annotate src/fftw-3.3.5/rdft/scalar/r2cb/hc2cb_8.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@127 22 /* Generated on Sat Jul 30 16:51:29 EDT 2016 */
cannam@127 23
cannam@127 24 #include "codelet-rdft.h"
cannam@127 25
cannam@127 26 #ifdef HAVE_FMA
cannam@127 27
cannam@127 28 /* Generated by: ../../../genfft/gen_hc2c.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 8 -dif -name hc2cb_8 -include hc2cb.h */
cannam@127 29
cannam@127 30 /*
cannam@127 31 * This function contains 66 FP additions, 36 FP multiplications,
cannam@127 32 * (or, 44 additions, 14 multiplications, 22 fused multiply/add),
cannam@127 33 * 52 stack variables, 1 constants, and 32 memory accesses
cannam@127 34 */
cannam@127 35 #include "hc2cb.h"
cannam@127 36
cannam@127 37 static void hc2cb_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@127 38 {
cannam@127 39 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@127 40 {
cannam@127 41 INT m;
cannam@127 42 for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) {
cannam@127 43 E Tw, TH, Tf, Ty, Tx, TI;
cannam@127 44 {
cannam@127 45 E TV, TD, T1i, T7, T1b, T1n, TQ, Tk, Tp, TE, Te, T1o, T1e, T1j, Tu;
cannam@127 46 E TF;
cannam@127 47 {
cannam@127 48 E T4, Tg, T3, T19, TC, T5, Th, Ti;
cannam@127 49 {
cannam@127 50 E T1, T2, TA, TB;
cannam@127 51 T1 = Rp[0];
cannam@127 52 T2 = Rm[WS(rs, 3)];
cannam@127 53 TA = Ip[0];
cannam@127 54 TB = Im[WS(rs, 3)];
cannam@127 55 T4 = Rp[WS(rs, 2)];
cannam@127 56 Tg = T1 - T2;
cannam@127 57 T3 = T1 + T2;
cannam@127 58 T19 = TA - TB;
cannam@127 59 TC = TA + TB;
cannam@127 60 T5 = Rm[WS(rs, 1)];
cannam@127 61 Th = Ip[WS(rs, 2)];
cannam@127 62 Ti = Im[WS(rs, 1)];
cannam@127 63 }
cannam@127 64 {
cannam@127 65 E Tb, Tl, Ta, T1c, To, Tc, Tr, Ts;
cannam@127 66 {
cannam@127 67 E T8, T9, Tm, Tn;
cannam@127 68 T8 = Rp[WS(rs, 1)];
cannam@127 69 {
cannam@127 70 E Tz, T6, T1a, Tj;
cannam@127 71 Tz = T4 - T5;
cannam@127 72 T6 = T4 + T5;
cannam@127 73 T1a = Th - Ti;
cannam@127 74 Tj = Th + Ti;
cannam@127 75 TV = TC - Tz;
cannam@127 76 TD = Tz + TC;
cannam@127 77 T1i = T3 - T6;
cannam@127 78 T7 = T3 + T6;
cannam@127 79 T1b = T19 + T1a;
cannam@127 80 T1n = T19 - T1a;
cannam@127 81 TQ = Tg + Tj;
cannam@127 82 Tk = Tg - Tj;
cannam@127 83 T9 = Rm[WS(rs, 2)];
cannam@127 84 }
cannam@127 85 Tm = Ip[WS(rs, 1)];
cannam@127 86 Tn = Im[WS(rs, 2)];
cannam@127 87 Tb = Rm[0];
cannam@127 88 Tl = T8 - T9;
cannam@127 89 Ta = T8 + T9;
cannam@127 90 T1c = Tm - Tn;
cannam@127 91 To = Tm + Tn;
cannam@127 92 Tc = Rp[WS(rs, 3)];
cannam@127 93 Tr = Ip[WS(rs, 3)];
cannam@127 94 Ts = Im[0];
cannam@127 95 }
cannam@127 96 {
cannam@127 97 E Tq, Td, T1d, Tt;
cannam@127 98 Tp = Tl - To;
cannam@127 99 TE = Tl + To;
cannam@127 100 Tq = Tb - Tc;
cannam@127 101 Td = Tb + Tc;
cannam@127 102 T1d = Tr - Ts;
cannam@127 103 Tt = Tr + Ts;
cannam@127 104 Te = Ta + Td;
cannam@127 105 T1o = Ta - Td;
cannam@127 106 T1e = T1c + T1d;
cannam@127 107 T1j = T1d - T1c;
cannam@127 108 Tu = Tq - Tt;
