cannam@127
|
1 /*
|
cannam@127
|
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
|
cannam@127
|
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
cannam@127
|
4 *
|
cannam@127
|
5 * This program is free software; you can redistribute it and/or modify
|
cannam@127
|
6 * it under the terms of the GNU General Public License as published by
|
cannam@127
|
7 * the Free Software Foundation; either version 2 of the License, or
|
cannam@127
|
8 * (at your option) any later version.
|
cannam@127
|
9 *
|
cannam@127
|
10 * This program is distributed in the hope that it will be useful,
|
cannam@127
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
cannam@127
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
cannam@127
|
13 * GNU General Public License for more details.
|
cannam@127
|
14 *
|
cannam@127
|
15 * You should have received a copy of the GNU General Public License
|
cannam@127
|
16 * along with this program; if not, write to the Free Software
|
cannam@127
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
cannam@127
|
18 *
|
cannam@127
|
19 */
|
cannam@127
|
20
|
cannam@127
|
21
|
cannam@127
|
22 /* plans for rank-0 RDFTs (copy operations) */
|
cannam@127
|
23
|
cannam@127
|
24 #include "rdft.h"
|
cannam@127
|
25
|
cannam@127
|
26 #ifdef HAVE_STRING_H
|
cannam@127
|
27 #include <string.h> /* for memcpy() */
|
cannam@127
|
28 #endif
|
cannam@127
|
29
|
cannam@127
|
30 #define MAXRNK 32 /* FIXME: should malloc() */
|
cannam@127
|
31
|
cannam@127
|
32 typedef struct {
|
cannam@127
|
33 plan_rdft super;
|
cannam@127
|
34 INT vl;
|
cannam@127
|
35 int rnk;
|
cannam@127
|
36 iodim d[MAXRNK];
|
cannam@127
|
37 const char *nam;
|
cannam@127
|
38 } P;
|
cannam@127
|
39
|
cannam@127
|
40 typedef struct {
|
cannam@127
|
41 solver super;
|
cannam@127
|
42 rdftapply apply;
|
cannam@127
|
43 int (*applicable)(const P *pln, const problem_rdft *p);
|
cannam@127
|
44 const char *nam;
|
cannam@127
|
45 } S;
|
cannam@127
|
46
|
cannam@127
|
47 /* copy up to MAXRNK dimensions from problem into plan. If a
|
cannam@127
|
48 contiguous dimension exists, save its length in pln->vl */
|
cannam@127
|
49 static int fill_iodim(P *pln, const problem_rdft *p)
|
cannam@127
|
50 {
|
cannam@127
|
51 int i;
|
cannam@127
|
52 const tensor *vecsz = p->vecsz;
|
cannam@127
|
53
|
cannam@127
|
54 pln->vl = 1;
|
cannam@127
|
55 pln->rnk = 0;
|
cannam@127
|
56 for (i = 0; i < vecsz->rnk; ++i) {
|
cannam@127
|
57 /* extract contiguous dimensions */
|
cannam@127
|
58 if (pln->vl == 1 &&
|
cannam@127
|
59 vecsz->dims[i].is == 1 && vecsz->dims[i].os == 1)
|
cannam@127
|
60 pln->vl = vecsz->dims[i].n;
|
cannam@127
|
61 else if (pln->rnk == MAXRNK)
|
cannam@127
|
62 return 0;
|
cannam@127
|
63 else
|
cannam@127
|
64 pln->d[pln->rnk++] = vecsz->dims[i];
|
cannam@127
|
65 }
|
cannam@127
|
66
|
cannam@127
|
67 return 1;
|
cannam@127
|
68 }
|
cannam@127
|
69
|
cannam@127
|
70 /* generic higher-rank copy routine, calls cpy2d() to do the real work */
|
cannam@127
|
71 static void copy(const iodim *d, int rnk, INT vl,
|
cannam@127
|
72 R *I, R *O,
|
cannam@127
|
73 cpy2d_func cpy2d)
|
cannam@127
|
74 {
|
cannam@127
|
75 A(rnk >= 2);
|
cannam@127
|
76 if (rnk == 2)
|
cannam@127
|
77 cpy2d(I, O, d[0].n, d[0].is, d[0].os, d[1].n, d[1].is, d[1].os, vl);
