annotate src/fftw-3.3.5/threads/ct.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21
cannam@127 22 #include "threads.h"
cannam@127 23
cannam@127 24 typedef struct {
cannam@127 25 plan_dft super;
cannam@127 26 plan *cld;
cannam@127 27 plan **cldws;
cannam@127 28 int nthr;
cannam@127 29 INT r;
cannam@127 30 } P;
cannam@127 31
cannam@127 32 typedef struct {
cannam@127 33 plan **cldws;
cannam@127 34 R *r, *i;
cannam@127 35 } PD;
cannam@127 36
cannam@127 37 static void *spawn_apply(spawn_data *d)
cannam@127 38 {
cannam@127 39 PD *ego = (PD *) d->data;
cannam@127 40 INT thr_num = d->thr_num;
cannam@127 41
cannam@127 42 plan_dftw *cldw = (plan_dftw *) (ego->cldws[thr_num]);
cannam@127 43 cldw->apply((plan *) cldw, ego->r, ego->i);
cannam@127 44 return 0;
cannam@127 45 }
cannam@127 46
cannam@127 47 static void apply_dit(const plan *ego_, R *ri, R *ii, R *ro, R *io)
cannam@127 48 {
cannam@127 49 const P *ego = (const P *) ego_;
cannam@127 50 plan_dft *cld;
cannam@127 51
cannam@127 52 cld = (plan_dft *) ego->cld;
cannam@127 53 cld->apply(ego->cld, ri, ii, ro, io);
cannam@127 54
cannam@127 55 {
cannam@127 56 PD d;
cannam@127 57
cannam@127 58 d.r = ro; d.i = io;
cannam@127 59 d.cldws = ego->cldws;
cannam@127 60
cannam@127 61 X(spawn_loop)(ego->nthr, ego->nthr, spawn_apply, (void*)&d);
cannam@127 62 }
cannam@127 63 }
cannam@127 64
cannam@127 65 static void apply_dif(const plan *ego_, R *ri, R *ii, R *ro, R *io)
cannam@127 66 {
cannam@127 67 const P *ego = (const P *) ego_;
cannam@127 68 plan_dft *cld;
cannam@127 69
cannam@127 70 {
cannam@127 71 PD d;
cannam@127 72
cannam@127 73 d.r = ri; d.i = ii;
cannam@127 74 d.cldws = ego->cldws;
cannam@127 75
cannam@127 76 X(spawn_loop)(ego->nthr, ego->nthr, spawn_apply, (void*)&d);
cannam@127 77 }
cannam@127 78
cannam@127 79 cld = (plan_dft *) ego->cld;
cannam@127 80 cld->apply(ego->cld, ri, ii, ro, io);
cannam@127 81 }
cannam@127 82
cannam@127 83 static void awake(plan *ego_, enum wakefulness wakefulness)
cannam@127 84 {
cannam@127 85 P *ego = (P *) ego_;
cannam@127 86 int i;
cannam@127 87 X(plan_awake)(ego->cld, wakefulness);
cannam@127 88 for (i = 0; i < ego->nthr; ++i)
cannam@127 89 X(plan_awake)(ego->cldws[i], wakefulness);
cannam@127 90 }
cannam@127 91
cannam@127 92 static void destroy(plan *ego_)
cannam@127 93 {
cannam@127 94 P *ego = (P *) ego_;
cannam@127 95 int i;
cannam@127 96 X(plan_destroy_internal)(ego->cld);
cannam@127 97 for (i = 0; i < ego->nthr; ++i)
cannam@127 98 X(plan_destroy_internal)(ego->cldws[i]);
cannam@127 99 X(ifree)(ego->cldws);
cannam@127 100 }
cannam@127 101
cannam@127 102 static void print(const plan *ego_, printer *p)
cannam@127 103 {
cannam@127 104 const P *ego = (const P *) ego_;
cannam@127 105 int i;
cannam@127 106 p->print(p, "(dft-thr-ct-%s-x%d/%D",
cannam@127 107 ego->super.apply == apply_dit ? "dit" : "dif",
cannam@127 108 ego->nthr, ego->r);
cannam@127 109 for (i = 0; i < ego->nthr; ++i)
cannam@127 110 if (i == 0 || (ego->cldws[i] != ego->cldws[i-1] &&
cannam@127 111 (i <= 1 || ego->cldws[i] != ego->cldws[i-2])))
cannam@127 112 p->print(p, "%(%p%)", ego->cldws[i]);
cannam@127 113 p->print(p, "%(%p%))", ego->cld);
cannam@127 114 }
cannam@127 115
cannam@127 116 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
cannam@127 117 {
cannam@127 118 const ct_solver *ego = (const ct_solver *) ego_;
