annotate src/fftw-3.3.5/reodft/reodft11e-radix2.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21
cannam@127 22 /* Do an R{E,O}DFT11 problem of *even* size by a pair of R2HC problems
cannam@127 23 of half the size, plus some pre/post-processing. Use a trick from:
cannam@127 24
cannam@127 25 Zhongde Wang, "On computing the discrete Fourier and cosine transforms,"
cannam@127 26 IEEE Trans. Acoust. Speech Sig. Proc. ASSP-33 (4), 1341--1344 (1985).
cannam@127 27
cannam@127 28 to re-express as a pair of half-size REDFT01 (DCT-III) problems. Our
cannam@127 29 implementation looks quite a bit different from the algorithm described
cannam@127 30 in the paper because we combined the paper's pre/post-processing with
cannam@127 31 the pre/post-processing used to turn REDFT01 into R2HC. (Also, the
cannam@127 32 paper uses a DCT/DST pair, but we turn the DST into a DCT via the
cannam@127 33 usual reordering/sign-flip trick. We additionally combined a couple
cannam@127 34 of the matrices/transformations of the paper into a single pass.)
cannam@127 35
cannam@127 36 NOTE: We originally used a simpler method by S. C. Chan and K. L. Ho
cannam@127 37 that turned out to have numerical problems; see reodft11e-r2hc.c.
cannam@127 38
cannam@127 39 (For odd sizes, see reodft11e-r2hc-odd.c.)
cannam@127 40 */
cannam@127 41
cannam@127 42 #include "reodft.h"
cannam@127 43
cannam@127 44 typedef struct {
cannam@127 45 solver super;
cannam@127 46 } S;
cannam@127 47
cannam@127 48 typedef struct {
cannam@127 49 plan_rdft super;
cannam@127 50 plan *cld;
cannam@127 51 twid *td, *td2;
cannam@127 52 INT is, os;
cannam@127 53 INT n;
cannam@127 54 INT vl;
cannam@127 55 INT ivs, ovs;
cannam@127 56 rdft_kind kind;
cannam@127 57 } P;
cannam@127 58
cannam@127 59 static void apply_re11(const plan *ego_, R *I, R *O)
cannam@127 60 {
cannam@127 61 const P *ego = (const P *) ego_;
cannam@127 62 INT is = ego->is, os = ego->os;
cannam@127 63 INT i, n = ego->n, n2 = n/2;
cannam@127 64 INT iv, vl = ego->vl;
cannam@127 65 INT ivs = ego->ivs, ovs = ego->ovs;
cannam@127 66 R *W = ego->td->W;
cannam@127 67 R *W2;
cannam@127 68 R *buf;
cannam@127 69
cannam@127 70 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
cannam@127 71
cannam@127 72 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
cannam@127 73 buf[0] = K(2.0) * I[0];
cannam@127 74 buf[n2] = K(2.0) * I[is * (n - 1)];
cannam@127 75 for (i = 1; i + i < n2; ++i) {
cannam@127 76 INT k = i + i;
cannam@127 77 E a, b, a2, b2;
cannam@127 78 {
cannam@127 79 E u, v;
cannam@127 80 u = I[is * (k - 1)];
cannam@127 81 v = I[is * k];
cannam@127 82 a = u + v;
cannam@127 83 b2 = u - v;
cannam@127 84 }
cannam@127 85 {
cannam@127 86 E u, v;
cannam@127 87 u = I[is * (n - k - 1)];
cannam@127 88 v = I[is * (n - k)];
cannam@127 89 b = u + v;