|
cannam@127
|
78 else {
|
cannam@127
|
79 INT i;
|
cannam@127
|
80 for (i = 0; i < d[0].n; ++i, I += d[0].is, O += d[0].os)
|
cannam@127
|
81 copy(d + 1, rnk - 1, vl, I, O, cpy2d);
|
cannam@127
|
82 }
|
cannam@127
|
83 }
|
cannam@127
|
84
|
cannam@127
|
85 /* FIXME: should be more general */
|
cannam@127
|
86 static int transposep(const P *pln)
|
cannam@127
|
87 {
|
cannam@127
|
88 int i;
|
cannam@127
|
89
|
cannam@127
|
90 for (i = 0; i < pln->rnk - 2; ++i)
|
cannam@127
|
91 if (pln->d[i].is != pln->d[i].os)
|
cannam@127
|
92 return 0;
|
cannam@127
|
93
|
cannam@127
|
94 return (pln->d[i].n == pln->d[i+1].n &&
|
cannam@127
|
95 pln->d[i].is == pln->d[i+1].os &&
|
cannam@127
|
96 pln->d[i].os == pln->d[i+1].is);
|
cannam@127
|
97 }
|
cannam@127
|
98
|
cannam@127
|
99 /* generic higher-rank transpose routine, calls transpose2d() to do
|
cannam@127
|
100 * the real work */
|
cannam@127
|
101 static void transpose(const iodim *d, int rnk, INT vl,
|
cannam@127
|
102 R *I,
|
cannam@127
|
103 transpose_func transpose2d)
|
cannam@127
|
104 {
|
cannam@127
|
105 A(rnk >= 2);
|
cannam@127
|
106 if (rnk == 2)
|
cannam@127
|
107 transpose2d(I, d[0].n, d[0].is, d[0].os, vl);
|
cannam@127
|
108 else {
|
cannam@127
|
109 INT i;
|
cannam@127
|
110 for (i = 0; i < d[0].n; ++i, I += d[0].is)
|
cannam@127
|
111 transpose(d + 1, rnk - 1, vl, I, transpose2d);
|
cannam@127
|
112 }
|
cannam@127
|
113 }
|
cannam@127
|
114
|
cannam@127
|
115 /**************************************************************/
|
cannam@127
|
116 /* rank 0,1,2, out of place, iterative */
|
cannam@127
|
117 static void apply_iter(const plan *ego_, R *I, R *O)
|
cannam@127
|
118 {
|
cannam@127
|
119 const P *ego = (const P *) ego_;
|
cannam@127
|
120
|
cannam@127
|
121 switch (ego->rnk) {
|
cannam@127
|
122 case 0:
|
cannam@127
|
123 X(cpy1d)(I, O, ego->vl, 1, 1, 1);
|
cannam@127
|
124 break;
|
cannam@127
|
125 case 1:
|
cannam@127
|
126 X(cpy1d)(I, O,
|
cannam@127
|
127 ego->d[0].n, ego->d[0].is, ego->d[0].os,
|
cannam@127
|
128 ego->vl);
|
cannam@127
|
129 break;
|
cannam@127
|
130 default:
|
cannam@127
|
131 copy(ego->d, ego->rnk, ego->vl, I, O, X(cpy2d_ci));
|
cannam@127
|
132 break;
|
cannam@127
|
133 }
|
cannam@127
|
134 }
|
cannam@127
|
135
|
cannam@127
|
136 static int applicable_iter(const P *pln, const problem_rdft *p)
|
cannam@127
|
137 {
|
cannam@127
|
138 UNUSED(pln);
|
cannam@127
|
139 return (p->I != p->O);
|
cannam@127
|
140 }
|
cannam@127
|
141
|
cannam@127
|
142 /**************************************************************/
|
cannam@127
|
143 /* out of place, write contiguous output */
|
cannam@127
|
144 static void apply_cpy2dco(const plan *ego_, R *I, R *O)
|
cannam@127
|
145 {
|
cannam@127
|
146 const P *ego = (const P *) ego_;
|
cannam@127
|
147 copy(ego->d, ego->rnk, ego->vl, I, O, X(cpy2d_co));
|
cannam@127
|
148 }
|
cannam@127
|
149
|
cannam@127
|
150 static int applicable_cpy2dco(const P *pln, const problem_rdft *p)
|
cannam@127
|
151 {
|
cannam@127
|
152 int rnk = pln->rnk;
|
cannam@127
|
153 return (1
|
cannam@127
|
154 && p->I != p->O
|
cannam@127
|
155 && rnk >= 2
|
cannam@127
|
156
|
cannam@127
|
157 /* must not duplicate apply_iter */
|
cannam@127
|
158 && (X(iabs)(pln->d[rnk - 2].is) <= X(iabs)(pln->d[rnk - 1].is)