cannam@127 119 const problem_dft *p;
cannam@127 120 P *pln = 0;
cannam@127 121 plan *cld = 0, **cldws = 0;
cannam@127 122 INT n, r, m, v, ivs, ovs;
cannam@127 123 INT block_size;
cannam@127 124 int i, nthr, plnr_nthr_save;
cannam@127 125 iodim *d;
cannam@127 126
cannam@127 127 static const plan_adt padt = {
cannam@127 128 X(dft_solve), awake, print, destroy
cannam@127 129 };
cannam@127 130
cannam@127 131 if (plnr->nthr <= 1 || !X(ct_applicable)(ego, p_, plnr))
cannam@127 132 return (plan *) 0;
cannam@127 133
cannam@127 134 p = (const problem_dft *) p_;
cannam@127 135 d = p->sz->dims;
cannam@127 136 n = d[0].n;
cannam@127 137 r = X(choose_radix)(ego->r, n);
cannam@127 138 m = n / r;
cannam@127 139
cannam@127 140 X(tensor_tornk1)(p->vecsz, &v, &ivs, &ovs);
cannam@127 141
cannam@127 142 block_size = (m + plnr->nthr - 1) / plnr->nthr;
cannam@127 143 nthr = (int)((m + block_size - 1) / block_size);
cannam@127 144 plnr_nthr_save = plnr->nthr;
cannam@127 145 plnr->nthr = (plnr->nthr + nthr - 1) / nthr;
cannam@127 146
cannam@127 147 cldws = (plan **) MALLOC(sizeof(plan *) * nthr, PLANS);
cannam@127 148 for (i = 0; i < nthr; ++i) cldws[i] = (plan *) 0;
cannam@127 149
cannam@127 150 switch (ego->dec) {
cannam@127 151 case DECDIT:
cannam@127 152 {
cannam@127 153 for (i = 0; i < nthr; ++i) {
cannam@127 154 cldws[i] = ego->mkcldw(ego,
cannam@127 155 r, m * d[0].os, m * d[0].os,
cannam@127 156 m, d[0].os,
cannam@127 157 v, ovs, ovs,
cannam@127 158 i*block_size,
cannam@127 159 (i == nthr - 1) ?
cannam@127 160 (m - i*block_size) : block_size,
cannam@127 161 p->ro, p->io, plnr);
cannam@127 162 if (!cldws[i]) goto nada;
cannam@127 163 }
cannam@127 164
cannam@127 165 plnr->nthr = plnr_nthr_save;
cannam@127 166
cannam@127 167 cld = X(mkplan_d)(plnr,
cannam@127 168 X(mkproblem_dft_d)(
cannam@127 169 X(mktensor_1d)(m, r * d[0].is, d[0].os),
cannam@127 170 X(mktensor_2d)(r, d[0].is, m * d[0].os,
cannam@127 171 v, ivs, ovs),
cannam@127 172 p->ri, p->ii, p->ro, p->io)
cannam@127 173 );
cannam@127 174 if (!cld) goto nada;
cannam@127 175
cannam@127 176 pln = MKPLAN_DFT(P, &padt, apply_dit);
cannam@127 177 break;
cannam@127 178 }
cannam@127 179 case DECDIF:
cannam@127 180 case DECDIF+TRANSPOSE:
cannam@127 181 {
cannam@127 182 INT cors, covs; /* cldw ors, ovs */
cannam@127 183 if (ego->dec == DECDIF+TRANSPOSE) {
cannam@127 184 cors = ivs;
cannam@127 185 covs = m * d[0].is;
cannam@127 186 /* ensure that we generate well-formed dftw subproblems */
cannam@127 187 /* FIXME: too conservative */
cannam@127 188 if (!(1
cannam@127 189 && r == v
cannam@127 190 && d[0].is == r * cors))
cannam@127 191 goto nada;
cannam@127 192
cannam@127 193 /* FIXME: allow in-place only for now, like in
cannam@127 194 fftw-3.[01] */
cannam@127 195 if (!(1
cannam@127 196 && p->ri == p->ro
cannam@127 197 && d[0].is == r * d[0].os
cannam@127 198 && cors == d[0].os
cannam@127 199 && covs == ovs
cannam@127 200 ))
cannam@127 201 goto nada;
cannam@127 202 } else {
cannam@127 203 cors = m * d[0].is;
cannam@127 204 covs = ivs;
cannam@127 205 }
cannam@127 206
cannam@127 207 for (i = 0; i < nthr; ++i) {
cannam@127 208 cldws[i] = ego->mkcldw(ego,
cannam@127 209 r, m * d[0].is, cors,
cannam@127 210 m, d[0].is,
cannam@127 211 v, ivs, covs,
cannam@127 212 i*block_size,
cannam@127 213 (i == nthr - 1) ?
