annotate src/fftw-3.3.8/dft/indirect-transpose.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents bd3cc4d1df30
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * This program is free software; you can redistribute it and/or modify
cannam@167 6 * it under the terms of the GNU General Public License as published by
cannam@167 7 * the Free Software Foundation; either version 2 of the License, or
cannam@167 8 * (at your option) any later version.
cannam@167 9 *
cannam@167 10 * This program is distributed in the hope that it will be useful,
cannam@167 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 13 * GNU General Public License for more details.
cannam@167 14 *
cannam@167 15 * You should have received a copy of the GNU General Public License
cannam@167 16 * along with this program; if not, write to the Free Software
cannam@167 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 18 *
cannam@167 19 */
cannam@167 20
cannam@167 21 /* solvers/plans for vectors of DFTs corresponding to the columns
cannam@167 22 of a matrix: first transpose the matrix so that the DFTs are
cannam@167 23 contiguous, then do DFTs with transposed output. In particular,
cannam@167 24 we restrict ourselves to the case of a square transpose (or a
cannam@167 25 sequence thereof). */
cannam@167 26
cannam@167 27 #include "dft/dft.h"
cannam@167 28
cannam@167 29 typedef solver S;
cannam@167 30
cannam@167 31 typedef struct {
cannam@167 32 plan_dft super;
cannam@167 33 INT vl, ivs, ovs;
cannam@167 34 plan *cldtrans, *cld, *cldrest;
cannam@167 35 } P;
cannam@167 36
cannam@167 37 /* initial transpose is out-of-place from input to output */
cannam@167 38 static void apply_op(const plan *ego_, R *ri, R *ii, R *ro, R *io)
cannam@167 39 {
cannam@167 40 const P *ego = (const P *) ego_;
cannam@167 41 INT vl = ego->vl, ivs = ego->ivs, ovs = ego->ovs, i;
cannam@167 42
cannam@167 43 for (i = 0; i < vl; ++i) {
cannam@167 44 {
cannam@167 45 plan_dft *cldtrans = (plan_dft *) ego->cldtrans;
cannam@167 46 cldtrans->apply(ego->cldtrans, ri, ii, ro, io);
cannam@167 47 }
cannam@167 48 {
cannam@167 49 plan_dft *cld = (plan_dft *) ego->cld;
cannam@167 50 cld->apply(ego->cld, ro, io, ro, io);
cannam@167 51 }
cannam@167 52 ri += ivs; ii += ivs;
cannam@167 53 ro += ovs; io += ovs;
cannam@167 54 }
cannam@167 55 {
cannam@167 56 plan_dft *cldrest = (plan_dft *) ego->cldrest;
cannam@167 57 cldrest->apply(ego->cldrest, ri, ii, ro, io);
cannam@167 58 }
cannam@167 59 }
cannam@167 60
cannam@167 61 static void destroy(plan *ego_)
cannam@167 62 {
cannam@167 63 P *ego = (P *) ego_;
cannam@167 64 X(plan_destroy_internal)(ego->cldrest);
cannam@167 65 X(plan_destroy_internal)(ego->cld);
cannam@167 66 X(plan_destroy_internal)(ego->cldtrans);
cannam@167 67 }
cannam@167 68
cannam@167 69 static void awake(plan *ego_, enum wakefulness wakefulness)
cannam@167 70 {
cannam@167 71 P *ego = (P *) ego_;
cannam@167 72 X(plan_awake)(ego->cldtrans, wakefulness);
cannam@167 73 X(plan_awake)(ego->cld, wakefulness);
cannam@167 74 X(plan_awake)(ego->cldrest, wakefulness);
cannam@167 75 }
cannam@167 76
cannam@167 77 static void print(const plan *ego_, printer *p)
cannam@167 78 {
cannam@167 79 const P *ego = (const P *) ego_;
cannam@167 80 p->print(p, "(indirect-transpose%v%(%p%)%(%p%)%(%p%))",
