annotate src/fftw-3.3.5/rdft/rdft.h @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21 #ifndef __RDFT_H__
cannam@127 22 #define __RDFT_H__
cannam@127 23
cannam@127 24 #include "ifftw.h"
cannam@127 25 #include "codelet-rdft.h"
cannam@127 26
cannam@127 27 #ifdef __cplusplus
cannam@127 28 extern "C"
cannam@127 29 {
cannam@127 30 #endif /* __cplusplus */
cannam@127 31
cannam@127 32 /* problem.c: */
cannam@127 33 typedef struct {
cannam@127 34 problem super;
cannam@127 35 tensor *sz, *vecsz;
cannam@127 36 R *I, *O;
cannam@127 37 #if defined(STRUCT_HACK_KR)
cannam@127 38 rdft_kind kind[1];
cannam@127 39 #elif defined(STRUCT_HACK_C99)
cannam@127 40 rdft_kind kind[];
cannam@127 41 #else
cannam@127 42 rdft_kind *kind;
cannam@127 43 #endif
cannam@127 44 } problem_rdft;
cannam@127 45
cannam@127 46 void X(rdft_zerotens)(tensor *sz, R *I);
cannam@127 47 problem *X(mkproblem_rdft)(const tensor *sz, const tensor *vecsz,
cannam@127 48 R *I, R *O, const rdft_kind *kind);
cannam@127 49 problem *X(mkproblem_rdft_d)(tensor *sz, tensor *vecsz,
cannam@127 50 R *I, R *O, const rdft_kind *kind);
cannam@127 51 problem *X(mkproblem_rdft_0_d)(tensor *vecsz, R *I, R *O);
cannam@127 52 problem *X(mkproblem_rdft_1)(const tensor *sz, const tensor *vecsz,
cannam@127 53 R *I, R *O, rdft_kind kind);
cannam@127 54 problem *X(mkproblem_rdft_1_d)(tensor *sz, tensor *vecsz,
cannam@127 55 R *I, R *O, rdft_kind kind);
cannam@127 56
cannam@127 57 const char *X(rdft_kind_str)(rdft_kind kind);
cannam@127 58
cannam@127 59 /* solve.c: */
cannam@127 60 void X(rdft_solve)(const plan *ego_, const problem *p_);
cannam@127 61
cannam@127 62 /* plan.c: */
cannam@127 63 typedef void (*rdftapply) (const plan *ego, R *I, R *O);
cannam@127 64
cannam@127 65 typedef struct {
cannam@127 66 plan super;
cannam@127 67 rdftapply apply;
cannam@127 68 } plan_rdft;
cannam@127 69
cannam@127 70 plan *X(mkplan_rdft)(size_t size, const plan_adt *adt, rdftapply apply);
cannam@127 71
cannam@127 72 #define MKPLAN_RDFT(type, adt, apply) \
cannam@127 73 (type *)X(mkplan_rdft)(sizeof(type), adt, apply)
cannam@127 74
cannam@127 75 /* various solvers */
cannam@127 76
cannam@127 77 solver *X(mksolver_rdft_r2c_direct)(kr2c k, const kr2c_desc *desc);
cannam@127 78 solver *X(mksolver_rdft_r2c_directbuf)(kr2c k, const kr2c_desc *desc);
cannam@127 79 solver *X(mksolver_rdft_r2r_direct)(kr2r k, const kr2r_desc *desc);
cannam@127 80
cannam@127 81 void X(rdft_rank0_register)(planner *p);
cannam@127 82 void X(rdft_vrank3_transpose_register)(planner *p);
cannam@127 83 void X(rdft_rank_geq2_register)(planner *p);
cannam@127 84 void X(rdft_indirect_register)(planner *p);
cannam@127 85 void X(rdft_vrank_geq1_register)(planner *p);
cannam@127 86 void X(rdft_buffered_register)(planner *p);
cannam@127 87 void X(rdft_generic_register)(planner *p);
cannam@127 88 void X(rdft_rader_hc2hc_register)(planner *p);
cannam@127 89 void X(rdft_dht_register)(planner *p);
cannam@127 90 void X(dht_r2hc_register)(planner *p);
cannam@127 91 void X(dht_rader_register)(planner *p);
cannam@127 92 void X(dft_r2hc_register)(planner *p);
cannam@127 93 void X(rdft_nop_register)(planner *p);
cannam@127 94 void X(hc2hc_generic_register)(planner *p);
cannam@127 95
cannam@127 96 /****************************************************************************/
cannam@127 97 /* problem2.c: */
cannam@127 98 /*
cannam@127 99 An RDFT2 problem transforms a 1d real array r[n] with stride is/os
cannam@127 100 to/from an "unpacked" complex array {rio,iio}[n/2 + 1] with stride
cannam@127 101 os/is. R0 points to the first even element of the real array.
