs_0029-1"></a>
|
cannam@167
|
78 <h4 class="subsection">4.8.4 1d Real-odd DFTs (DSTs)</h4>
|
cannam@167
|
79
|
cannam@167
|
80 <p>The Real-odd symmetry DFTs in FFTW are exactly equivalent to the unnormalized
|
cannam@167
|
81 forward (and backward) DFTs as defined above, where the input array
|
cannam@167
|
82 <em>X</em> of length <em>N</em> is purely real and is also <em>odd</em> symmetry. In
|
cannam@167
|
83 this case, the output is odd symmetry and purely imaginary.
|
cannam@167
|
84 <a name="index-real_002dodd-DFT-1"></a>
|
cannam@167
|
85 <a name="index-RODFT-1"></a>
|
cannam@167
|
86 </p>
|
cannam@167
|
87
|
cannam@167
|
88 <a name="index-RODFT00"></a>
|
cannam@167
|
89 <p>For the case of <code>RODFT00</code>, this odd symmetry means that
|
cannam@167
|
90 <i>X<sub>j</sub> = -X<sub>N-j</sub></i>,
|
cannam@167
|
91 where we take <em>X</em> to be periodic so that
|
cannam@167
|
92 <i>X<sub>N</sub> = X</i><sub>0</sub>.
|
cannam@167
|
93 Because of this redundancy, only the first <em>n</em> real numbers
|
cannam@167
|
94 starting at <em>j=1</em> are actually stored (the <em>j=0</em> element is
|
cannam@167
|
95 zero), where <em>N = 2(n+1)</em>.
|
cannam@167
|
96 </p>
|
cannam@167
|
97 <p>The proper definition of odd symmetry for <code>RODFT10</code>,
|
cannam@167
|
98 <code>RODFT01</code>, and <code>RODFT11</code> transforms is somewhat more intricate
|
cannam@167
|
99 because of the shifts by <em>1/2</em> of the input and/or output, although
|
cannam@167
|
100 the corresponding boundary conditions are given in <a href="Real-even_002fodd-DFTs-_0028cosine_002fsine-transforms_0029.html#Real-even_002fodd-DFTs-_0028cosine_002fsine-transforms_0029">Real even/odd DFTs (cosine/sine transforms)</a>. Because of the odd symmetry, however,
|
cannam@167
|
101 the cosine terms in the DFT all cancel and the remaining sine terms are
|
cannam@167
|
102 written explicitly below. This formulation often leads people to call
|
cannam@167
|
103 such a transform a <em>discrete sine transform</em> (DST), although it is
|
cannam@167
|
104 really just a special case of the DFT.
|
cannam@167
|
105 <a name="index-discrete-sine-transform-2"></a>
|
cannam@167
|
106 <a name="index-DST-2"></a>
|
cannam@167
|
107 </p>
|
cannam@167
|
108
|
cannam@167
|
109 <p>In each of the definitions below, we transform a real array <em>X</em> of
|
cannam@167
|
110 length <em>n</em> to a real array <em>Y</em> of length <em>n</em>:
|
cannam@167
|
111 </p>
|
cannam@167
|
112 <a name="RODFT00-_0028DST_002dI_0029"></a>
|
cannam@167
|
113 <h4 class="subsubheading">RODFT00 (DST-I)</h4>
|
cannam@167
|
114 <a name="index-RODFT00-1"></a>
|
cannam@167
|
115 <p>An <code>RODFT00</code> transform (type-I DST) in FFTW is defined by:
|
cannam@167
|
116 <center><img src="equation-rodft00.png" align="top">.</center>
|
cannam@167
|
117 </p>
|
cannam@167
|
118 <a name="RODFT10-_0028DST_002dII_0029"></a>
|
cannam@167
|
119 <h4 class="subsubheading">RODFT10 (DST-II)</h4>
|
cannam@167
|
120 <a name="index-RODFT10"></a>
|
cannam@167
|
121 <p>An <code>RODFT10</code> transform (type-II DST) in FFTW is defined by:
|
cannam@167
|
122 <center><img src="equation-rodft10.png" align="top">.</center>
|
cannam@167
|
123 </p>
|
cannam@167
|
124 <a name="RODFT01-_0028DST_002dIII_0029"></a>
|
cannam@167
|
125 <h4 class="subsubheading">RODFT01 (DST-III)</h4>
|
cannam@167
|
126 <a name="index-RODFT01"></a>
|
cannam@167
|
127 <p>An <code>RODFT01</code> transform (type-III DST) in FFTW is defined by:
|
cannam@167
|
128 <center><img src="equation-rodft01.png" align="top">.</center>
|
cannam@167
|
129 In the case of <em>n=1</em>, this reduces to
|
cannam@167
|
130 <i>Y</i><sub>0</sub> = <i>X</i><sub>0</sub>.
