annotate src/fftw-3.3.5/rdft/scalar/r2cb/r2cb_10.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@127 22 /* Generated on Sat Jul 30 16:49:26 EDT 2016 */
cannam@127 23
cannam@127 24 #include "codelet-rdft.h"
cannam@127 25
cannam@127 26 #ifdef HAVE_FMA
cannam@127 27
cannam@127 28 /* Generated by: ../../../genfft/gen_r2cb.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cb_10 -include r2cb.h */
cannam@127 29
cannam@127 30 /*
cannam@127 31 * This function contains 34 FP additions, 20 FP multiplications,
cannam@127 32 * (or, 14 additions, 0 multiplications, 20 fused multiply/add),
cannam@127 33 * 30 stack variables, 5 constants, and 20 memory accesses
cannam@127 34 */
cannam@127 35 #include "r2cb.h"
cannam@127 36
cannam@127 37 static void r2cb_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
cannam@127 38 {
cannam@127 39 DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
cannam@127 40 DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
cannam@127 41 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
cannam@127 42 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@127 43 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
cannam@127 44 {
cannam@127 45 INT i;
cannam@127 46 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) {
cannam@127 47 E Tb, T3, Tc, T6, Tq, To, Ty, Tw, Td, T9;
cannam@127 48 {
cannam@127 49 E Tu, Tn, T7, Tv, Tk, T8;
cannam@127 50 {
cannam@127 51 E T1, T2, Tl, Tm;
cannam@127 52 T1 = Cr[0];
cannam@127 53 T2 = Cr[WS(csr, 5)];
cannam@127 54 Tl = Ci[WS(csi, 2)];
cannam@127 55 Tm = Ci[WS(csi, 3)];
cannam@127 56 {
cannam@127 57 E Ti, Tj, T4, T5;
cannam@127 58 Ti = Ci[WS(csi, 4)];
cannam@127 59 Tb = T1 + T2;
cannam@127 60 T3 = T1 - T2;
cannam@127 61 Tu = Tl + Tm;
cannam@127 62 Tn = Tl - Tm;
cannam@127 63 Tj = Ci[WS(csi, 1)];
cannam@127 64 T4 = Cr[WS(csr, 2)];
cannam@127 65 T5 = Cr[WS(csr, 3)];
cannam@127 66 T7 = Cr[WS(csr, 4)];
cannam@127 67 Tv = Ti + Tj;
cannam@127 68 Tk = Ti - Tj;
cannam@127 69 Tc = T4 + T5;
cannam@127 70 T6 = T4 - T5;
cannam@127 71 T8 = Cr[WS(csr, 1)];
cannam@127 72 }
cannam@127 73 }
cannam@127 74 Tq = FMA(KP618033988, Tk, Tn);
cannam@127 75 To = FNMS(KP618033988, Tn, Tk);
cannam@127 76 Ty = FNMS(KP618033988, Tu, Tv);
cannam@127 77 Tw = FMA(KP618033988, Tv, Tu);
cannam@127 78 Td = T7 + T8;
cannam@127 79 T9 = T7 - T8;
cannam@127 80 }
cannam@127 81 {
cannam@127 82 E Te, Tg, Ta, Ts, Tf, Tr;
cannam@127 83 Te = Tc + Td;
cannam@127 84 Tg = Tc - Td;
cannam@127 85 Ta = T6 + T9;
cannam@127 86 Ts = T6 - T9;
cannam@127 87 Tf = FNMS(KP500000000, Te, Tb);
cannam@127 88 R0[0] = FMA(KP2_000000000, Te, Tb);
cannam@127 89 Tr = FNMS(KP500000000, Ta, T3);
cannam@127 90 R1[WS(rs, 2)] = FMA(KP2_000000000, Ta, T3);
cannam@127 91 {
cannam@127 92 E Th, Tp, Tt, Tx;
cannam@127 93 Th = FNMS(KP1_118033988, Tg, Tf);
cannam@127 94 Tp = FMA(KP1_118033988, Tg, Tf);
cannam@127 95 Tt = FMA(KP1_118033988, Ts, Tr);
cannam@127 96 Tx = FNMS(KP1_118033988, Ts, Tr);
cannam@127 97 R0[WS(rs, 3)] = FNMS(KP1_902113032, Tq, Tp);
cannam@127 98 R0[WS(rs, 2)] = FMA(KP1_902113032, Tq, Tp);
cannam@127 99 R0[WS(rs, 1)] = FMA(KP1_902113032, To, Th);
cannam@127 100 R0[WS(rs, 4)] = FNMS(KP1_902113032, To, Th);
cannam@127 101 R1[WS(rs, 1)] = FNMS(KP1_902113032, Ty, Tx);
cannam@127 102 R1[WS(rs, 3)] = FMA(KP1_902113032, Ty, Tx);
cannam@127 103 R1[WS(rs, 4)] = FMA(KP1_902113032, Tw, Tt);
cannam@127 104 R1[0] = FNMS(KP1_902113032, Tw, Tt);
cannam@127 105 }
cannam@127 106 }
cannam@127 107 }
cannam@127 108 }
cannam@127 109 }
cannam@127 110
cannam@127 111 static const kr2c_desc desc = { 10, "r2cb_10", {14, 0, 20, 0}, &GENUS };
cannam@127 112
