annotate src/fftw-3.3.8/dft/bluestein.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents bd3cc4d1df30
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * This program is free software; you can redistribute it and/or modify
cannam@167 6 * it under the terms of the GNU General Public License as published by
cannam@167 7 * the Free Software Foundation; either version 2 of the License, or
cannam@167 8 * (at your option) any later version.
cannam@167 9 *
cannam@167 10 * This program is distributed in the hope that it will be useful,
cannam@167 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 13 * GNU General Public License for more details.
cannam@167 14 *
cannam@167 15 * You should have received a copy of the GNU General Public License
cannam@167 16 * along with this program; if not, write to the Free Software
cannam@167 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 18 *
cannam@167 19 */
cannam@167 20
cannam@167 21 #include "dft/dft.h"
cannam@167 22
cannam@167 23 typedef struct {
cannam@167 24 solver super;
cannam@167 25 } S;
cannam@167 26
cannam@167 27 typedef struct {
cannam@167 28 plan_dft super;
cannam@167 29 INT n; /* problem size */
cannam@167 30 INT nb; /* size of convolution */
cannam@167 31 R *w; /* lambda k . exp(2*pi*i*k^2/(2*n)) */
cannam@167 32 R *W; /* DFT(w) */
cannam@167 33 plan *cldf;
cannam@167 34 INT is, os;
cannam@167 35 } P;
cannam@167 36
cannam@167 37 static void bluestein_sequence(enum wakefulness wakefulness, INT n, R *w)
cannam@167 38 {
cannam@167 39 INT k, ksq, n2 = 2 * n;
cannam@167 40 triggen *t = X(mktriggen)(wakefulness, n2);
cannam@167 41
cannam@167 42 ksq = 0;
cannam@167 43 for (k = 0; k < n; ++k) {
cannam@167 44 t->cexp(t, ksq, w+2*k);
cannam@167 45 /* careful with overflow */
cannam@167 46 ksq += 2*k + 1; while (ksq > n2) ksq -= n2;
cannam@167 47 }
cannam@167 48
cannam@167 49 X(triggen_destroy)(t);
cannam@167 50 }
cannam@167 51
cannam@167 52 static void mktwiddle(enum wakefulness wakefulness, P *p)
cannam@167 53 {
cannam@167 54 INT i;
cannam@167 55 INT n = p->n, nb = p->nb;
cannam@167 56 R *w, *W;
cannam@167 57 E nbf = (E)nb;
cannam@167 58
cannam@167 59 p->w = w = (R *) MALLOC(2 * n * sizeof(R), TWIDDLES);
cannam@167 60 p->W = W = (R *) MALLOC(2 * nb * sizeof(R), TWIDDLES);
cannam@167 61
cannam@167 62 bluestein_sequence(wakefulness, n, w);
cannam@167 63
cannam@167 64 for (i = 0; i < nb; ++i)
cannam@167 65 W[2*i] = W[2*i+1] = K(0.0);
cannam@167 66
cannam@167 67 W[0] = w[0] / nbf;
cannam@167 68 W[1] = w[1] / nbf;
cannam@167 69
cannam@167 70 for (i = 1; i < n; ++i) {
cannam@167 71 W[2*i] = W[2*(nb-i)] = w[2*i] / nbf;
cannam@167 72 W[2*i+1] = W[2*(nb-i)+1] = w[2*i+1] / nbf;
cannam@167 73 }
cannam@167 74
cannam@167 75 {
cannam@167 76 plan_dft *cldf = (plan_dft *)p->cldf;
cannam@167 77 /* cldf must be awake */
cannam@167 78 cldf->apply(p->cldf, W, W+1, W, W+1);
cannam@167 79 }
cannam@167 80 }
cannam@167 81