cannam@127 90 a2 = u - v;
cannam@127 91 }
cannam@127 92 {
cannam@127 93 E wa, wb;
cannam@127 94 wa = W[2*i];
cannam@127 95 wb = W[2*i + 1];
cannam@127 96 {
cannam@127 97 E apb, amb;
cannam@127 98 apb = a + b;
cannam@127 99 amb = a - b;
cannam@127 100 buf[i] = wa * amb + wb * apb;
cannam@127 101 buf[n2 - i] = wa * apb - wb * amb;
cannam@127 102 }
cannam@127 103 {
cannam@127 104 E apb, amb;
cannam@127 105 apb = a2 + b2;
cannam@127 106 amb = a2 - b2;
cannam@127 107 buf[n2 + i] = wa * amb + wb * apb;
cannam@127 108 buf[n - i] = wa * apb - wb * amb;
cannam@127 109 }
cannam@127 110 }
cannam@127 111 }
cannam@127 112 if (i + i == n2) {
cannam@127 113 E u, v;
cannam@127 114 u = I[is * (n2 - 1)];
cannam@127 115 v = I[is * n2];
cannam@127 116 buf[i] = (u + v) * (W[2*i] * K(2.0));
cannam@127 117 buf[n - i] = (u - v) * (W[2*i] * K(2.0));
cannam@127 118 }
cannam@127 119
cannam@127 120
cannam@127 121 /* child plan: two r2hc's of size n/2 */
cannam@127 122 {
cannam@127 123 plan_rdft *cld = (plan_rdft *) ego->cld;
cannam@127 124 cld->apply((plan *) cld, buf, buf);
cannam@127 125 }
cannam@127 126
cannam@127 127 W2 = ego->td2->W;
cannam@127 128 { /* i == 0 case */
cannam@127 129 E wa, wb;
cannam@127 130 E a, b;
cannam@127 131 wa = W2[0]; /* cos */
cannam@127 132 wb = W2[1]; /* sin */
cannam@127 133 a = buf[0];
cannam@127 134 b = buf[n2];
cannam@127 135 O[0] = wa * a + wb * b;
cannam@127 136 O[os * (n - 1)] = wb * a - wa * b;
cannam@127 137 }
cannam@127 138 W2 += 2;
cannam@127 139 for (i = 1; i + i < n2; ++i, W2 += 2) {
cannam@127 140 INT k;
cannam@127 141 E u, v, u2, v2;
cannam@127 142 u = buf[i];
cannam@127 143 v = buf[n2 - i];
cannam@127 144 u2 = buf[n2 + i];
cannam@127 145 v2 = buf[n - i];
cannam@127 146 k = (i + i) - 1;
cannam@127 147 {
cannam@127 148 E wa, wb;
cannam@127 149 E a, b;
cannam@127 150 wa = W2[0]; /* cos */
cannam@127 151 wb = W2[1]; /* sin */
cannam@127 152 a = u - v;
cannam@127 153 b = v2 - u2;
cannam@127 154 O[os * k] = wa * a + wb * b;
cannam@127 155 O[os * (n - 1 - k)] = wb * a - wa * b;
cannam@127 156 }
cannam@127 157 ++k;
cannam@127 158 W2 += 2;
cannam@127 159 {
cannam@127 160 E wa, wb;
cannam@127 161 E a, b;
cannam@127 162 wa = W2[0]; /* cos */
cannam@127 163 wb = W2[1]; /* sin */
cannam@127 164 a = u + v;
cannam@127 165 b = u2 + v2;
cannam@127 166 O[os * k] = wa * a + wb * b;
cannam@127 167 O[os * (n - 1 - k)] = wb * a - wa * b;
cannam@127 168 }
cannam@127 169 }
cannam@127 170 if (i + i == n2) {
cannam@127 171 INT k = (i + i) - 1;
cannam@127 172 E wa, wb;
cannam@127 173 E a, b;
cannam@127 174 wa = W2[0]; /* cos */
cannam@127 175 wb = W2[1]; /* sin */
cannam@127 176 a = buf[i];
cannam@127 177 b = buf[n2 + i];
cannam@127 178 O[os * k] = wa * a - wb * b;
cannam@127 179 O[os * (n - 1 - k)] = wb * a + wa * b;
cannam@127 180 }
cannam@127 181 }
cannam@127 182