cannam@127 109 TF = Tq + Tt;
cannam@127 110 }
cannam@127 111 }
cannam@127 112 }
cannam@127 113 {
cannam@127 114 E TG, Tv, T10, T13, T1s, T1k, T1p, T1v, T1u, T1w, T1t, TR, TW;
cannam@127 115 Rp[0] = T7 + Te;
cannam@127 116 Rm[0] = T1b + T1e;
cannam@127 117 TG = TE - TF;
cannam@127 118 TR = TE + TF;
cannam@127 119 TW = Tp - Tu;
cannam@127 120 Tv = Tp + Tu;
cannam@127 121 {
cannam@127 122 E TP, TS, TX, TU, T1r, TT, TY;
cannam@127 123 TP = W[4];
cannam@127 124 T10 = FMA(KP707106781, TR, TQ);
cannam@127 125 TS = FNMS(KP707106781, TR, TQ);
cannam@127 126 TX = FMA(KP707106781, TW, TV);
cannam@127 127 T13 = FNMS(KP707106781, TW, TV);
cannam@127 128 TU = W[5];
cannam@127 129 T1s = T1i + T1j;
cannam@127 130 T1k = T1i - T1j;
cannam@127 131 TT = TP * TS;
cannam@127 132 TY = TP * TX;
cannam@127 133 T1p = T1n - T1o;
cannam@127 134 T1v = T1o + T1n;
cannam@127 135 T1r = W[2];
cannam@127 136 Ip[WS(rs, 1)] = FNMS(TU, TX, TT);
cannam@127 137 Im[WS(rs, 1)] = FMA(TU, TS, TY);
cannam@127 138 T1u = W[3];
cannam@127 139 T1w = T1r * T1v;
cannam@127 140 T1t = T1r * T1s;
cannam@127 141 }
cannam@127 142 {
cannam@127 143 E T1f, T15, T18, T17, T1g, T1h, T1m;
cannam@127 144 {
cannam@127 145 E TZ, T12, T16, T14, T11;
cannam@127 146 Rm[WS(rs, 1)] = FMA(T1u, T1s, T1w);
cannam@127 147 Rp[WS(rs, 1)] = FNMS(T1u, T1v, T1t);
cannam@127 148 TZ = W[12];
cannam@127 149 T12 = W[13];
cannam@127 150 T1f = T1b - T1e;
cannam@127 151 T16 = T7 - Te;
cannam@127 152 T14 = TZ * T13;
cannam@127 153 T11 = TZ * T10;
cannam@127 154 T15 = W[6];
cannam@127 155 T18 = W[7];
cannam@127 156 Im[WS(rs, 3)] = FMA(T12, T10, T14);
cannam@127 157 Ip[WS(rs, 3)] = FNMS(T12, T13, T11);
cannam@127 158 T17 = T15 * T16;
cannam@127 159 T1g = T18 * T16;
cannam@127 160 }
cannam@127 161 Rp[WS(rs, 2)] = FNMS(T18, T1f, T17);
cannam@127 162 Rm[WS(rs, 2)] = FMA(T15, T1f, T1g);
cannam@127 163 T1h = W[10];
cannam@127 164 T1m = W[11];
cannam@127 165 {
cannam@127 166 E TN, TJ, TM, TL, TO, TK, T1q, T1l;
cannam@127 167 Tw = FNMS(KP707106781, Tv, Tk);
cannam@127 168 TK = FMA(KP707106781, Tv, Tk);
cannam@127 169 T1q = T1h * T1p;
cannam@127 170 T1l = T1h * T1k;
cannam@127 171 TN = FMA(KP707106781, TG, TD);
cannam@127 172 TH = FNMS(KP707106781, TG, TD);
cannam@127 173 Rm[WS(rs, 3)] = FMA(T1m, T1k, T1q);
cannam@127 174 Rp[WS(rs, 3)] = FNMS(T1m, T1p, T1l);
cannam@127 175 TJ = W[0];
cannam@127 176 TM = W[1];
cannam@127 177 Tf = W[8];
cannam@127 178 TL = TJ * TK;
cannam@127 179 TO = TM * TK;
cannam@127 180 Ty = W[9];
cannam@127 181 Tx = Tf * Tw;
cannam@127 182 Ip[0] = FNMS(TM, TN, TL);
cannam@127 183 Im[0] = FMA(TJ, TN, TO);
cannam@127 184 }
cannam@127 185 }
cannam@127 186 }
cannam@127 187 }
cannam@127 188 Ip[WS(rs, 2)] = FNMS(Ty, TH, Tx);
cannam@127 189 TI = Ty * Tw;
cannam@127 190 Im[WS(rs, 2)] = FMA(Tf, TH, TI);
cannam@127 191 }
cannam@127 192 }
cannam@127 193 }
cannam@127 194
cannam@127 195 static const tw_instr twinstr[] = {
cannam@127 196 {TW_FULL, 1, 8},
