cannam@127
|
1 /*
|
cannam@127
|
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
|
cannam@127
|
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
cannam@127
|
4 *
|
cannam@127
|
5 * This program is free software; you can redistribute it and/or modify
|
cannam@127
|
6 * it under the terms of the GNU General Public License as published by
|
cannam@127
|
7 * the Free Software Foundation; either version 2 of the License, or
|
cannam@127
|
8 * (at your option) any later version.
|
cannam@127
|
9 *
|
cannam@127
|
10 * This program is distributed in the hope that it will be useful,
|
cannam@127
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
cannam@127
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
cannam@127
|
13 * GNU General Public License for more details.
|
cannam@127
|
14 *
|
cannam@127
|
15 * You should have received a copy of the GNU General Public License
|
cannam@127
|
16 * along with this program; if not, write to the Free Software
|
cannam@127
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
cannam@127
|
18 *
|
cannam@127
|
19 */
|
cannam@127
|
20
|
cannam@127
|
21 #include "threads.h"
|
cannam@127
|
22
|
cannam@127
|
23 typedef struct {
|
cannam@127
|
24 plan_rdft super;
|
cannam@127
|
25 plan *cld;
|
cannam@127
|
26 plan **cldws;
|
cannam@127
|
27 int nthr;
|
cannam@127
|
28 INT r;
|
cannam@127
|
29 } P;
|
cannam@127
|
30
|
cannam@127
|
31 typedef struct {
|
cannam@127
|
32 plan **cldws;
|
cannam@127
|
33 R *IO;
|
cannam@127
|
34 } PD;
|
cannam@127
|
35
|
cannam@127
|
36 static void *spawn_apply(spawn_data *d)
|
cannam@127
|
37 {
|
cannam@127
|
38 PD *ego = (PD *) d->data;
|
cannam@127
|
39
|
cannam@127
|
40 plan_hc2hc *cldw = (plan_hc2hc *) (ego->cldws[d->thr_num]);
|
cannam@127
|
41 cldw->apply((plan *) cldw, ego->IO);
|
cannam@127
|
42 return 0;
|
cannam@127
|
43 }
|
cannam@127
|
44
|
cannam@127
|
45 static void apply_dit(const plan *ego_, R *I, R *O)
|
cannam@127
|
46 {
|
cannam@127
|
47 const P *ego = (const P *) ego_;
|
cannam@127
|
48 plan_rdft *cld;
|
cannam@127
|
49
|
cannam@127
|
50 cld = (plan_rdft *) ego->cld;
|
cannam@127
|
51 cld->apply((plan *) cld, I, O);
|
cannam@127
|
52
|
cannam@127
|
53 {
|
cannam@127
|
54 PD d;
|
cannam@127
|
55
|
cannam@127
|
56 d.IO = O;
|
cannam@127
|
57 d.cldws = ego->cldws;
|
cannam@127
|
58
|
cannam@127
|
59 X(spawn_loop)(ego->nthr, ego->nthr, spawn_apply, (void*)&d);
|
cannam@127
|
60 }
|
cannam@127
|
61 }
|
cannam@127
|
62
|
cannam@127
|
63 static void apply_dif(const plan *ego_, R *I, R *O)
|
cannam@127
|
64 {
|
cannam@127
|
65 const P *ego = (const P *) ego_;
|
cannam@127
|
66 plan_rdft *cld;
|
cannam@127
|
67
|
cannam@127
|
68 {
|
cannam@127
|
69 PD d;
|
cannam@127
|
70
|
cannam@127
|
71 d.IO = I;
|
cannam@127
|
72 d.cldws = ego->cldws;
|
cannam@127
|
73
|
cannam@127
|
74 X(spawn_loop)(ego->nthr, ego->nthr, spawn_apply, (void*)&d);
|
cannam@127
|
75 }
|
cannam@127
|
76
|
cannam@127
|
77 cld = (plan_rdft *) ego->cld;
|
cannam@127
|
78 cld->apply((plan *) cld, I, O);
|
cannam@127
|
79 }
|
cannam@127
|
80
|
cannam@127
|
81 static void awake(plan *ego_, enum wakefulness wakefulness)
|
cannam@127
|