cannam@127 183 X(ifree)(buf);
cannam@127 184 }
cannam@127 185
cannam@127 186 #if 0
cannam@127 187
cannam@127 188 /* This version of apply_re11 uses REDFT01 child plans, more similar
cannam@127 189 to the original paper by Z. Wang. We keep it around for reference
cannam@127 190 (it is simpler) and because it may become more efficient if we
cannam@127 191 ever implement REDFT01 codelets. */
cannam@127 192
cannam@127 193 static void apply_re11(const plan *ego_, R *I, R *O)
cannam@127 194 {
cannam@127 195 const P *ego = (const P *) ego_;
cannam@127 196 INT is = ego->is, os = ego->os;
cannam@127 197 INT i, n = ego->n;
cannam@127 198 INT iv, vl = ego->vl;
cannam@127 199 INT ivs = ego->ivs, ovs = ego->ovs;
cannam@127 200 R *W;
cannam@127 201 R *buf;
cannam@127 202
cannam@127 203 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
cannam@127 204
cannam@127 205 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
cannam@127 206 buf[0] = K(2.0) * I[0];
cannam@127 207 buf[n/2] = K(2.0) * I[is * (n - 1)];
cannam@127 208 for (i = 1; i + i < n; ++i) {
cannam@127 209 INT k = i + i;
cannam@127 210 E a, b;
cannam@127 211 a = I[is * (k - 1)];
cannam@127 212 b = I[is * k];
cannam@127 213 buf[i] = a + b;
cannam@127 214 buf[n - i] = a - b;
cannam@127 215 }
cannam@127 216
cannam@127 217 /* child plan: two redft01's (DCT-III) */
cannam@127 218 {
cannam@127 219 plan_rdft *cld = (plan_rdft *) ego->cld;
cannam@127 220 cld->apply((plan *) cld, buf, buf);
cannam@127 221 }
cannam@127 222
cannam@127 223 W = ego->td2->W;
cannam@127 224 for (i = 0; i + 1 < n/2; ++i, W += 2) {
cannam@127 225 {
cannam@127 226 E wa, wb;
cannam@127 227 E a, b;
cannam@127 228 wa = W[0]; /* cos */
cannam@127 229 wb = W[1]; /* sin */
cannam@127 230 a = buf[i];
cannam@127 231 b = buf[n/2 + i];
cannam@127 232 O[os * i] = wa * a + wb * b;
cannam@127 233 O[os * (n - 1 - i)] = wb * a - wa * b;
cannam@127 234 }
cannam@127 235 ++i;
cannam@127 236 W += 2;
cannam@127 237 {
cannam@127 238 E wa, wb;
cannam@127 239 E a, b;
cannam@127 240 wa = W[0]; /* cos */
cannam@127 241 wb = W[1]; /* sin */
cannam@127 242 a = buf[i];
cannam@127 243 b = buf[n/2 + i];
cannam@127 244 O[os * i] = wa * a - wb * b;
cannam@127 245 O[os * (n - 1 - i)] = wb * a + wa * b;
cannam@127 246 }
cannam@127 247 }
cannam@127 248 if (i < n/2) {
cannam@127 249 E wa, wb;
cannam@127 250 E a, b;
cannam@127 251 wa = W[0]; /* cos */
cannam@127 252 wb = W[1]; /* sin */
cannam@127 253 a = buf[i];
cannam@127 254 b = buf[n/2 + i];
cannam@127 255 O[os * i] = wa * a + wb * b;
cannam@127 256 O[os * (n - 1 - i)] = wb * a - wa * b;
cannam@127 257 }
cannam@127 258 }
cannam@127 259
cannam@127 260 X(ifree)(buf);
cannam@127 261 }
cannam@127 262
cannam@127 263 #endif /* 0 */
cannam@127 264
cannam@127 265 /* like for rodft01, rodft11 is obtained from redft11 by