|
cannam@127
|
159 ||
|
cannam@127
|
160 X(iabs)(pln->d[rnk - 2].os) <= X(iabs)(pln->d[rnk - 1].os))
|
cannam@127
|
161 );
|
cannam@127
|
162 }
|
cannam@127
|
163
|
cannam@127
|
164 /**************************************************************/
|
cannam@127
|
165 /* out of place, tiled, no buffering */
|
cannam@127
|
166 static void apply_tiled(const plan *ego_, R *I, R *O)
|
cannam@127
|
167 {
|
cannam@127
|
168 const P *ego = (const P *) ego_;
|
cannam@127
|
169 copy(ego->d, ego->rnk, ego->vl, I, O, X(cpy2d_tiled));
|
cannam@127
|
170 }
|
cannam@127
|
171
|
cannam@127
|
172 static int applicable_tiled(const P *pln, const problem_rdft *p)
|
cannam@127
|
173 {
|
cannam@127
|
174 return (1
|
cannam@127
|
175 && p->I != p->O
|
cannam@127
|
176 && pln->rnk >= 2
|
cannam@127
|
177
|
cannam@127
|
178 /* somewhat arbitrary */
|
cannam@127
|
179 && X(compute_tilesz)(pln->vl, 1) > 4
|
cannam@127
|
180 );
|
cannam@127
|
181 }
|
cannam@127
|
182
|
cannam@127
|
183 /**************************************************************/
|
cannam@127
|
184 /* out of place, tiled, with buffer */
|
cannam@127
|
185 static void apply_tiledbuf(const plan *ego_, R *I, R *O)
|
cannam@127
|
186 {
|
cannam@127
|
187 const P *ego = (const P *) ego_;
|
cannam@127
|
188 copy(ego->d, ego->rnk, ego->vl, I, O, X(cpy2d_tiledbuf));
|
cannam@127
|
189 }
|
cannam@127
|
190
|
cannam@127
|
191 #define applicable_tiledbuf applicable_tiled
|
cannam@127
|
192
|
cannam@127
|
193 /**************************************************************/
|
cannam@127
|
194 /* rank 0, out of place, using memcpy */
|
cannam@127
|
195 static void apply_memcpy(const plan *ego_, R *I, R *O)
|
cannam@127
|
196 {
|
cannam@127
|
197 const P *ego = (const P *) ego_;
|
cannam@127
|
198
|
cannam@127
|
199 A(ego->rnk == 0);
|
cannam@127
|
200 memcpy(O, I, ego->vl * sizeof(R));
|
cannam@127
|
201 }
|
cannam@127
|
202
|
cannam@127
|
203 static int applicable_memcpy(const P *pln, const problem_rdft *p)
|
cannam@127
|
204 {
|
cannam@127
|
205 return (1
|
cannam@127
|
206 && p->I != p->O
|
cannam@127
|
207 && pln->rnk == 0
|
cannam@127
|
208 && pln->vl > 2 /* do not bother memcpy-ing complex numbers */
|
cannam@127
|
209 );
|
cannam@127
|
210 }
|
cannam@127
|
211
|
cannam@127
|
212 /**************************************************************/
|
cannam@127
|
213 /* rank > 0 vecloop, out of place, using memcpy (e.g. out-of-place
|
cannam@127
|
214 transposes of vl-tuples ... for large vl it should be more
|
cannam@127
|
215 efficient to use memcpy than the tiled stuff). */
|
cannam@127
|
216
|
cannam@127
|
217 static void memcpy_loop(size_t cpysz, int rnk, const iodim *d, R *I, R *O)
|
cannam@127
|
218 {
|
cannam@127
|
219 INT i, n = d->n, is = d->is, os = d->os;
|
cannam@127
|
220 if (rnk == 1)
|
cannam@127
|
221 for (i = 0; i < n; ++i, I += is, O += os)
|
cannam@127
|
222 memcpy(O, I, cpysz);
|
cannam@127
|
223 else {
|
cannam@127
|
224 --rnk; ++d;
|
cannam@127
|
225 for (i = 0; i < n; ++i, I += is, O += os)
|
cannam@127
|
226 memcpy_loop(cpysz, rnk, d, I, O);
|
cannam@127
|
227 }
|
cannam@127
|
228 }
|
cannam@127
|
229
|
cannam@127
|
230 static void apply_memcpy_loop(const plan *ego_, R *I, R *O)
|
cannam@127
|
231 {
|
cannam@127
|