82 {
|
cannam@127
|
83 P *ego = (P *) ego_;
|
cannam@127
|
84 int i;
|
cannam@127
|
85 X(plan_awake)(ego->cld, wakefulness);
|
cannam@127
|
86 for (i = 0; i < ego->nthr; ++i)
|
cannam@127
|
87 X(plan_awake)(ego->cldws[i], wakefulness);
|
cannam@127
|
88 }
|
cannam@127
|
89
|
cannam@127
|
90 static void destroy(plan *ego_)
|
cannam@127
|
91 {
|
cannam@127
|
92 P *ego = (P *) ego_;
|
cannam@127
|
93 int i;
|
cannam@127
|
94 X(plan_destroy_internal)(ego->cld);
|
cannam@127
|
95 for (i = 0; i < ego->nthr; ++i)
|
cannam@127
|
96 X(plan_destroy_internal)(ego->cldws[i]);
|
cannam@127
|
97 X(ifree)(ego->cldws);
|
cannam@127
|
98 }
|
cannam@127
|
99
|
cannam@127
|
100 static void print(const plan *ego_, printer *p)
|
cannam@127
|
101 {
|
cannam@127
|
102 const P *ego = (const P *) ego_;
|
cannam@127
|
103 int i;
|
cannam@127
|
104 p->print(p, "(rdft-thr-ct-%s-x%d/%D",
|
cannam@127
|
105 ego->super.apply == apply_dit ? "dit" : "dif",
|
cannam@127
|
106 ego->nthr, ego->r);
|
cannam@127
|
107 for (i = 0; i < ego->nthr; ++i)
|
cannam@127
|
108 if (i == 0 || (ego->cldws[i] != ego->cldws[i-1] &&
|
cannam@127
|
109 (i <= 1 || ego->cldws[i] != ego->cldws[i-2])))
|
cannam@127
|
110 p->print(p, "%(%p%)", ego->cldws[i]);
|
cannam@127
|
111 p->print(p, "%(%p%))", ego->cld);
|
cannam@127
|
112 }
|
cannam@127
|
113
|
cannam@127
|
114 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
|
cannam@127
|
115 {
|
cannam@127
|
116 const hc2hc_solver *ego = (const hc2hc_solver *) ego_;
|
cannam@127
|
117 const problem_rdft *p;
|
cannam@127
|
118 P *pln = 0;
|
cannam@127
|
119 plan *cld = 0, **cldws = 0;
|
cannam@127
|
120 INT n, r, m, v, ivs, ovs, mcount;
|
cannam@127
|
121 int i, nthr, plnr_nthr_save;
|
cannam@127
|
122 INT block_size;
|
cannam@127
|
123 iodim *d;
|
cannam@127
|
124
|
cannam@127
|
125 static const plan_adt padt = {
|
cannam@127
|
126 X(rdft_solve), awake, print, destroy
|
cannam@127
|
127 };
|
cannam@127
|
128
|
cannam@127
|
129 if (plnr->nthr <= 1 || !X(hc2hc_applicable)(ego, p_, plnr))
|
cannam@127
|
130 return (plan *) 0;
|
cannam@127
|
131
|
cannam@127
|
132 p = (const problem_rdft *) p_;
|
cannam@127
|
133 d = p->sz->dims;
|
cannam@127
|
134 n = d[0].n;
|
cannam@127
|
135 r = X(choose_radix)(ego->r, n);
|
cannam@127
|
136 m = n / r;
|
cannam@127
|
137 mcount = (m + 2) / 2;
|
cannam@127
|
138
|
cannam@127
|
139 X(tensor_tornk1)(p->vecsz, &v, &ivs, &ovs);
|
cannam@127
|
140
|
cannam@127
|
141 block_size = (mcount + plnr->nthr - 1) / plnr->nthr;
|
cannam@127
|
142 nthr = (int)((mcount + block_size - 1) / block_size);
|
cannam@127
|
143 plnr_nthr_save = plnr->nthr;
|
cannam@127
|
144 plnr->nthr = (plnr->nthr + nthr - 1) / nthr;
|
cannam@127
|
145
|
cannam@127
|
146 cldws = (plan **) MALLOC(sizeof(plan *) * nthr, PLANS);
|
cannam@127
|
147 for (i = 0; i < nthr; ++i) cldws[i] = (plan *) 0;
|
cannam@127
|
148
|
cannam@127
|
149 switch (p->kind[0]) {
|
cannam@127
|
150 case R2HC:
|
cannam@127
|
151 for (i = 0; i < nthr; ++i) {
|
cannam@127
|
152 cldws[i] = ego->mkcldw(ego,
|
cannam@127
|
153 R2HC, r, m, d[0].os, v, ovs,
|
cannam@127
|
154 i*block_size,
|
cannam@127
|
155 (i == nthr - 1) ?
