cannam@127
|
1 /*
|
cannam@127
|
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
|
cannam@127
|
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
cannam@127
|
4 *
|
cannam@127
|
5 * This program is free software; you can redistribute it and/or modify
|
cannam@127
|
6 * it under the terms of the GNU General Public License as published by
|
cannam@127
|
7 * the Free Software Foundation; either version 2 of the License, or
|
cannam@127
|
8 * (at your option) any later version.
|
cannam@127
|
9 *
|
cannam@127
|
10 * This program is distributed in the hope that it will be useful,
|
cannam@127
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
cannam@127
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
cannam@127
|
13 * GNU General Public License for more details.
|
cannam@127
|
14 *
|
cannam@127
|
15 * You should have received a copy of the GNU General Public License
|
cannam@127
|
16 * along with this program; if not, write to the Free Software
|
cannam@127
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
cannam@127
|
18 *
|
cannam@127
|
19 */
|
cannam@127
|
20
|
cannam@127
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
cannam@127
|
22 /* Generated on Sat Jul 30 16:49:26 EDT 2016 */
|
cannam@127
|
23
|
cannam@127
|
24 #include "codelet-rdft.h"
|
cannam@127
|
25
|
cannam@127
|
26 #ifdef HAVE_FMA
|
cannam@127
|
27
|
cannam@127
|
28 /* Generated by: ../../../genfft/gen_r2cb.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cb_10 -include r2cb.h */
|
cannam@127
|
29
|
cannam@127
|
30 /*
|
cannam@127
|
31 * This function contains 34 FP additions, 20 FP multiplications,
|
cannam@127
|
32 * (or, 14 additions, 0 multiplications, 20 fused multiply/add),
|
cannam@127
|
33 * 30 stack variables, 5 constants, and 20 memory accesses
|
cannam@127
|
34 */
|
cannam@127
|
35 #include "r2cb.h"
|
cannam@127
|
36
|
cannam@127
|
37 static void r2cb_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
|
cannam@127
|
38 {
|
cannam@127
|
39 DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
|
cannam@127
|
40 DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
|
cannam@127
|
41 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
|
cannam@127
|
42 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
cannam@127
|
43 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
|
cannam@127
|
44 {
|
cannam@127
|
45 INT i;
|
cannam@127
|
46 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) {
|
cannam@127
|
47 E Tb, T3, Tc, T6, Tq, To, Ty, Tw, Td, T9;
|
cannam@127
|
48 {
|
cannam@127
|
49 E Tu, Tn, T7, Tv, Tk, T8;
|
cannam@127
|
50 {
|
cannam@127
|
51 E T1, T2, Tl, Tm;
|
cannam@127
|
52 T1 = Cr[0];
|
cannam@127
|
53 T2 = Cr[WS(csr, 5)];
|
cannam@127
|
54 Tl = Ci[WS(csi, 2)];
|
cannam@127
|
55 Tm = Ci[WS(csi, 3)];
|
cannam@127
|
56 {
|
cannam@127
|
57 E Ti, Tj, T4, T5;
|
cannam@127
|
58 Ti = Ci[WS(csi, 4)];
|
cannam@127
|
59 Tb = T1 + T2;
|
cannam@127
|
60 T3 = T1 - T2;
|
cannam@127
|
61 Tu = Tl + Tm;
|
cannam@127
|
62 Tn = Tl - Tm;
|
cannam@127
|