cannam@127 197 {TW_NEXT, 1, 0}
cannam@127 198 };
cannam@127 199
cannam@127 200 static const hc2c_desc desc = { 8, "hc2cb_8", twinstr, &GENUS, {44, 14, 22, 0} };
cannam@127 201
cannam@127 202 void X(codelet_hc2cb_8) (planner *p) {
cannam@127 203 X(khc2c_register) (p, hc2cb_8, &desc, HC2C_VIA_RDFT);
cannam@127 204 }
cannam@127 205 #else /* HAVE_FMA */
cannam@127 206
cannam@127 207 /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 8 -dif -name hc2cb_8 -include hc2cb.h */
cannam@127 208
cannam@127 209 /*
cannam@127 210 * This function contains 66 FP additions, 32 FP multiplications,
cannam@127 211 * (or, 52 additions, 18 multiplications, 14 fused multiply/add),
cannam@127 212 * 30 stack variables, 1 constants, and 32 memory accesses
cannam@127 213 */
cannam@127 214 #include "hc2cb.h"
cannam@127 215
cannam@127 216 static void hc2cb_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@127 217 {
cannam@127 218 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@127 219 {
cannam@127 220 INT m;
cannam@127 221 for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) {
cannam@127 222 E T7, T18, T1c, To, Ty, TM, TY, TC, Te, TZ, T10, Tv, Tz, TP, TS;
cannam@127 223 E TD;
cannam@127 224 {
cannam@127 225 E T3, TK, Tk, TX, T6, TW, Tn, TL;
cannam@127 226 {
cannam@127 227 E T1, T2, Ti, Tj;
cannam@127 228 T1 = Rp[0];
cannam@127 229 T2 = Rm[WS(rs, 3)];
cannam@127 230 T3 = T1 + T2;
cannam@127 231 TK = T1 - T2;
cannam@127 232 Ti = Ip[0];
cannam@127 233 Tj = Im[WS(rs, 3)];
cannam@127 234 Tk = Ti - Tj;
cannam@127 235 TX = Ti + Tj;
cannam@127 236 }
cannam@127 237 {
cannam@127 238 E T4, T5, Tl, Tm;
cannam@127 239 T4 = Rp[WS(rs, 2)];
cannam@127 240 T5 = Rm[WS(rs, 1)];
cannam@127 241 T6 = T4 + T5;
cannam@127 242 TW = T4 - T5;
cannam@127 243 Tl = Ip[WS(rs, 2)];
cannam@127 244 Tm = Im[WS(rs, 1)];
cannam@127 245 Tn = Tl - Tm;
cannam@127 246 TL = Tl + Tm;
cannam@127 247 }
cannam@127 248 T7 = T3 + T6;
cannam@127 249 T18 = TK + TL;
cannam@127 250 T1c = TX - TW;
cannam@127 251 To = Tk + Tn;
cannam@127 252 Ty = T3 - T6;
cannam@127 253 TM = TK - TL;
cannam@127 254 TY = TW + TX;
cannam@127 255 TC = Tk - Tn;
cannam@127 256 }
cannam@127 257 {
cannam@127 258 E Ta, TN, Tr, TO, Td, TQ, Tu, TR;
cannam@127 259 {
cannam@127 260 E T8, T9, Tp, Tq;
cannam@127 261 T8 = Rp[WS(rs, 1)];
cannam@127 262 T9 = Rm[WS(rs, 2)];
cannam@127 263 Ta = T8 + T9;
cannam@127 264 TN = T8 - T9;
cannam@127 265 Tp = Ip[WS(rs, 1)];
cannam@127 266 Tq = Im[WS(rs, 2)];
cannam@127 267 Tr = Tp - Tq;
cannam@127 268 TO = Tp + Tq;
cannam@127 269 }
cannam@127 270 {
cannam@127 271 E Tb, Tc, Ts, Tt;
cannam@127 272 Tb = Rm[0];
cannam@127 273 Tc = Rp[WS(rs, 3)];
cannam@127 274 Td = Tb + Tc;
cannam@127 275 TQ = Tb - Tc;
cannam@127 276 Ts = Ip[WS(rs, 3)];
cannam@127 277 Tt = Im[0];
cannam@127 278 Tu = Ts - Tt;
cannam@127 279 TR = Ts + Tt;
cannam@127 280 }
cannam@127 281 Te = Ta + Td;
cannam@127 282 TZ = TN + TO;
cannam@127 283 T10 = TQ + TR;
cannam@127 284 Tv = Tr + Tu;