cannam@127 113 void X(codelet_r2cb_10) (planner *p) {
cannam@127 114 X(kr2c_register) (p, r2cb_10, &desc);
cannam@127 115 }
cannam@127 116
cannam@127 117 #else /* HAVE_FMA */
cannam@127 118
cannam@127 119 /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cb_10 -include r2cb.h */
cannam@127 120
cannam@127 121 /*
cannam@127 122 * This function contains 34 FP additions, 14 FP multiplications,
cannam@127 123 * (or, 26 additions, 6 multiplications, 8 fused multiply/add),
cannam@127 124 * 26 stack variables, 5 constants, and 20 memory accesses
cannam@127 125 */
cannam@127 126 #include "r2cb.h"
cannam@127 127
cannam@127 128 static void r2cb_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
cannam@127 129 {
cannam@127 130 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@127 131 DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
cannam@127 132 DK(KP1_175570504, +1.175570504584946258337411909278145537195304875);
cannam@127 133 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
cannam@127 134 DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
cannam@127 135 {
cannam@127 136 INT i;
cannam@127 137 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) {
cannam@127 138 E T3, Tb, Tn, Tv, Tk, Tu, Ta, Ts, Te, Tg, Ti, Tj;
cannam@127 139 {
cannam@127 140 E T1, T2, Tl, Tm;
cannam@127 141 T1 = Cr[0];
cannam@127 142 T2 = Cr[WS(csr, 5)];
cannam@127 143 T3 = T1 - T2;
cannam@127 144 Tb = T1 + T2;
cannam@127 145 Tl = Ci[WS(csi, 4)];
cannam@127 146 Tm = Ci[WS(csi, 1)];
cannam@127 147 Tn = Tl - Tm;
cannam@127 148 Tv = Tl + Tm;
cannam@127 149 }
cannam@127 150 Ti = Ci[WS(csi, 2)];
cannam@127 151 Tj = Ci[WS(csi, 3)];
cannam@127 152 Tk = Ti - Tj;
cannam@127 153 Tu = Ti + Tj;
cannam@127 154 {
cannam@127 155 E T6, Tc, T9, Td;
cannam@127 156 {
cannam@127 157 E T4, T5, T7, T8;
cannam@127 158 T4 = Cr[WS(csr, 2)];
cannam@127 159 T5 = Cr[WS(csr, 3)];
cannam@127 160 T6 = T4 - T5;
cannam@127 161 Tc = T4 + T5;
cannam@127 162 T7 = Cr[WS(csr, 4)];
cannam@127 163 T8 = Cr[WS(csr, 1)];
cannam@127 164 T9 = T7 - T8;
cannam@127 165 Td = T7 + T8;
cannam@127 166 }
cannam@127 167 Ta = T6 + T9;
cannam@127 168 Ts = KP1_118033988 * (T6 - T9);
cannam@127 169 Te = Tc + Td;
cannam@127 170 Tg = KP1_118033988 * (Tc - Td);
cannam@127 171 }
cannam@127 172 R1[WS(rs, 2)] = FMA(KP2_000000000, Ta, T3);
cannam@127 173 R0[0] = FMA(KP2_000000000, Te, Tb);
cannam@127 174 {
cannam@127 175 E To, Tq, Th, Tp, Tf;
cannam@127 176 To = FNMS(KP1_902113032, Tn, KP1_175570504 * Tk);
cannam@127 177 Tq = FMA(KP1_902113032, Tk, KP1_175570504 * Tn);
cannam@127 178 Tf = FNMS(KP500000000, Te, Tb);
cannam@127 179 Th = Tf - Tg;
cannam@127 180 Tp = Tg + Tf;
cannam@127 181 R0[WS(rs, 1)] = Th - To;
cannam@127 182 R0[WS(rs, 2)] = Tp + Tq;
cannam@127 183 R0[WS(rs, 4)] = Th + To;
cannam@127 184 R0[WS(rs, 3)] = Tp - Tq;
cannam@127 185 }
cannam@127 186 {
cannam@127 187 E Tw, Ty, Tt, Tx, Tr;
cannam@127 188 Tw = FNMS(KP1_902113032, Tv, KP1_175570504 * Tu);
cannam@127 189 Ty = FMA(KP1_902113032, Tu, KP1_175570504 * Tv);
cannam@127 190 Tr = FNMS(KP500000000, Ta, T3);
cannam@127 191 Tt = Tr - Ts;
cannam@127 192 Tx = Ts + Tr;
cannam@127 193 R1[WS(rs, 3)] = Tt - Tw;
cannam@127 194 R1[WS(rs, 4)] = Tx + Ty;
cannam@127 195 R1[WS(rs, 1)] = Tt + Tw;
cannam@127 196 R1[0] = Tx - Ty;
cannam@127 197 }
cannam@127 198 }
cannam@127 199 }
cannam@127 200 }
cannam@127 201
cannam@127 202 static const kr2c_desc desc = { 10, "r2cb_10", {26, 6, 8, 0}, &GENUS };
cannam@127 203
cannam@127 204 void X(codelet_r2cb_10) (planner *p) {
cannam@127 205 X(kr2c_register) (p, r2cb_10, &desc);
cannam@127 206 }
cannam@127 207
cannam@127 208 #endif /* HAVE_FMA */