cannam@127 266 reversing the input and flipping the sign of every other output. */
cannam@127 267 static void apply_ro11(const plan *ego_, R *I, R *O)
cannam@127 268 {
cannam@127 269 const P *ego = (const P *) ego_;
cannam@127 270 INT is = ego->is, os = ego->os;
cannam@127 271 INT i, n = ego->n, n2 = n/2;
cannam@127 272 INT iv, vl = ego->vl;
cannam@127 273 INT ivs = ego->ivs, ovs = ego->ovs;
cannam@127 274 R *W = ego->td->W;
cannam@127 275 R *W2;
cannam@127 276 R *buf;
cannam@127 277
cannam@127 278 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
cannam@127 279
cannam@127 280 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
cannam@127 281 buf[0] = K(2.0) * I[is * (n - 1)];
cannam@127 282 buf[n2] = K(2.0) * I[0];
cannam@127 283 for (i = 1; i + i < n2; ++i) {
cannam@127 284 INT k = i + i;
cannam@127 285 E a, b, a2, b2;
cannam@127 286 {
cannam@127 287 E u, v;
cannam@127 288 u = I[is * (n - k)];
cannam@127 289 v = I[is * (n - 1 - k)];
cannam@127 290 a = u + v;
cannam@127 291 b2 = u - v;
cannam@127 292 }
cannam@127 293 {
cannam@127 294 E u, v;
cannam@127 295 u = I[is * (k)];
cannam@127 296 v = I[is * (k - 1)];
cannam@127 297 b = u + v;
cannam@127 298 a2 = u - v;
cannam@127 299 }
cannam@127 300 {
cannam@127 301 E wa, wb;
cannam@127 302 wa = W[2*i];
cannam@127 303 wb = W[2*i + 1];
cannam@127 304 {
cannam@127 305 E apb, amb;
cannam@127 306 apb = a + b;
cannam@127 307 amb = a - b;
cannam@127 308 buf[i] = wa * amb + wb * apb;
cannam@127 309 buf[n2 - i] = wa * apb - wb * amb;
cannam@127 310 }
cannam@127 311 {
cannam@127 312 E apb, amb;
cannam@127 313 apb = a2 + b2;
cannam@127 314 amb = a2 - b2;
cannam@127 315 buf[n2 + i] = wa * amb + wb * apb;
cannam@127 316 buf[n - i] = wa * apb - wb * amb;
cannam@127 317 }
cannam@127 318 }
cannam@127 319 }
cannam@127 320 if (i + i == n2) {
cannam@127 321 E u, v;
cannam@127 322 u = I[is * n2];
cannam@127 323 v = I[is * (n2 - 1)];
cannam@127 324 buf[i] = (u + v) * (W[2*i] * K(2.0));
cannam@127 325 buf[n - i] = (u - v) * (W[2*i] * K(2.0));
cannam@127 326 }
cannam@127 327
cannam@127 328
cannam@127 329 /* child plan: two r2hc's of size n/2 */
cannam@127 330 {
cannam@127 331 plan_rdft *cld = (plan_rdft *) ego->cld;
cannam@127 332 cld->apply((plan *) cld, buf, buf);
cannam@127 333 }
cannam@127 334
cannam@127 335 W2 = ego->td2->W;
cannam@127 336 { /* i == 0 case */
cannam@127 337 E wa, wb;
cannam@127 338 E a, b;
cannam@127 339 wa = W2[0]; /* cos */
cannam@127 340 wb = W2[1]; /* sin */
cannam@127 341 a = buf[0];
cannam@127 342 b = buf[n2];
cannam@127 343 O[0] = wa * a + wb * b;
cannam@127 344 O[os * (n - 1)] = wa * b - wb * a;
cannam@127 345 }
cannam@127 346 W2 += 2;
cannam@127 347 for (i = 1; i + i < n2; ++i, W2 += 2) {
cannam@127 348 INT k;
cannam@127 349 E u, v, u2, v2;
cannam@127 350 u = buf[i];
cannam@127 351 v = buf[n2 - i];
