annotate src/fftw-3.3.5/rdft/rdft-dht.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21
cannam@127 22 /* Solve an R2HC/HC2R problem via post/pre processing of a DHT. This
cannam@127 23 is mainly useful because we can use Rader to compute DHTs of prime
cannam@127 24 sizes. It also allows us to express hc2r problems in terms of r2hc
cannam@127 25 (via dht-r2hc), and to do hc2r problems without destroying the input. */
cannam@127 26
cannam@127 27 #include "rdft.h"
cannam@127 28
cannam@127 29 typedef struct {
cannam@127 30 solver super;
cannam@127 31 } S;
cannam@127 32
cannam@127 33 typedef struct {
cannam@127 34 plan_rdft super;
cannam@127 35 plan *cld;
cannam@127 36 INT is, os;
cannam@127 37 INT n;
cannam@127 38 } P;
cannam@127 39
cannam@127 40 static void apply_r2hc(const plan *ego_, R *I, R *O)
cannam@127 41 {
cannam@127 42 const P *ego = (const P *) ego_;
cannam@127 43 INT os;
cannam@127 44 INT i, n;
cannam@127 45
cannam@127 46 {
cannam@127 47 plan_rdft *cld = (plan_rdft *) ego->cld;
cannam@127 48 cld->apply((plan *) cld, I, O);
cannam@127 49 }
cannam@127 50
cannam@127 51 n = ego->n;
cannam@127 52 os = ego->os;
cannam@127 53 for (i = 1; i < n - i; ++i) {
cannam@127 54 E a, b;
cannam@127 55 a = K(0.5) * O[os * i];
cannam@127 56 b = K(0.5) * O[os * (n - i)];
cannam@127 57 O[os * i] = a + b;
cannam@127 58 #if FFT_SIGN == -1
cannam@127 59 O[os * (n - i)] = b - a;
cannam@127 60 #else
cannam@127 61 O[os * (n - i)] = a - b;
cannam@127 62 #endif
cannam@127 63 }
cannam@127 64 }
cannam@127 65
cannam@127 66 /* hc2r, destroying input as usual */
cannam@127 67 static void apply_hc2r(const plan *ego_, R *I, R *O)
cannam@127 68 {
cannam@127 69 const P *ego = (const P *) ego_;
cannam@127 70 INT is = ego->is;
cannam@127 71 INT i, n = ego->n;
cannam@127 72
cannam@127 73 for (i = 1; i < n - i; ++i) {
cannam@127 74 E a, b;
cannam@127 75 a = I[is * i];
cannam@127 76 b = I[is * (n - i)];
cannam@127 77 #if FFT_SIGN == -1
cannam@127 78 I[is * i] = a - b;
cannam@127 79 I[is * (n - i)] = a + b;
cannam@127 80 #else
cannam@127 81 I[is * i] = a + b;
cannam@127 82 I[is * (n - i)] = a - b;
cannam@127 83 #endif
cannam@127 84 }
cannam@127 85
cannam@127 86 {
cannam@127 87 plan_rdft *cld = (plan_rdft *) ego->cld;
cannam@127 88 cld->apply((plan *) cld, I, O);
cannam@127 89 }
cannam@127 90 }
cannam@127 91
cannam@127 92 /* hc2r, without destroying input */
cannam@127 93 static void apply_hc2r_save(const plan *ego_, R *I, R *O)
cannam@127 94 {
cannam@127 95 const P *ego = (const P *) ego_;
cannam@127 96 INT is = ego->is, os = ego->os;
cannam@127 97 INT i, n = ego->n;
cannam@127 98
cannam@127 99 O[0] = I[0];
cannam@127 100 for (i = 1; i < n - i; ++i) {
cannam@127 101 E a, b;
cannam@127 102 a = I[is * i];
cannam@127 103 b = I[is * (n - i)];
cannam@127 104 #if FFT_SIGN == -1
cannam@127 105 O[os * i] = a - b;
cannam@127 106 O[os * (n - i)] = a + b;
cannam@127 107 #else
cannam@127 108 O[os * i] = a + b;
cannam@127 109 O[os * (n - i)] = a - b;
cannam@127 110 #endif
cannam@127 111 }
cannam@127 112 if (i == n - i)
cannam@127 113 O[os * i] = I[is * i];
cannam@127 114
cannam@127 115 {
cannam@127 116 plan_rdft *cld = (plan_rdft *) ego->cld;
cannam@127 117 cld->apply((plan *) cld, O, O);
cannam@127 118 }
cannam@127 119 }
cannam@127 120
cannam@127 121 static void awake(plan *ego_, enum wakefulness wakefulness)
cannam@127 122 {
cannam@127 123 P *ego = (P *) ego_;
cannam@127 124 X(plan_awake)(ego->cld, wakefulness);
cannam@127 125 }
cannam@127 126
cannam@127 127 static void destroy(plan *ego_)
cannam@127 128 {