cannam@167 81 ego->vl, ego->cldtrans, ego->cld, ego->cldrest);
cannam@167 82 }
cannam@167 83
cannam@167 84 static int pickdim(const tensor *vs, const tensor *s, int *pdim0, int *pdim1)
cannam@167 85 {
cannam@167 86 int dim0, dim1;
cannam@167 87 *pdim0 = *pdim1 = -1;
cannam@167 88 for (dim0 = 0; dim0 < vs->rnk; ++dim0)
cannam@167 89 for (dim1 = 0; dim1 < s->rnk; ++dim1)
cannam@167 90 if (vs->dims[dim0].n * X(iabs)(vs->dims[dim0].is) <= X(iabs)(s->dims[dim1].is)
cannam@167 91 && vs->dims[dim0].n >= s->dims[dim1].n
cannam@167 92 && (*pdim0 == -1
cannam@167 93 || (X(iabs)(vs->dims[dim0].is) <= X(iabs)(vs->dims[*pdim0].is)
cannam@167 94 && X(iabs)(s->dims[dim1].is) >= X(iabs)(s->dims[*pdim1].is)))) {
cannam@167 95 *pdim0 = dim0;
cannam@167 96 *pdim1 = dim1;
cannam@167 97 }
cannam@167 98 return (*pdim0 != -1 && *pdim1 != -1);
cannam@167 99 }
cannam@167 100
cannam@167 101 static int applicable0(const solver *ego_, const problem *p_,
cannam@167 102 const planner *plnr,
cannam@167 103 int *pdim0, int *pdim1)
cannam@167 104 {
cannam@167 105 const problem_dft *p = (const problem_dft *) p_;
cannam@167 106 UNUSED(ego_); UNUSED(plnr);
cannam@167 107
cannam@167 108 return (1
cannam@167 109 && FINITE_RNK(p->vecsz->rnk) && FINITE_RNK(p->sz->rnk)
cannam@167 110
cannam@167 111 /* FIXME: can/should we relax this constraint? */
cannam@167 112 && X(tensor_inplace_strides2)(p->vecsz, p->sz)
cannam@167 113
cannam@167 114 && pickdim(p->vecsz, p->sz, pdim0, pdim1)
cannam@167 115
cannam@167 116 /* output should not *already* include the transpose
cannam@167 117 (in which case we duplicate the regular indirect.c) */
cannam@167 118 && (p->sz->dims[*pdim1].os != p->vecsz->dims[*pdim0].is)
cannam@167 119 );
cannam@167 120 }
cannam@167 121
cannam@167 122 static int applicable(const solver *ego_, const problem *p_,
cannam@167 123 const planner *plnr,
cannam@167 124 int *pdim0, int *pdim1)
cannam@167 125 {
cannam@167 126 if (!applicable0(ego_, p_, plnr, pdim0, pdim1)) return 0;
cannam@167 127 {
cannam@167 128 const problem_dft *p = (const problem_dft *) p_;
cannam@167 129 INT u = p->ri == p->ii + 1 || p->ii == p->ri + 1 ? (INT)2 : (INT)1;
cannam@167 130
cannam@167 131 /* UGLY if does not result in contiguous transforms or
cannam@167 132 transforms of contiguous vectors (since the latter at
cannam@167 133 least have efficient transpositions) */
cannam@167 134 if (NO_UGLYP(plnr)
cannam@167 135 && p->vecsz->dims[*pdim0].is != u
cannam@167 136 && !(p->vecsz->rnk == 2
cannam@167 137 && p->vecsz->dims[1-*pdim0].is == u
cannam@167 138 && p->vecsz->dims[*pdim0].is
cannam@167 139 == u * p->vecsz->dims[1-*pdim0].n))
cannam@167 140 return 0;
cannam@167 141
cannam@167 142 if (NO_INDIRECT_OP_P(plnr) && p->ri != p->ro) return 0;
cannam@167 143 }
cannam@167 144 return 1;
cannam@167 145 }
cannam@167 146
cannam@167 147 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
cannam@167 148 {
cannam@167 149 const problem_dft *p = (const problem_dft *) p_;
cannam@167 150 P *pln;
cannam@167 151 plan *cld = 0, *cldtrans = 0, *cldrest = 0;
cannam@167 152 int pdim0, pdim1;
cannam@167 153 tensor *ts, *tv;
cannam@167 154 INT vl, ivs, ovs;
cannam@167 155 R *rit, *iit, *rot, *iot;
cannam@167 156