cannam@127 285 Tz = Tu - Tr;
cannam@127 286 TP = TN - TO;
cannam@127 287 TS = TQ - TR;
cannam@127 288 TD = Ta - Td;
cannam@127 289 }
cannam@127 290 Rp[0] = T7 + Te;
cannam@127 291 Rm[0] = To + Tv;
cannam@127 292 {
cannam@127 293 E Tg, Tw, Tf, Th;
cannam@127 294 Tg = T7 - Te;
cannam@127 295 Tw = To - Tv;
cannam@127 296 Tf = W[6];
cannam@127 297 Th = W[7];
cannam@127 298 Rp[WS(rs, 2)] = FNMS(Th, Tw, Tf * Tg);
cannam@127 299 Rm[WS(rs, 2)] = FMA(Th, Tg, Tf * Tw);
cannam@127 300 }
cannam@127 301 {
cannam@127 302 E TG, TI, TF, TH;
cannam@127 303 TG = Ty + Tz;
cannam@127 304 TI = TD + TC;
cannam@127 305 TF = W[2];
cannam@127 306 TH = W[3];
cannam@127 307 Rp[WS(rs, 1)] = FNMS(TH, TI, TF * TG);
cannam@127 308 Rm[WS(rs, 1)] = FMA(TF, TI, TH * TG);
cannam@127 309 }
cannam@127 310 {
cannam@127 311 E TA, TE, Tx, TB;
cannam@127 312 TA = Ty - Tz;
cannam@127 313 TE = TC - TD;
cannam@127 314 Tx = W[10];
cannam@127 315 TB = W[11];
cannam@127 316 Rp[WS(rs, 3)] = FNMS(TB, TE, Tx * TA);
cannam@127 317 Rm[WS(rs, 3)] = FMA(Tx, TE, TB * TA);
cannam@127 318 }
cannam@127 319 {
cannam@127 320 E T1a, T1g, T1e, T1i, T19, T1d;
cannam@127 321 T19 = KP707106781 * (TZ + T10);
cannam@127 322 T1a = T18 - T19;
cannam@127 323 T1g = T18 + T19;
cannam@127 324 T1d = KP707106781 * (TP - TS);
cannam@127 325 T1e = T1c + T1d;
cannam@127 326 T1i = T1c - T1d;
cannam@127 327 {
cannam@127 328 E T17, T1b, T1f, T1h;
cannam@127 329 T17 = W[4];
cannam@127 330 T1b = W[5];
cannam@127 331 Ip[WS(rs, 1)] = FNMS(T1b, T1e, T17 * T1a);
cannam@127 332 Im[WS(rs, 1)] = FMA(T17, T1e, T1b * T1a);
cannam@127 333 T1f = W[12];
cannam@127 334 T1h = W[13];
cannam@127 335 Ip[WS(rs, 3)] = FNMS(T1h, T1i, T1f * T1g);
cannam@127 336 Im[WS(rs, 3)] = FMA(T1f, T1i, T1h * T1g);
cannam@127 337 }
cannam@127 338 }
cannam@127 339 {
cannam@127 340 E TU, T14, T12, T16, TT, T11;
cannam@127 341 TT = KP707106781 * (TP + TS);
cannam@127 342 TU = TM - TT;
cannam@127 343 T14 = TM + TT;
cannam@127 344 T11 = KP707106781 * (TZ - T10);
cannam@127 345 T12 = TY - T11;
cannam@127 346 T16 = TY + T11;
cannam@127 347 {
cannam@127 348 E TJ, TV, T13, T15;
cannam@127 349 TJ = W[8];
cannam@127 350 TV = W[9];
cannam@127 351 Ip[WS(rs, 2)] = FNMS(TV, T12, TJ * TU);
cannam@127 352 Im[WS(rs, 2)] = FMA(TV, TU, TJ * T12);
cannam@127 353 T13 = W[0];
cannam@127 354 T15 = W[1];
cannam@127 355 Ip[0] = FNMS(T15, T16, T13 * T14);
cannam@127 356 Im[0] = FMA(T15, T14, T13 * T16);
cannam@127 357 }
cannam@127 358 }
cannam@127 359 }
cannam@127 360 }
cannam@127 361 }
cannam@127 362
cannam@127 363 static const tw_instr twinstr[] = {
cannam@127 364 {TW_FULL, 1, 8},
cannam@127 365 {TW_NEXT, 1, 0}
cannam@127 366 };
cannam@127 367
cannam@127 368 static const hc2c_desc desc = { 8, "hc2cb_8", twinstr, &GENUS, {52, 18, 14, 0} };
cannam@127 369
cannam@127 370 void X(codelet_hc2cb_8) (planner *p) {
cannam@127 371 X(khc2c_register) (p, hc2cb_8, &desc, HC2C_VIA_RDFT);
cannam@127 372 }
cannam@127 373 #endif /* HAVE_FMA */