63 Tj = Ci[WS(csi, 1)];
|
cannam@127
|
64 T4 = Cr[WS(csr, 2)];
|
cannam@127
|
65 T5 = Cr[WS(csr, 3)];
|
cannam@127
|
66 T7 = Cr[WS(csr, 4)];
|
cannam@127
|
67 Tv = Ti + Tj;
|
cannam@127
|
68 Tk = Ti - Tj;
|
cannam@127
|
69 Tc = T4 + T5;
|
cannam@127
|
70 T6 = T4 - T5;
|
cannam@127
|
71 T8 = Cr[WS(csr, 1)];
|
cannam@127
|
72 }
|
cannam@127
|
73 }
|
cannam@127
|
74 Tq = FMA(KP618033988, Tk, Tn);
|
cannam@127
|
75 To = FNMS(KP618033988, Tn, Tk);
|
cannam@127
|
76 Ty = FNMS(KP618033988, Tu, Tv);
|
cannam@127
|
77 Tw = FMA(KP618033988, Tv, Tu);
|
cannam@127
|
78 Td = T7 + T8;
|
cannam@127
|
79 T9 = T7 - T8;
|
cannam@127
|
80 }
|
cannam@127
|
81 {
|
cannam@127
|
82 E Te, Tg, Ta, Ts, Tf, Tr;
|
cannam@127
|
83 Te = Tc + Td;
|
cannam@127
|
84 Tg = Tc - Td;
|
cannam@127
|
85 Ta = T6 + T9;
|
cannam@127
|
86 Ts = T6 - T9;
|
cannam@127
|
87 Tf = FNMS(KP500000000, Te, Tb);
|
cannam@127
|
88 R0[0] = FMA(KP2_000000000, Te, Tb);
|
cannam@127
|
89 Tr = FNMS(KP500000000, Ta, T3);
|
cannam@127
|
90 R1[WS(rs, 2)] = FMA(KP2_000000000, Ta, T3);
|
cannam@127
|
91 {
|
cannam@127
|
92 E Th, Tp, Tt, Tx;
|
cannam@127
|
93 Th = FNMS(KP1_118033988, Tg, Tf);
|
cannam@127
|
94 Tp = FMA(KP1_118033988, Tg, Tf);
|
cannam@127
|
95 Tt = FMA(KP1_118033988, Ts, Tr);
|
cannam@127
|
96 Tx = FNMS(KP1_118033988, Ts, Tr);
|
cannam@127
|
97 R0[WS(rs, 3)] = FNMS(KP1_902113032, Tq, Tp);
|
cannam@127
|
98 R0[WS(rs, 2)] = FMA(KP1_902113032, Tq, Tp);
|
cannam@127
|
99 R0[WS(rs, 1)] = FMA(KP1_902113032, To, Th);
|
cannam@127
|
100 R0[WS(rs, 4)] = FNMS(KP1_902113032, To, Th);
|
cannam@127
|
101 R1[WS(rs, 1)] = FNMS(KP1_902113032, Ty, Tx);
|
cannam@127
|
102 R1[WS(rs, 3)] = FMA(KP1_902113032, Ty, Tx);
|
cannam@127
|
103 R1[WS(rs, 4)] = FMA(KP1_902113032, Tw, Tt);
|
cannam@127
|
104 R1[0] = FNMS(KP1_902113032, Tw, Tt);
|
cannam@127
|
105 }
|
cannam@127
|
106 }
|
cannam@127
|
107 }
|
cannam@127
|
108 }
|
cannam@127
|
109 }
|
cannam@127
|
110
|
cannam@127
|
111 static const kr2c_desc desc = { 10, "r2cb_10", {14, 0, 20, 0}, &GENUS };
|
cannam@127
|
112
|
cannam@127
|
113 void X(codelet_r2cb_10) (planner *p) {
|
cannam@127
|
114 X(kr2c_register) (p, r2cb_10, &desc);
|
cannam@127
|
115 }
|
cannam@127
|
116
|
cannam@127
|
117 #else /* HAVE_FMA */
|
cannam@127
|
118
|
cannam@127
|
119 /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cb_10 -include r2cb.h */
|
cannam@127
|
120
|
cannam@127
|
121 /*
|
cannam@127
|
122 * This function contains 34 FP additions, 14 FP multiplications,
|
cannam@127
|
123 * (or, 26 additions, 6 multiplications, 8 fused multiply/add),
|
cannam@127
|
124 * 26 stack variables, 5 constants, and 20 memory accesses
|
cannam@127
|
125 */
|
cannam@127
|
126 #include "r2cb.h"
|
cannam@127
|
127
|
cannam@127
|
128 static void r2cb_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
|
cannam@127
|
129 {
|
cannam@127
|
130 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
cannam@127
|
131 DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
|
cannam@127
|
132 DK(KP1_175570504, +1.175570504584946258337411909278145537195304875);