cannam@127 352 u2 = buf[n2 + i];
cannam@127 353 v2 = buf[n - i];
cannam@127 354 k = (i + i) - 1;
cannam@127 355 {
cannam@127 356 E wa, wb;
cannam@127 357 E a, b;
cannam@127 358 wa = W2[0]; /* cos */
cannam@127 359 wb = W2[1]; /* sin */
cannam@127 360 a = v - u;
cannam@127 361 b = u2 - v2;
cannam@127 362 O[os * k] = wa * a + wb * b;
cannam@127 363 O[os * (n - 1 - k)] = wa * b - wb * a;
cannam@127 364 }
cannam@127 365 ++k;
cannam@127 366 W2 += 2;
cannam@127 367 {
cannam@127 368 E wa, wb;
cannam@127 369 E a, b;
cannam@127 370 wa = W2[0]; /* cos */
cannam@127 371 wb = W2[1]; /* sin */
cannam@127 372 a = u + v;
cannam@127 373 b = u2 + v2;
cannam@127 374 O[os * k] = wa * a + wb * b;
cannam@127 375 O[os * (n - 1 - k)] = wa * b - wb * a;
cannam@127 376 }
cannam@127 377 }
cannam@127 378 if (i + i == n2) {
cannam@127 379 INT k = (i + i) - 1;
cannam@127 380 E wa, wb;
cannam@127 381 E a, b;
cannam@127 382 wa = W2[0]; /* cos */
cannam@127 383 wb = W2[1]; /* sin */
cannam@127 384 a = buf[i];
cannam@127 385 b = buf[n2 + i];
cannam@127 386 O[os * k] = wb * b - wa * a;
cannam@127 387 O[os * (n - 1 - k)] = wa * b + wb * a;
cannam@127 388 }
cannam@127 389 }
cannam@127 390
cannam@127 391 X(ifree)(buf);
cannam@127 392 }
cannam@127 393
cannam@127 394 static void awake(plan *ego_, enum wakefulness wakefulness)
cannam@127 395 {
cannam@127 396 P *ego = (P *) ego_;
cannam@127 397 static const tw_instr reodft010e_tw[] = {
cannam@127 398 { TW_COS, 0, 1 },
cannam@127 399 { TW_SIN, 0, 1 },
cannam@127 400 { TW_NEXT, 1, 0 }
cannam@127 401 };
cannam@127 402 static const tw_instr reodft11e_tw[] = {
cannam@127 403 { TW_COS, 1, 1 },
cannam@127 404 { TW_SIN, 1, 1 },
cannam@127 405 { TW_NEXT, 2, 0 }
cannam@127 406 };
cannam@127 407
cannam@127 408 X(plan_awake)(ego->cld, wakefulness);
cannam@127 409
cannam@127 410 X(twiddle_awake)(wakefulness, &ego->td, reodft010e_tw,
cannam@127 411 2*ego->n, 1, ego->n/4+1);
cannam@127 412 X(twiddle_awake)(wakefulness, &ego->td2, reodft11e_tw,
cannam@127 413 8*ego->n, 1, ego->n);
cannam@127 414 }
cannam@127 415
cannam@127 416 static void destroy(plan *ego_)
cannam@127 417 {
cannam@127 418 P *ego = (P *) ego_;
cannam@127 419 X(plan_destroy_internal)(ego->cld);
cannam@127 420 }
cannam@127 421
cannam@127 422 static void print(const plan *ego_, printer *p)
cannam@127 423 {
cannam@127 424 const P *ego = (const P *) ego_;
cannam@127 425 p->print(p, "(%se-radix2-r2hc-%D%v%(%p%))",
cannam@127 426 X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld);
cannam@127 427 }
cannam@127 428
cannam@127 429 static int applicable0(const solver *ego_, const problem *p_)
cannam@127 430 {
cannam@127 431 const problem_rdft *p = (const problem_rdft *) p_;
cannam@127 432 UNUSED(ego_);
cannam@127 433
cannam@127 434 return (1
cannam@127 435 && p->sz->rnk == 1