|
cannam@127
|
156 (mcount - i*block_size) : block_size,
|
cannam@127
|
157 p->O, plnr);
|
cannam@127
|
158 if (!cldws[i]) goto nada;
|
cannam@127
|
159 }
|
cannam@127
|
160
|
cannam@127
|
161 plnr->nthr = plnr_nthr_save;
|
cannam@127
|
162
|
cannam@127
|
163 cld = X(mkplan_d)(plnr,
|
cannam@127
|
164 X(mkproblem_rdft_d)(
|
cannam@127
|
165 X(mktensor_1d)(m, r * d[0].is, d[0].os),
|
cannam@127
|
166 X(mktensor_2d)(r, d[0].is, m * d[0].os,
|
cannam@127
|
167 v, ivs, ovs),
|
cannam@127
|
168 p->I, p->O, p->kind)
|
cannam@127
|
169 );
|
cannam@127
|
170 if (!cld) goto nada;
|
cannam@127
|
171
|
cannam@127
|
172 pln = MKPLAN_RDFT(P, &padt, apply_dit);
|
cannam@127
|
173 break;
|
cannam@127
|
174
|
cannam@127
|
175 case HC2R:
|
cannam@127
|
176 for (i = 0; i < nthr; ++i) {
|
cannam@127
|
177 cldws[i] = ego->mkcldw(ego,
|
cannam@127
|
178 HC2R, r, m, d[0].is, v, ivs,
|
cannam@127
|
179 i*block_size,
|
cannam@127
|
180 (i == nthr - 1) ?
|
cannam@127
|
181 (mcount - i*block_size) : block_size,
|
cannam@127
|
182 p->I, plnr);
|
cannam@127
|
183 if (!cldws[i]) goto nada;
|
cannam@127
|
184 }
|
cannam@127
|
185
|
cannam@127
|
186 plnr->nthr = plnr_nthr_save;
|
cannam@127
|
187
|
cannam@127
|
188 cld = X(mkplan_d)(plnr,
|
cannam@127
|
189 X(mkproblem_rdft_d)(
|
cannam@127
|
190 X(mktensor_1d)(m, d[0].is, r * d[0].os),
|
cannam@127
|
191 X(mktensor_2d)(r, m * d[0].is, d[0].os,
|
cannam@127
|
192 v, ivs, ovs),
|
cannam@127
|
193 p->I, p->O, p->kind)
|
cannam@127
|
194 );
|
cannam@127
|
195 if (!cld) goto nada;
|
cannam@127
|
196
|
cannam@127
|
197 pln = MKPLAN_RDFT(P, &padt, apply_dif);
|
cannam@127
|
198 break;
|
cannam@127
|
199
|
cannam@127
|
200 default:
|
cannam@127
|
201 A(0);
|
cannam@127
|
202 }
|
cannam@127
|
203
|
cannam@127
|
204 pln->cld = cld;
|
cannam@127
|
205 pln->cldws = cldws;
|
cannam@127
|
206 pln->nthr = nthr;
|
cannam@127
|
207 pln->r = r;
|
cannam@127
|
208 X(ops_zero)(&pln->super.super.ops);
|
cannam@127
|
209 for (i = 0; i < nthr; ++i) {
|
cannam@127
|
210 X(ops_add2)(&cldws[i]->ops, &pln->super.super.ops);
|
cannam@127
|
211 pln->super.super.could_prune_now_p |= cldws[i]->could_prune_now_p;
|
cannam@127
|
212 }
|
cannam@127
|
213 X(ops_add2)(&cld->ops, &pln->super.super.ops);
|
cannam@127
|
214 return &(pln->super.super);
|
cannam@127
|
215
|
cannam@127
|
216 nada:
|
cannam@127
|
217 if (cldws) {
|
cannam@127
|
218 for (i = 0; i < nthr; ++i)
|
cannam@127
|
219 X(plan_destroy_internal)(cldws[i]);
|
cannam@127
|
220 X(ifree)(cldws);
|
cannam@127
|
221 }
|
cannam@127
|
222 X(plan_destroy_internal)(cld);
|
cannam@127
|
223 return (plan *) 0;
|
cannam@127
|
224 }
|
cannam@127
|
225
|
cannam@127
|
226 hc2hc_solver *X(mksolver_hc2hc_threads)(size_t size, INT r,
|
cannam@127
|
227 hc2hc_mkinferior mkcldw)
|
cannam@127
|
228 {
|
cannam@127
|
229 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
|
cannam@127
|
230 hc2hc_solver *slv = (hc2hc_solver *)X(mksolver)(size, &sadt);
|
cannam@127
|
231 slv->r = r;
|
cannam@127
|
232 slv->mkcldw = mkcldw;
|
cannam@127
|
233 return slv;
|
cannam@127
|
234 }
|