cannam@127 102 R1 points to the first odd element of the real array.
cannam@127 103
cannam@127 104 Strides on the real side of the transform express distances
cannam@127 105 between consecutive elements of the same array (even or odd).
cannam@127 106 E.g., for a contiguous input
cannam@127 107
cannam@127 108 R0 R1 R2 R3 ...
cannam@127 109
cannam@127 110 the input stride would be 2, not 1. This convention is necessary
cannam@127 111 for hc2c codelets to work, since they transpose even/odd with
cannam@127 112 real/imag.
cannam@127 113
cannam@127 114 Multidimensional transforms use complex DFTs for the
cannam@127 115 noncontiguous dimensions. vecsz has the usual interpretation.
cannam@127 116 */
cannam@127 117 typedef struct {
cannam@127 118 problem super;
cannam@127 119 tensor *sz;
cannam@127 120 tensor *vecsz;
cannam@127 121 R *r0, *r1;
cannam@127 122 R *cr, *ci;
cannam@127 123 rdft_kind kind; /* assert(kind < DHT) */
cannam@127 124 } problem_rdft2;
cannam@127 125
cannam@127 126 problem *X(mkproblem_rdft2)(const tensor *sz, const tensor *vecsz,
cannam@127 127 R *r0, R *r1, R *cr, R *ci, rdft_kind kind);
cannam@127 128 problem *X(mkproblem_rdft2_d)(tensor *sz, tensor *vecsz,
cannam@127 129 R *r0, R *r1, R *cr, R *ci, rdft_kind kind);
cannam@127 130 problem *X(mkproblem_rdft2_d_3pointers)(tensor *sz, tensor *vecsz,
cannam@127 131 R *r, R *cr, R *ci, rdft_kind kind);
cannam@127 132 int X(rdft2_inplace_strides)(const problem_rdft2 *p, int vdim);
cannam@127 133 INT X(rdft2_tensor_max_index)(const tensor *sz, rdft_kind k);
cannam@127 134 void X(rdft2_strides)(rdft_kind kind, const iodim *d, INT *rs, INT *cs);
cannam@127 135 INT X(rdft2_complex_n)(INT real_n, rdft_kind kind);
cannam@127 136
cannam@127 137 /* verify.c: */
cannam@127 138 void X(rdft2_verify)(plan *pln, const problem_rdft2 *p, int rounds);
cannam@127 139
cannam@127 140 /* solve.c: */
cannam@127 141 void X(rdft2_solve)(const plan *ego_, const problem *p_);
cannam@127 142
cannam@127 143 /* plan.c: */
cannam@127 144 typedef void (*rdft2apply) (const plan *ego, R *r0, R *r1, R *cr, R *ci);
cannam@127 145
cannam@127 146 typedef struct {
cannam@127 147 plan super;
cannam@127 148 rdft2apply apply;
cannam@127 149 } plan_rdft2;
cannam@127 150
cannam@127 151 plan *X(mkplan_rdft2)(size_t size, const plan_adt *adt, rdft2apply apply);
cannam@127 152
cannam@127 153 #define MKPLAN_RDFT2(type, adt, apply) \
cannam@127 154 (type *)X(mkplan_rdft2)(sizeof(type), adt, apply)
cannam@127 155
cannam@127 156 /* various solvers */
cannam@127 157
cannam@127 158 solver *X(mksolver_rdft2_direct)(kr2c k, const kr2c_desc *desc);
cannam@127 159
cannam@127 160 void X(rdft2_vrank_geq1_register)(planner *p);
cannam@127 161 void X(rdft2_buffered_register)(planner *p);
cannam@127 162 void X(rdft2_rdft_register)(planner *p);
cannam@127 163 void X(rdft2_nop_register)(planner *p);
cannam@127 164 void X(rdft2_rank0_register)(planner *p);
cannam@127 165 void X(rdft2_rank_geq2_register)(planner *p);
cannam@127 166
cannam@127 167 /****************************************************************************/
cannam@127 168
cannam@127 169 /* configurations */
cannam@127 170 void X(rdft_conf_standard)(planner *p);
cannam@127 171
cannam@127 172 #ifdef __cplusplus
cannam@127 173 } /* extern "C" */
cannam@127 174 #endif /* __cplusplus */
cannam@127 175
cannam@127 176 #endif /* __RDFT_H__ */