cannam@127 436 && p->vecsz->rnk <= 1
cannam@127 437 && p->sz->dims[0].n % 2 == 0
cannam@127 438 && (p->kind[0] == REDFT11 || p->kind[0] == RODFT11)
cannam@127 439 );
cannam@127 440 }
cannam@127 441
cannam@127 442 static int applicable(const solver *ego, const problem *p, const planner *plnr)
cannam@127 443 {
cannam@127 444 return (!NO_SLOWP(plnr) && applicable0(ego, p));
cannam@127 445 }
cannam@127 446
cannam@127 447 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
cannam@127 448 {
cannam@127 449 P *pln;
cannam@127 450 const problem_rdft *p;
cannam@127 451 plan *cld;
cannam@127 452 R *buf;
cannam@127 453 INT n;
cannam@127 454 opcnt ops;
cannam@127 455
cannam@127 456 static const plan_adt padt = {
cannam@127 457 X(rdft_solve), awake, print, destroy
cannam@127 458 };
cannam@127 459
cannam@127 460 if (!applicable(ego_, p_, plnr))
cannam@127 461 return (plan *)0;
cannam@127 462
cannam@127 463 p = (const problem_rdft *) p_;
cannam@127 464
cannam@127 465 n = p->sz->dims[0].n;
cannam@127 466 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
cannam@127 467
cannam@127 468 cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n/2, 1, 1),
cannam@127 469 X(mktensor_1d)(2, n/2, n/2),
cannam@127 470 buf, buf, R2HC));
cannam@127 471 X(ifree)(buf);
cannam@127 472 if (!cld)
cannam@127 473 return (plan *)0;
cannam@127 474
cannam@127 475 pln = MKPLAN_RDFT(P, &padt, p->kind[0]==REDFT11 ? apply_re11:apply_ro11);
cannam@127 476 pln->n = n;
cannam@127 477 pln->is = p->sz->dims[0].is;
cannam@127 478 pln->os = p->sz->dims[0].os;
cannam@127 479 pln->cld = cld;
cannam@127 480 pln->td = pln->td2 = 0;
cannam@127 481 pln->kind = p->kind[0];
cannam@127 482
cannam@127 483 X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
cannam@127 484
cannam@127 485 X(ops_zero)(&ops);
cannam@127 486 ops.add = 2 + (n/2 - 1)/2 * 20;
cannam@127 487 ops.mul = 6 + (n/2 - 1)/2 * 16;
cannam@127 488 ops.other = 4*n + 2 + (n/2 - 1)/2 * 6;
cannam@127 489 if ((n/2) % 2 == 0) {
cannam@127 490 ops.add += 4;
cannam@127 491 ops.mul += 8;
cannam@127 492 ops.other += 4;
cannam@127 493 }
cannam@127 494
cannam@127 495 X(ops_zero)(&pln->super.super.ops);
cannam@127 496 X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops);
cannam@127 497 X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops);
cannam@127 498
cannam@127 499 return &(pln->super.super);
cannam@127 500 }
cannam@127 501
cannam@127 502 /* constructor */
cannam@127 503 static solver *mksolver(void)
cannam@127 504 {
cannam@127 505 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
cannam@127 506 S *slv = MKSOLVER(S, &sadt);
cannam@127 507 return &(slv->super);
cannam@127 508 }
cannam@127 509
cannam@127 510 void X(reodft11e_radix2_r2hc_register)(planner *p)
cannam@127 511 {
cannam@127 512 REGISTER_SOLVER(p, mksolver());
cannam@127 513 }