cannam@167 82 static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io)
cannam@167 83 {
cannam@167 84 const P *ego = (const P *) ego_;
cannam@167 85 INT i, n = ego->n, nb = ego->nb, is = ego->is, os = ego->os;
cannam@167 86 R *w = ego->w, *W = ego->W;
cannam@167 87 R *b = (R *) MALLOC(2 * nb * sizeof(R), BUFFERS);
cannam@167 88
cannam@167 89 /* multiply input by conjugate bluestein sequence */
cannam@167 90 for (i = 0; i < n; ++i) {
cannam@167 91 E xr = ri[i*is], xi = ii[i*is];
cannam@167 92 E wr = w[2*i], wi = w[2*i+1];
cannam@167 93 b[2*i] = xr * wr + xi * wi;
cannam@167 94 b[2*i+1] = xi * wr - xr * wi;
cannam@167 95 }
cannam@167 96
cannam@167 97 for (; i < nb; ++i) b[2*i] = b[2*i+1] = K(0.0);
cannam@167 98
cannam@167 99 /* convolution: FFT */
cannam@167 100 {
cannam@167 101 plan_dft *cldf = (plan_dft *)ego->cldf;
cannam@167 102 cldf->apply(ego->cldf, b, b+1, b, b+1);
cannam@167 103 }
cannam@167 104
cannam@167 105 /* convolution: pointwise multiplication */
cannam@167 106 for (i = 0; i < nb; ++i) {
cannam@167 107 E xr = b[2*i], xi = b[2*i+1];
cannam@167 108 E wr = W[2*i], wi = W[2*i+1];
cannam@167 109 b[2*i] = xi * wr + xr * wi;
cannam@167 110 b[2*i+1] = xr * wr - xi * wi;
cannam@167 111 }
cannam@167 112
cannam@167 113 /* convolution: IFFT by FFT with real/imag input/output swapped */
cannam@167 114 {
cannam@167 115 plan_dft *cldf = (plan_dft *)ego->cldf;
cannam@167 116 cldf->apply(ego->cldf, b, b+1, b, b+1);
cannam@167 117 }
cannam@167 118
cannam@167 119 /* multiply output by conjugate bluestein sequence */
cannam@167 120 for (i = 0; i < n; ++i) {
cannam@167 121 E xi = b[2*i], xr = b[2*i+1];
cannam@167 122 E wr = w[2*i], wi = w[2*i+1];
cannam@167 123 ro[i*os] = xr * wr + xi * wi;
cannam@167 124 io[i*os] = xi * wr - xr * wi;
cannam@167 125 }
cannam@167 126
cannam@167 127 X(ifree)(b);
cannam@167 128 }
cannam@167 129
cannam@167 130 static void awake(plan *ego_, enum wakefulness wakefulness)
cannam@167 131 {
cannam@167 132 P *ego = (P *) ego_;
cannam@167 133
cannam@167 134 X(plan_awake)(ego->cldf, wakefulness);
cannam@167 135
cannam@167 136 switch (wakefulness) {
cannam@167 137 case SLEEPY:
cannam@167 138 X(ifree0)(ego->w); ego->w = 0;
cannam@167 139 X(ifree0)(ego->W); ego->W = 0;
cannam@167 140 break;
cannam@167 141 default:
cannam@167 142 A(!ego->w);
cannam@167 143 mktwiddle(wakefulness, ego);
cannam@167 144 break;
cannam@167 145 }
cannam@167 146 }
cannam@167 147
cannam@167 148 static int applicable(const solver *ego, const problem *p_,
cannam@167 149 const planner *plnr)
cannam@167 150 {
cannam@167 151 const problem_dft *p = (const problem_dft *) p_;
cannam@167 152 UNUSED(ego);
cannam@167 153 return (1
cannam@167 154 && p->sz->rnk == 1
cannam@167 155 && p->vecsz->rnk == 0
cannam@167 156 /* FIXME: allow other sizes */
cannam@167 157 && X(is_prime)(p->sz->dims[0].n)
cannam@167 158
cannam@167 159 /* FIXME: avoid infinite recursion of bluestein with itself.