cannam@127 214 (m - i*block_size) : block_size,
cannam@127 215 p->ri, p->ii, plnr);
cannam@127 216 if (!cldws[i]) goto nada;
cannam@127 217 }
cannam@127 218
cannam@127 219 plnr->nthr = plnr_nthr_save;
cannam@127 220
cannam@127 221 cld = X(mkplan_d)(plnr,
cannam@127 222 X(mkproblem_dft_d)(
cannam@127 223 X(mktensor_1d)(m, d[0].is, r * d[0].os),
cannam@127 224 X(mktensor_2d)(r, cors, d[0].os,
cannam@127 225 v, covs, ovs),
cannam@127 226 p->ri, p->ii, p->ro, p->io)
cannam@127 227 );
cannam@127 228 if (!cld) goto nada;
cannam@127 229
cannam@127 230 pln = MKPLAN_DFT(P, &padt, apply_dif);
cannam@127 231 break;
cannam@127 232 }
cannam@127 233
cannam@127 234 default: A(0);
cannam@127 235
cannam@127 236 }
cannam@127 237
cannam@127 238 pln->cld = cld;
cannam@127 239 pln->cldws = cldws;
cannam@127 240 pln->nthr = nthr;
cannam@127 241 pln->r = r;
cannam@127 242 X(ops_zero)(&pln->super.super.ops);
cannam@127 243 for (i = 0; i < nthr; ++i) {
cannam@127 244 X(ops_add2)(&cldws[i]->ops, &pln->super.super.ops);
cannam@127 245 pln->super.super.could_prune_now_p |= cldws[i]->could_prune_now_p;
cannam@127 246 }
cannam@127 247 X(ops_add2)(&cld->ops, &pln->super.super.ops);
cannam@127 248 return &(pln->super.super);
cannam@127 249
cannam@127 250 nada:
cannam@127 251 if (cldws) {
cannam@127 252 for (i = 0; i < nthr; ++i)
cannam@127 253 X(plan_destroy_internal)(cldws[i]);
cannam@127 254 X(ifree)(cldws);
cannam@127 255 }
cannam@127 256 X(plan_destroy_internal)(cld);
cannam@127 257 return (plan *) 0;
cannam@127 258 }
cannam@127 259
cannam@127 260 ct_solver *X(mksolver_ct_threads)(size_t size, INT r, int dec,
cannam@127 261 ct_mkinferior mkcldw,
cannam@127 262 ct_force_vrecursion force_vrecursionp)
cannam@127 263 {
cannam@127 264 static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
cannam@127 265 ct_solver *slv = (ct_solver *) X(mksolver)(size, &sadt);
cannam@127 266 slv->r = r;
cannam@127 267 slv->dec = dec;
cannam@127 268 slv->mkcldw = mkcldw;
cannam@127 269 slv->force_vrecursionp = force_vrecursionp;
cannam@127 270 return slv;
cannam@127 271 }