cannam@127
|
1 /*
|
cannam@127
|
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
|
cannam@127
|
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
cannam@127
|
4 *
|
cannam@127
|
5 * This program is free software; you can redistribute it and/or modify
|
cannam@127
|
6 * it under the terms of the GNU General Public License as published by
|
cannam@127
|
7 * the Free Software Foundation; either version 2 of the License, or
|
cannam@127
|
8 * (at your option) any later version.
|
cannam@127
|
9 *
|
cannam@127
|
10 * This program is distributed in the hope that it will be useful,
|
cannam@127
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
cannam@127
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
cannam@127
|
13 * GNU General Public License for more details.
|
cannam@127
|
14 *
|
cannam@127
|
15 * You should have received a copy of the GNU General Public License
|
cannam@127
|
16 * along with this program; if not, write to the Free Software
|
cannam@127
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
cannam@127
|
18 *
|
cannam@127
|
19 */
|
cannam@127
|
20
|
cannam@127
|
21
|
cannam@127
|
22 /* Solve an R2HC/HC2R problem via post/pre processing of a DHT. This
|
cannam@127
|
23 is mainly useful because we can use Rader to compute DHTs of prime
|
cannam@127
|
24 sizes. It also allows us to express hc2r problems in terms of r2hc
|
cannam@127
|
25 (via dht-r2hc), and to do hc2r problems without destroying the input. */
|
cannam@127
|
26
|
cannam@127
|
27 #include "rdft.h"
|
cannam@127
|
28
|
cannam@127
|
29 typedef struct {
|
cannam@127
|
30 solver super;
|
cannam@127
|
31 } S;
|
cannam@127
|
32
|
cannam@127
|
33 typedef struct {
|
cannam@127
|
34 plan_rdft super;
|
cannam@127
|
35 plan *cld;
|
cannam@127
|
36 INT is, os;
|
cannam@127
|
37 INT n;
|
cannam@127
|
38 } P;
|
cannam@127
|
39
|
cannam@127
|
40 static void apply_r2hc(const plan *ego_, R *I, R *O)
|
cannam@127
|
41 {
|
cannam@127
|
42 const P *ego = (const P *) ego_;
|
cannam@127
|
43 INT os;
|
cannam@127
|
44 INT i, n;
|
cannam@127
|
45
|
cannam@127
|
46 {
|
cannam@127
|
47 plan_rdft *cld = (plan_rdft *) ego->cld;
|
cannam@127
|
48 cld->apply((plan *) cld, I, O);
|
cannam@127
|
49 }
|
cannam@127
|
50
|
cannam@127
|
51 n = ego->n;
|
cannam@127
|
52 os = ego->os;
|
cannam@127
|
53 for (i = 1; i < n - i; ++i) {
|
cannam@127
|
54 E a, b;
|
cannam@127
|
55 a = K(0.5) * O[os * i];
|
cannam@127
|
56 b = K(0.5) * O[os * (n - i)];
|
cannam@127
|
57 O[os * i] = a + b;
|
cannam@127
|
58 #if FFT_SIGN == -1
|
cannam@127
|
59 O[os * (n - i)] = b - a;
|
cannam@127
|
60 #else
|
cannam@127
|
61 O[os * (n - i)] = a - b;
|
cannam@127
|
62 #endif
|
cannam@127
|
63 }
|
cannam@127
|
64 }
|
cannam@127
|
65
|
cannam@127
|
66 /* hc2r, destroying input as usual */
|
cannam@127
|
67 static void apply_hc2r(const plan *ego_, R *I, R *O)
|
cannam@127
|
68 {
|
cannam@127
|
69 const P *ego = (const P *) ego_;
|
cannam@127
|
70 INT is = ego->is;
|
cannam@127
|