cannam@167 160 This works because all factors in child problems are 2, 3, 5 */
cannam@167 161 && p->sz->dims[0].n > 16
cannam@167 162
cannam@167 163 && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > BLUESTEIN_MAX_SLOW)
cannam@167 164 );
cannam@167 165 }
cannam@167 166
cannam@167 167 static void destroy(plan *ego_)
cannam@167 168 {
cannam@167 169 P *ego = (P *) ego_;
cannam@167 170 X(plan_destroy_internal)(ego->cldf);
cannam@167 171 }
cannam@167 172
cannam@167 173 static void print(const plan *ego_, printer *p)
cannam@167 174 {
cannam@167 175 const P *ego = (const P *)ego_;
cannam@167 176 p->print(p, "(dft-bluestein-%D/%D%(%p%))",
cannam@167 177 ego->n, ego->nb, ego->cldf);
cannam@167 178 }
cannam@167 179
cannam@167 180 static INT choose_transform_size(INT minsz)
cannam@167 181 {
cannam@167 182 while (!X(factors_into_small_primes)(minsz))
cannam@167 183 ++minsz;
cannam@167 184 return minsz;
cannam@167 185 }
cannam@167 186
cannam@167 187 static plan *mkplan(const solver *ego, const problem *p_, planner *plnr)
cannam@167 188 {
cannam@167 189 const problem_dft *p = (const problem_dft *) p_;
cannam@167 190 P *pln;
cannam@167 191 INT n, nb;
cannam@167 192 plan *cldf = 0;
cannam@167 193 R *buf = (R *) 0;
cannam@167 194
cannam@167 195 static const plan_adt padt = {
cannam@167 196 X(dft_solve), awake, print, destroy
cannam@167 197 };
cannam@167 198
cannam@167 199 if (!applicable(ego, p_, plnr))
cannam@167 200 return (plan *) 0;
cannam@167 201
cannam@167 202 n = p->sz->dims[0].n;
cannam@167 203 nb = choose_transform_size(2 * n - 1);
cannam@167 204 buf = (R *) MALLOC(2 * nb * sizeof(R), BUFFERS);
cannam@167 205
cannam@167 206 cldf = X(mkplan_f_d)(plnr,
cannam@167 207 X(mkproblem_dft_d)(X(mktensor_1d)(nb, 2, 2),
cannam@167 208 X(mktensor_1d)(1, 0, 0),
cannam@167 209 buf, buf+1,
cannam@167 210 buf, buf+1),
cannam@167 211 NO_SLOW, 0, 0);
cannam@167 212 if (!cldf) goto nada;
cannam@167 213
cannam@167 214 X(ifree)(buf);
cannam@167 215
cannam@167 216 pln = MKPLAN_DFT(P, &padt, apply);
cannam@167 217
cannam@167 218 pln->n = n;
cannam@167 219 pln->nb = nb;
cannam@167 220 pln->w = 0;
cannam@167 221 pln->W = 0;
cannam@167 222 pln->cldf = cldf;
cannam@167 223 pln->is = p->sz->dims[0].is;
cannam@167 224 pln->os = p->sz->dims[0].os;
cannam@167 225
cannam@167 226 X(ops_add)(&cldf->ops, &cldf->ops, &pln->super.super.ops);
cannam@167 227 pln->super.super.ops.add += 4 * n + 2 * nb;
cannam@167 228 pln->super.super.ops.mul += 8 * n + 4 * nb;
cannam@167 229 pln->super.super.ops.other += 6 * (n + nb);
cannam@167 230
cannam@167 231 return &(pln->super.super);
cannam@167 232
cannam@167 233 nada:
cannam@167 234 X(ifree0)(buf);
cannam@167 235 X(plan_destroy_internal)(cldf);
cannam@167 236 return (plan *)0;
cannam@167 237 }
cannam@167 238
cannam@167 239
cannam@167 240 static solver *mksolver(void)
cannam@167 241 {
cannam@167 242 static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
cannam@167 243 S *slv = MKSOLVER(S, &sadt);
cannam@167 244 return &(slv->super);
cannam@167 245 }
cannam@167 246
cannam@167 247 void X(dft_bluestein_register)(planner *p)
cannam@167 248 {
cannam@167 249 REGISTER_SOLVER(p, mksolver());
cannam@167 250 }