232 const P *ego = (const P *) ego_;
|
cannam@127
|
233 memcpy_loop(ego->vl * sizeof(R), ego->rnk, ego->d, I, O);
|
cannam@127
|
234 }
|
cannam@127
|
235
|
cannam@127
|
236 static int applicable_memcpy_loop(const P *pln, const problem_rdft *p)
|
cannam@127
|
237 {
|
cannam@127
|
238 return (p->I != p->O
|
cannam@127
|
239 && pln->rnk > 0
|
cannam@127
|
240 && pln->vl > 2 /* do not bother memcpy-ing complex numbers */);
|
cannam@127
|
241 }
|
cannam@127
|
242
|
cannam@127
|
243 /**************************************************************/
|
cannam@127
|
244 /* rank 2, in place, square transpose, iterative */
|
cannam@127
|
245 static void apply_ip_sq(const plan *ego_, R *I, R *O)
|
cannam@127
|
246 {
|
cannam@127
|
247 const P *ego = (const P *) ego_;
|
cannam@127
|
248 UNUSED(O);
|
cannam@127
|
249 transpose(ego->d, ego->rnk, ego->vl, I, X(transpose));
|
cannam@127
|
250 }
|
cannam@127
|
251
|
cannam@127
|
252
|
cannam@127
|
253 static int applicable_ip_sq(const P *pln, const problem_rdft *p)
|
cannam@127
|
254 {
|
cannam@127
|
255 return (1
|
cannam@127
|
256 && p->I == p->O
|
cannam@127
|
257 && pln->rnk >= 2
|
cannam@127
|
258 && transposep(pln));
|
cannam@127
|
259 }
|
cannam@127
|
260
|
cannam@127
|
261 /**************************************************************/
|
cannam@127
|
262 /* rank 2, in place, square transpose, tiled */
|
cannam@127
|
263 static void apply_ip_sq_tiled(const plan *ego_, R *I, R *O)
|
cannam@127
|
264 {
|
cannam@127
|
265 const P *ego = (const P *) ego_;
|
cannam@127
|
266 UNUSED(O);
|
cannam@127
|
267 transpose(ego->d, ego->rnk, ego->vl, I, X(transpose_tiled));
|
cannam@127
|
268 }
|
cannam@127
|
269
|
cannam@127
|
270 static int applicable_ip_sq_tiled(const P *pln, const problem_rdft *p)
|
cannam@127
|
271 {
|
cannam@127
|
272 return (1
|
cannam@127
|
273 && applicable_ip_sq(pln, p)
|
cannam@127
|
274
|
cannam@127
|
275 /* somewhat arbitrary */
|
cannam@127
|
276 && X(compute_tilesz)(pln->vl, 2) > 4
|
cannam@127
|
277 );
|
cannam@127
|
278 }
|
cannam@127
|
279
|
cannam@127
|
280 /**************************************************************/
|
cannam@127
|
281 /* rank 2, in place, square transpose, tiled, buffered */
|
cannam@127
|
282 static void apply_ip_sq_tiledbuf(const plan *ego_, R *I, R *O)
|
cannam@127
|
283 {
|
cannam@127
|
284 const P *ego = (const P *) ego_;
|
cannam@127
|
285 UNUSED(O);
|
cannam@127
|
286 transpose(ego->d, ego->rnk, ego->vl, I, X(transpose_tiledbuf));
|
cannam@127
|
287 }
|
cannam@127
|
288
|
cannam@127
|
289 #define applicable_ip_sq_tiledbuf applicable_ip_sq_tiled
|
cannam@127
|
290
|
cannam@127
|
291 /**************************************************************/
|
cannam@127
|
292 static int applicable(const S *ego, const problem *p_)
|
cannam@127
|
293 {
|
cannam@127
|
294 const problem_rdft *p = (const problem_rdft *) p_;
|
cannam@127
|
295 P pln;
|
cannam@127
|
296 return (1
|
cannam@127
|
297 && p->sz->rnk == 0
|
cannam@127
|
298 && FINITE_RNK(p->vecsz->rnk)
|
cannam@127
|
299 && fill_iodim(&pln, p)
|
cannam@127
|
300 && ego->applicable(&pln, p)
|
cannam@127
|
301 );
|
cannam@127
|
302 }
|
cannam@127
|
303
|
cannam@127
|
304 static void print(const plan *ego_, printer *p)
|
cannam@127
|
305 {
|
cannam@127
|
306 const P *ego = (const P *) ego_;