|
cannam@167
|
131 </p>
|
cannam@167
|
132 <a name="RODFT11-_0028DST_002dIV_0029"></a>
|
cannam@167
|
133 <h4 class="subsubheading">RODFT11 (DST-IV)</h4>
|
cannam@167
|
134 <a name="index-RODFT11"></a>
|
cannam@167
|
135 <p>An <code>RODFT11</code> transform (type-IV DST) in FFTW is defined by:
|
cannam@167
|
136 <center><img src="equation-rodft11.png" align="top">.</center>
|
cannam@167
|
137 </p>
|
cannam@167
|
138 <a name="Inverses-and-Normalization-1"></a>
|
cannam@167
|
139 <h4 class="subsubheading">Inverses and Normalization</h4>
|
cannam@167
|
140
|
cannam@167
|
141 <p>These definitions correspond directly to the unnormalized DFTs used
|
cannam@167
|
142 elsewhere in FFTW (hence the factors of <em>2</em> in front of the
|
cannam@167
|
143 summations). The unnormalized inverse of <code>RODFT00</code> is
|
cannam@167
|
144 <code>RODFT00</code>, of <code>RODFT10</code> is <code>RODFT01</code> and vice versa, and
|
cannam@167
|
145 of <code>RODFT11</code> is <code>RODFT11</code>. Each unnormalized inverse results
|
cannam@167
|
146 in the original array multiplied by <em>N</em>, where <em>N</em> is the
|
cannam@167
|
147 <em>logical</em> DFT size. For <code>RODFT00</code>, <em>N=2(n+1)</em>;
|
cannam@167
|
148 otherwise, <em>N=2n</em>.
|
cannam@167
|
149 <a name="index-normalization-11"></a>
|
cannam@167
|
150 </p>
|
cannam@167
|
151
|
cannam@167
|
152 <p>In defining the discrete sine transform, some authors also include
|
cannam@167
|
153 additional factors of
|
cannam@167
|
154 √2
|
cannam@167
|
155 (or its inverse) multiplying selected inputs and/or outputs. This is a
|
cannam@167
|
156 mostly cosmetic change that makes the transform orthogonal, but
|
cannam@167
|
157 sacrifices the direct equivalence to an antisymmetric DFT.
|
cannam@167
|
158 </p>
|
cannam@167
|
159 <hr>
|
cannam@167
|
160 <div class="header">
|
cannam@167
|
161 <p>
|
cannam@167
|
162 Next: <a href="1d-Discrete-Hartley-Transforms-_0028DHTs_0029.html#g_t1d-Discrete-Hartley-Transforms-_0028DHTs_0029" accesskey="n" rel="next">1d Discrete Hartley Transforms (DHTs)</a>, Previous: <a href="1d-Real_002deven-DFTs-_0028DCTs_0029.html#g_t1d-Real_002deven-DFTs-_0028DCTs_0029" accesskey="p" rel="prev">1d Real-even DFTs (DCTs)</a>, Up: <a href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" accesskey="u" rel="up">What FFTW Really Computes</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
|
cannam@167
|
163 </div>
|
cannam@167
|
164
|
cannam@167
|
165
|
cannam@167
|
166
|
cannam@167
|
167 </body>
|
cannam@167
|
168 </html>
|