|
cannam@127
|
133 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
|
cannam@127
|
134 DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
|
cannam@127
|
135 {
|
cannam@127
|
136 INT i;
|
cannam@127
|
137 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) {
|
cannam@127
|
138 E T3, Tb, Tn, Tv, Tk, Tu, Ta, Ts, Te, Tg, Ti, Tj;
|
cannam@127
|
139 {
|
cannam@127
|
140 E T1, T2, Tl, Tm;
|
cannam@127
|
141 T1 = Cr[0];
|
cannam@127
|
142 T2 = Cr[WS(csr, 5)];
|
cannam@127
|
143 T3 = T1 - T2;
|
cannam@127
|
144 Tb = T1 + T2;
|
cannam@127
|
145 Tl = Ci[WS(csi, 4)];
|
cannam@127
|
146 Tm = Ci[WS(csi, 1)];
|
cannam@127
|
147 Tn = Tl - Tm;
|
cannam@127
|
148 Tv = Tl + Tm;
|
cannam@127
|
149 }
|
cannam@127
|
150 Ti = Ci[WS(csi, 2)];
|
cannam@127
|
151 Tj = Ci[WS(csi, 3)];
|
cannam@127
|
152 Tk = Ti - Tj;
|
cannam@127
|
153 Tu = Ti + Tj;
|
cannam@127
|
154 {
|
cannam@127
|
155 E T6, Tc, T9, Td;
|
cannam@127
|
156 {
|
cannam@127
|
157 E T4, T5, T7, T8;
|
cannam@127
|
158 T4 = Cr[WS(csr, 2)];
|
cannam@127
|
159 T5 = Cr[WS(csr, 3)];
|
cannam@127
|
160 T6 = T4 - T5;
|
cannam@127
|
161 Tc = T4 + T5;
|
cannam@127
|
162 T7 = Cr[WS(csr, 4)];
|
cannam@127
|
163 T8 = Cr[WS(csr, 1)];
|
cannam@127
|
164 T9 = T7 - T8;
|
cannam@127
|
165 Td = T7 + T8;
|
cannam@127
|
166 }
|
cannam@127
|
167 Ta = T6 + T9;
|
cannam@127
|
168 Ts = KP1_118033988 * (T6 - T9);
|
cannam@127
|
169 Te = Tc + Td;
|
cannam@127
|
170 Tg = KP1_118033988 * (Tc - Td);
|
cannam@127
|
171 }
|
cannam@127
|
172 R1[WS(rs, 2)] = FMA(KP2_000000000, Ta, T3);
|
cannam@127
|
173 R0[0] = FMA(KP2_000000000, Te, Tb);
|
cannam@127
|
174 {
|
cannam@127
|
175 E To, Tq, Th, Tp, Tf;
|
cannam@127
|
176 To = FNMS(KP1_902113032, Tn, KP1_175570504 * Tk);
|
cannam@127
|
177 Tq = FMA(KP1_902113032, Tk, KP1_175570504 * Tn);
|
cannam@127
|
178 Tf = FNMS(KP500000000, Te, Tb);
|
cannam@127
|
179 Th = Tf - Tg;
|
cannam@127
|
180 Tp = Tg + Tf;
|
cannam@127
|
181 R0[WS(rs, 1)] = Th - To;
|
cannam@127
|
182 R0[WS(rs, 2)] = Tp + Tq;
|
cannam@127
|
183 R0[WS(rs, 4)] = Th + To;
|
cannam@127
|
184 R0[WS(rs, 3)] = Tp - Tq;
|
cannam@127
|
185 }
|
cannam@127
|
186 {
|
cannam@127
|
187 E Tw, Ty, Tt, Tx, Tr;
|
cannam@127
|
188 Tw = FNMS(KP1_902113032, Tv, KP1_175570504 * Tu);
|
cannam@127
|
189 Ty = FMA(KP1_902113032, Tu, KP1_175570504 * Tv);
|
cannam@127
|
190 Tr = FNMS(KP500000000, Ta, T3);
|
cannam@127
|
191 Tt = Tr - Ts;
|
cannam@127
|
192 Tx = Ts + Tr;
|
cannam@127
|
193 R1[WS(rs, 3)] = Tt - Tw;
|
cannam@127
|
194 R1[WS(rs, 4)] = Tx + Ty;
|
cannam@127
|
195 R1[WS(rs, 1)] = Tt + Tw;
|
cannam@127
|
196 R1[0] = Tx - Ty;
|
cannam@127
|
197 }
|
cannam@127
|
198 }
|
cannam@127
|
199 }
|
cannam@127
|
200 }
|
cannam@127
|
201
|
cannam@127
|
202 static const kr2c_desc desc = { 10, "r2cb_10", {26, 6, 8, 0}, &GENUS };
|
cannam@127
|
203
|
cannam@127
|
204 void X(codelet_r2cb_10) (planner *p) {
|
cannam@127
|
205 X(kr2c_register) (p, r2cb_10, &desc);
|
cannam@127
|
206 }
|
cannam@127
|
207
|
cannam@127
|
208 #endif /* HAVE_FMA */
|