|
cannam@127
|
307 int i;
|
cannam@127
|
308 p->print(p, "(%s/%D", ego->nam, ego->vl);
|
cannam@127
|
309 for (i = 0; i < ego->rnk; ++i)
|
cannam@127
|
310 p->print(p, "%v", ego->d[i].n);
|
cannam@127
|
311 p->print(p, ")");
|
cannam@127
|
312 }
|
cannam@127
|
313
|
cannam@127
|
314 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
|
cannam@127
|
315 {
|
cannam@127
|
316 const problem_rdft *p;
|
cannam@127
|
317 const S *ego = (const S *) ego_;
|
cannam@127
|
318 P *pln;
|
cannam@127
|
319 int retval;
|
cannam@127
|
320
|
cannam@127
|
321 static const plan_adt padt = {
|
cannam@127
|
322 X(rdft_solve), X(null_awake), print, X(plan_null_destroy)
|
cannam@127
|
323 };
|
cannam@127
|
324
|
cannam@127
|
325 UNUSED(plnr);
|
cannam@127
|
326
|
cannam@127
|
327 if (!applicable(ego, p_))
|
cannam@127
|
328 return (plan *) 0;
|
cannam@127
|
329
|
cannam@127
|
330 p = (const problem_rdft *) p_;
|
cannam@127
|
331 pln = MKPLAN_RDFT(P, &padt, ego->apply);
|
cannam@127
|
332
|
cannam@127
|
333 retval = fill_iodim(pln, p);
|
cannam@127
|
334 (void)retval; /* UNUSED unless DEBUG */
|
cannam@127
|
335 A(retval);
|
cannam@127
|
336 A(pln->vl > 0); /* because FINITE_RNK(p->vecsz->rnk) holds */
|
cannam@127
|
337 pln->nam = ego->nam;
|
cannam@127
|
338
|
cannam@127
|
339 /* X(tensor_sz)(p->vecsz) loads, X(tensor_sz)(p->vecsz) stores */
|
cannam@127
|
340 X(ops_other)(2 * X(tensor_sz)(p->vecsz), &pln->super.super.ops);
|
cannam@127
|
341 return &(pln->super.super);
|
cannam@127
|
342 }
|
cannam@127
|
343
|
cannam@127
|
344
|
cannam@127
|
345 void X(rdft_rank0_register)(planner *p)
|
cannam@127
|
346 {
|
cannam@127
|
347 unsigned i;
|
cannam@127
|
348 static struct {
|
cannam@127
|
349 rdftapply apply;
|
cannam@127
|
350 int (*applicable)(const P *, const problem_rdft *);
|
cannam@127
|
351 const char *nam;
|
cannam@127
|
352 } tab[] = {
|
cannam@127
|
353 { apply_memcpy, applicable_memcpy, "rdft-rank0-memcpy" },
|
cannam@127
|
354 { apply_memcpy_loop, applicable_memcpy_loop,
|
cannam@127
|
355 "rdft-rank0-memcpy-loop" },
|
cannam@127
|
356 { apply_iter, applicable_iter, "rdft-rank0-iter-ci" },
|
cannam@127
|
357 { apply_cpy2dco, applicable_cpy2dco, "rdft-rank0-iter-co" },
|
cannam@127
|
358 { apply_tiled, applicable_tiled, "rdft-rank0-tiled" },
|
cannam@127
|
359 { apply_tiledbuf, applicable_tiledbuf, "rdft-rank0-tiledbuf" },
|
cannam@127
|
360 { apply_ip_sq, applicable_ip_sq, "rdft-rank0-ip-sq" },
|
cannam@127
|
361 {
|
cannam@127
|
362 apply_ip_sq_tiled,
|
cannam@127
|
363 applicable_ip_sq_tiled,
|
cannam@127
|
364 "rdft-rank0-ip-sq-tiled"
|
cannam@127
|
365 },
|
cannam@127
|
366 {
|
cannam@127
|
367 apply_ip_sq_tiledbuf,
|
cannam@127
|
368 applicable_ip_sq_tiledbuf,
|
cannam@127
|
369 "rdft-rank0-ip-sq-tiledbuf"
|
cannam@127
|
370 },
|
cannam@127
|
371 };
|
cannam@127
|
372
|
cannam@127
|
373 for (i = 0; i < sizeof(tab) / sizeof(tab[0]); ++i) {
|
cannam@127
|
374 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
|
cannam@127
|
375 S *slv = MKSOLVER(S, &sadt);
|
cannam@127
|
376 slv->apply = tab[i].apply;
|
cannam@127
|
377 slv->applicable = tab[i].applicable;
|
cannam@127
|
378 slv->nam = tab[i].nam;
|
cannam@127
|
379 REGISTER_SOLVER(p, &(slv->super));
|
cannam@127
|
380 }
|
cannam@127
|
381 }
|