cannam@127 129 P *ego = (P *) ego_;
cannam@127 130 X(plan_destroy_internal)(ego->cld);
cannam@127 131 }
cannam@127 132
cannam@127 133 static void print(const plan *ego_, printer *p)
cannam@127 134 {
cannam@127 135 const P *ego = (const P *) ego_;
cannam@127 136 p->print(p, "(%s-dht-%D%(%p%))",
cannam@127 137 ego->super.apply == apply_r2hc ? "r2hc" : "hc2r",
cannam@127 138 ego->n, ego->cld);
cannam@127 139 }
cannam@127 140
cannam@127 141 static int applicable0(const solver *ego_, const problem *p_)
cannam@127 142 {
cannam@127 143 const problem_rdft *p = (const problem_rdft *) p_;
cannam@127 144 UNUSED(ego_);
cannam@127 145
cannam@127 146 return (1
cannam@127 147 && p->sz->rnk == 1
cannam@127 148 && p->vecsz->rnk == 0
cannam@127 149 && (p->kind[0] == R2HC || p->kind[0] == HC2R)
cannam@127 150
cannam@127 151 /* hack: size-2 DHT etc. are defined as being equivalent
cannam@127 152 to size-2 R2HC in problem.c, so we need this to prevent
cannam@127 153 infinite loops for size 2 in EXHAUSTIVE mode: */
cannam@127 154 && p->sz->dims[0].n > 2
cannam@127 155 );
cannam@127 156 }
cannam@127 157
cannam@127 158 static int applicable(const solver *ego, const problem *p_,
cannam@127 159 const planner *plnr)
cannam@127 160 {
cannam@127 161 return (!NO_SLOWP(plnr) && applicable0(ego, p_));
cannam@127 162 }
cannam@127 163
cannam@127 164 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
cannam@127 165 {
cannam@127 166 P *pln;
cannam@127 167 const problem_rdft *p;
cannam@127 168 problem *cldp;
cannam@127 169 plan *cld;
cannam@127 170
cannam@127 171 static const plan_adt padt = {
cannam@127 172 X(rdft_solve), awake, print, destroy
cannam@127 173 };
cannam@127 174
cannam@127 175 if (!applicable(ego_, p_, plnr))
cannam@127 176 return (plan *)0;
cannam@127 177
cannam@127 178 p = (const problem_rdft *) p_;
cannam@127 179
cannam@127 180 if (p->kind[0] == R2HC || !NO_DESTROY_INPUTP(plnr))
cannam@127 181 cldp = X(mkproblem_rdft_1)(p->sz, p->vecsz, p->I, p->O, DHT);
cannam@127 182 else {
cannam@127 183 tensor *sz = X(tensor_copy_inplace)(p->sz, INPLACE_OS);
cannam@127 184 cldp = X(mkproblem_rdft_1)(sz, p->vecsz, p->O, p->O, DHT);
cannam@127 185 X(tensor_destroy)(sz);
cannam@127 186 }
cannam@127 187 cld = X(mkplan_d)(plnr, cldp);
cannam@127 188 if (!cld) return (plan *)0;
cannam@127 189
cannam@127 190 pln = MKPLAN_RDFT(P, &padt, p->kind[0] == R2HC ?
cannam@127 191 apply_r2hc : (NO_DESTROY_INPUTP(plnr) ?
cannam@127 192 apply_hc2r_save : apply_hc2r));
cannam@127 193 pln->n = p->sz->dims[0].n;
cannam@127 194 pln->is = p->sz->dims[0].is;
cannam@127 195 pln->os = p->sz->dims[0].os;
cannam@127 196 pln->cld = cld;
cannam@127 197
cannam@127 198 pln->super.super.ops = cld->ops;
cannam@127 199 pln->super.super.ops.other += 4 * ((pln->n - 1)/2);
cannam@127 200 pln->super.super.ops.add += 2 * ((pln->n - 1)/2);
cannam@127 201 if (p->kind[0] == R2HC)
cannam@127 202 pln->super.super.ops.mul += 2 * ((pln->n - 1)/2);
cannam@127 203 if (pln->super.apply == apply_hc2r_save)
cannam@127 204 pln->super.super.ops.other += 2 + (pln->n % 2 ? 0 : 2);
cannam@127 205
cannam@127 206 return &(pln->super.super);
cannam@127 207 }
cannam@127 208
cannam@127 209 /* constructor */
cannam@127 210 static solver *mksolver(void)
cannam@127 211 {
cannam@127 212 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
cannam@127 213 S *slv = MKSOLVER(S, &sadt);
cannam@127 214 return &(slv->super);
cannam@127 215 }
cannam@127 216
cannam@127 217 void X(rdft_dht_register)(planner *p)
cannam@127 218 {
cannam@127 219 REGISTER_SOLVER(p, mksolver());
cannam@127 220 }