71 INT i, n = ego->n;
|
cannam@127
|
72
|
cannam@127
|
73 for (i = 1; i < n - i; ++i) {
|
cannam@127
|
74 E a, b;
|
cannam@127
|
75 a = I[is * i];
|
cannam@127
|
76 b = I[is * (n - i)];
|
cannam@127
|
77 #if FFT_SIGN == -1
|
cannam@127
|
78 I[is * i] = a - b;
|
cannam@127
|
79 I[is * (n - i)] = a + b;
|
cannam@127
|
80 #else
|
cannam@127
|
81 I[is * i] = a + b;
|
cannam@127
|
82 I[is * (n - i)] = a - b;
|
cannam@127
|
83 #endif
|
cannam@127
|
84 }
|
cannam@127
|
85
|
cannam@127
|
86 {
|
cannam@127
|
87 plan_rdft *cld = (plan_rdft *) ego->cld;
|
cannam@127
|
88 cld->apply((plan *) cld, I, O);
|
cannam@127
|
89 }
|
cannam@127
|
90 }
|
cannam@127
|
91
|
cannam@127
|
92 /* hc2r, without destroying input */
|
cannam@127
|
93 static void apply_hc2r_save(const plan *ego_, R *I, R *O)
|
cannam@127
|
94 {
|
cannam@127
|
95 const P *ego = (const P *) ego_;
|
cannam@127
|
96 INT is = ego->is, os = ego->os;
|
cannam@127
|
97 INT i, n = ego->n;
|
cannam@127
|
98
|
cannam@127
|
99 O[0] = I[0];
|
cannam@127
|
100 for (i = 1; i < n - i; ++i) {
|
cannam@127
|
101 E a, b;
|
cannam@127
|
102 a = I[is * i];
|
cannam@127
|
103 b = I[is * (n - i)];
|
cannam@127
|
104 #if FFT_SIGN == -1
|
cannam@127
|
105 O[os * i] = a - b;
|
cannam@127
|
106 O[os * (n - i)] = a + b;
|
cannam@127
|
107 #else
|
cannam@127
|
108 O[os * i] = a + b;
|
cannam@127
|
109 O[os * (n - i)] = a - b;
|
cannam@127
|
110 #endif
|
cannam@127
|
111 }
|
cannam@127
|
112 if (i == n - i)
|
cannam@127
|
113 O[os * i] = I[is * i];
|
cannam@127
|
114
|
cannam@127
|
115 {
|
cannam@127
|
116 plan_rdft *cld = (plan_rdft *) ego->cld;
|
cannam@127
|
117 cld->apply((plan *) cld, O, O);
|
cannam@127
|
118 }
|
cannam@127
|
119 }
|
cannam@127
|
120
|
cannam@127
|
121 static void awake(plan *ego_, enum wakefulness wakefulness)
|
cannam@127
|
122 {
|
cannam@127
|
123 P *ego = (P *) ego_;
|
cannam@127
|
124 X(plan_awake)(ego->cld, wakefulness);
|
cannam@127
|
125 }
|
cannam@127
|
126
|
cannam@127
|
127 static void destroy(plan *ego_)
|
cannam@127
|
128 {
|
cannam@127
|
129 P *ego = (P *) ego_;
|
cannam@127
|
130 X(plan_destroy_internal)(ego->cld);
|
cannam@127
|
131 }
|
cannam@127
|
132
|
cannam@127
|
133 static void print(const plan *ego_, printer *p)
|
cannam@127
|
134 {
|
cannam@127
|
135 const P *ego = (const P *) ego_;
|
cannam@127
|
136 p->print(p, "(%s-dht-%D%(%p%))",
|
cannam@127
|
137 ego->super.apply == apply_r2hc ? "r2hc" : "hc2r",
|
cannam@127
|
138 ego->n, ego->cld);
|
cannam@127
|
139 }
|
cannam@127
|
140
|
cannam@127
|
141 static int applicable0(const solver *ego_, const problem *p_)
|
cannam@127
|
142 {
|
cannam@127
|
143 const problem_rdft *p = (const problem_rdft *) p_;
|
cannam@127
|
144 UNUSED(ego_);
|
cannam@127
|
145
|
cannam@127
|
146 return (1
|
cannam@127
|
147 && p->sz->rnk == 1
|
cannam@127
|
148 && p->vecsz->rnk == 0
|
cannam@127
|
149 && (p->kind[0] == R2HC || p->kind[0] == HC2R)
|
cannam@127
|
150
|
cannam@127
|
151 /* hack: size-2 DHT etc. are defined as being equivalent