cannam@167 157 static const plan_adt padt = {
cannam@167 158 X(dft_solve), awake, print, destroy
cannam@167 159 };
cannam@167 160
cannam@167 161 if (!applicable(ego_, p_, plnr, &pdim0, &pdim1))
cannam@167 162 return (plan *) 0;
cannam@167 163
cannam@167 164 vl = p->vecsz->dims[pdim0].n / p->sz->dims[pdim1].n;
cannam@167 165 A(vl >= 1);
cannam@167 166 ivs = p->sz->dims[pdim1].n * p->vecsz->dims[pdim0].is;
cannam@167 167 ovs = p->sz->dims[pdim1].n * p->vecsz->dims[pdim0].os;
cannam@167 168 rit = TAINT(p->ri, vl == 1 ? 0 : ivs);
cannam@167 169 iit = TAINT(p->ii, vl == 1 ? 0 : ivs);
cannam@167 170 rot = TAINT(p->ro, vl == 1 ? 0 : ovs);
cannam@167 171 iot = TAINT(p->io, vl == 1 ? 0 : ovs);
cannam@167 172
cannam@167 173 ts = X(tensor_copy_inplace)(p->sz, INPLACE_IS);
cannam@167 174 ts->dims[pdim1].os = p->vecsz->dims[pdim0].is;
cannam@167 175 tv = X(tensor_copy_inplace)(p->vecsz, INPLACE_IS);
cannam@167 176 tv->dims[pdim0].os = p->sz->dims[pdim1].is;
cannam@167 177 tv->dims[pdim0].n = p->sz->dims[pdim1].n;
cannam@167 178 cldtrans = X(mkplan_d)(plnr,
cannam@167 179 X(mkproblem_dft_d)(X(mktensor_0d)(),
cannam@167 180 X(tensor_append)(tv, ts),
cannam@167 181 rit, iit,
cannam@167 182 rot, iot));
cannam@167 183 X(tensor_destroy2)(ts, tv);
cannam@167 184 if (!cldtrans) goto nada;
cannam@167 185
cannam@167 186 ts = X(tensor_copy)(p->sz);
cannam@167 187 ts->dims[pdim1].is = p->vecsz->dims[pdim0].is;
cannam@167 188 tv = X(tensor_copy)(p->vecsz);
cannam@167 189 tv->dims[pdim0].is = p->sz->dims[pdim1].is;
cannam@167 190 tv->dims[pdim0].n = p->sz->dims[pdim1].n;
cannam@167 191 cld = X(mkplan_d)(plnr, X(mkproblem_dft_d)(ts, tv,
cannam@167 192 rot, iot,
cannam@167 193 rot, iot));
cannam@167 194 if (!cld) goto nada;
cannam@167 195
cannam@167 196 tv = X(tensor_copy)(p->vecsz);
cannam@167 197 tv->dims[pdim0].n -= vl * p->sz->dims[pdim1].n;
cannam@167 198 cldrest = X(mkplan_d)(plnr, X(mkproblem_dft_d)(X(tensor_copy)(p->sz), tv,
cannam@167 199 p->ri + ivs * vl,
cannam@167 200 p->ii + ivs * vl,
cannam@167 201 p->ro + ovs * vl,
cannam@167 202 p->io + ovs * vl));
cannam@167 203 if (!cldrest) goto nada;
cannam@167 204
cannam@167 205 pln = MKPLAN_DFT(P, &padt, apply_op);
cannam@167 206 pln->cldtrans = cldtrans;
cannam@167 207 pln->cld = cld;
cannam@167 208 pln->cldrest = cldrest;
cannam@167 209 pln->vl = vl;
cannam@167 210 pln->ivs = ivs;
cannam@167 211 pln->ovs = ovs;
cannam@167 212 X(ops_cpy)(&cldrest->ops, &pln->super.super.ops);
cannam@167 213 X(ops_madd2)(vl, &cld->ops, &pln->super.super.ops);
cannam@167 214 X(ops_madd2)(vl, &cldtrans->ops, &pln->super.super.ops);
cannam@167 215 return &(pln->super.super);
cannam@167 216
cannam@167 217 nada:
cannam@167 218 X(plan_destroy_internal)(cldrest);
cannam@167 219 X(plan_destroy_internal)(cld);
cannam@167 220 X(plan_destroy_internal)(cldtrans);
cannam@167 221 return (plan *)0;
cannam@167 222 }
cannam@167 223
cannam@167 224 static solver *mksolver(void)
cannam@167 225 {
cannam@167 226 static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
cannam@167 227 S *slv = MKSOLVER(S, &sadt);
cannam@167 228 return slv;
cannam@167 229 }
cannam@167 230
cannam@167 231 void X(dft_indirect_transpose_register)(planner *p)
cannam@167 232 {
cannam@167 233 REGISTER_SOLVER(p, mksolver());
cannam@167 234 }