|
cannam@127
|
152 to size-2 R2HC in problem.c, so we need this to prevent
|
cannam@127
|
153 infinite loops for size 2 in EXHAUSTIVE mode: */
|
cannam@127
|
154 && p->sz->dims[0].n > 2
|
cannam@127
|
155 );
|
cannam@127
|
156 }
|
cannam@127
|
157
|
cannam@127
|
158 static int applicable(const solver *ego, const problem *p_,
|
cannam@127
|
159 const planner *plnr)
|
cannam@127
|
160 {
|
cannam@127
|
161 return (!NO_SLOWP(plnr) && applicable0(ego, p_));
|
cannam@127
|
162 }
|
cannam@127
|
163
|
cannam@127
|
164 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
|
cannam@127
|
165 {
|
cannam@127
|
166 P *pln;
|
cannam@127
|
167 const problem_rdft *p;
|
cannam@127
|
168 problem *cldp;
|
cannam@127
|
169 plan *cld;
|
cannam@127
|
170
|
cannam@127
|
171 static const plan_adt padt = {
|
cannam@127
|
172 X(rdft_solve), awake, print, destroy
|
cannam@127
|
173 };
|
cannam@127
|
174
|
cannam@127
|
175 if (!applicable(ego_, p_, plnr))
|
cannam@127
|
176 return (plan *)0;
|
cannam@127
|
177
|
cannam@127
|
178 p = (const problem_rdft *) p_;
|
cannam@127
|
179
|
cannam@127
|
180 if (p->kind[0] == R2HC || !NO_DESTROY_INPUTP(plnr))
|
cannam@127
|
181 cldp = X(mkproblem_rdft_1)(p->sz, p->vecsz, p->I, p->O, DHT);
|
cannam@127
|
182 else {
|
cannam@127
|
183 tensor *sz = X(tensor_copy_inplace)(p->sz, INPLACE_OS);
|
cannam@127
|
184 cldp = X(mkproblem_rdft_1)(sz, p->vecsz, p->O, p->O, DHT);
|
cannam@127
|
185 X(tensor_destroy)(sz);
|
cannam@127
|
186 }
|
cannam@127
|
187 cld = X(mkplan_d)(plnr, cldp);
|
cannam@127
|
188 if (!cld) return (plan *)0;
|
cannam@127
|
189
|
cannam@127
|
190 pln = MKPLAN_RDFT(P, &padt, p->kind[0] == R2HC ?
|
cannam@127
|
191 apply_r2hc : (NO_DESTROY_INPUTP(plnr) ?
|
cannam@127
|
192 apply_hc2r_save : apply_hc2r));
|
cannam@127
|
193 pln->n = p->sz->dims[0].n;
|
cannam@127
|
194 pln->is = p->sz->dims[0].is;
|
cannam@127
|
195 pln->os = p->sz->dims[0].os;
|
cannam@127
|
196 pln->cld = cld;
|
cannam@127
|
197
|
cannam@127
|
198 pln->super.super.ops = cld->ops;
|
cannam@127
|
199 pln->super.super.ops.other += 4 * ((pln->n - 1)/2);
|
cannam@127
|
200 pln->super.super.ops.add += 2 * ((pln->n - 1)/2);
|
cannam@127
|
201 if (p->kind[0] == R2HC)
|
cannam@127
|
202 pln->super.super.ops.mul += 2 * ((pln->n - 1)/2);
|
cannam@127
|
203 if (pln->super.apply == apply_hc2r_save)
|
cannam@127
|
204 pln->super.super.ops.other += 2 + (pln->n % 2 ? 0 : 2);
|
cannam@127
|
205
|
cannam@127
|
206 return &(pln->super.super);
|
cannam@127
|
207 }
|
cannam@127
|
208
|
cannam@127
|
209 /* constructor */
|
cannam@127
|
210 static solver *mksolver(void)
|
cannam@127
|
211 {
|
cannam@127
|
212 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
|
cannam@127
|
213 S *slv = MKSOLVER(S, &sadt);
|
cannam@127
|
214 return &(slv->super);
|
cannam@127
|
215 }
|
cannam@127
|
216
|
cannam@127
|
217 void X(rdft_dht_register)(planner *p)
|
cannam@127
|
218 {
|
cannam@127
|
219 REGISTER_SOLVER(p, mksolver());
|
cannam@127
|
220 }
|