annotate src/fftw-3.3.5/rdft/rank0.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21
cannam@127 22 /* plans for rank-0 RDFTs (copy operations) */
cannam@127 23
cannam@127 24 #include "rdft.h"
cannam@127 25
cannam@127 26 #ifdef HAVE_STRING_H
cannam@127 27 #include <string.h> /* for memcpy() */
cannam@127 28 #endif
cannam@127 29
cannam@127 30 #define MAXRNK 32 /* FIXME: should malloc() */
cannam@127 31
cannam@127 32 typedef struct {
cannam@127 33 plan_rdft super;
cannam@127 34 INT vl;
cannam@127 35 int rnk;
cannam@127 36 iodim d[MAXRNK];
cannam@127 37 const char *nam;
cannam@127 38 } P;
cannam@127 39
cannam@127 40 typedef struct {
cannam@127 41 solver super;
cannam@127 42 rdftapply apply;
cannam@127 43 int (*applicable)(const P *pln, const problem_rdft *p);
cannam@127 44 const char *nam;
cannam@127 45 } S;
cannam@127 46
cannam@127 47 /* copy up to MAXRNK dimensions from problem into plan. If a
cannam@127 48 contiguous dimension exists, save its length in pln->vl */
cannam@127 49 static int fill_iodim(P *pln, const problem_rdft *p)
cannam@127 50 {
cannam@127 51 int i;
cannam@127 52 const tensor *vecsz = p->vecsz;
cannam@127 53
cannam@127 54 pln->vl = 1;
cannam@127 55 pln->rnk = 0;
cannam@127 56 for (i = 0; i < vecsz->rnk; ++i) {
cannam@127 57 /* extract contiguous dimensions */
cannam@127 58 if (pln->vl == 1 &&
cannam@127 59 vecsz->dims[i].is == 1 && vecsz->dims[i].os == 1)
cannam@127 60 pln->vl = vecsz->dims[i].n;
cannam@127 61 else if (pln->rnk == MAXRNK)
cannam@127 62 return 0;
cannam@127 63 else
cannam@127 64 pln->d[pln->rnk++] = vecsz->dims[i];
cannam@127 65 }
cannam@127 66
cannam@127 67 return 1;
cannam@127 68 }
cannam@127 69
cannam@127 70 /* generic higher-rank copy routine, calls cpy2d() to do the real work */
cannam@127 71 static void copy(const iodim *d, int rnk, INT vl,
cannam@127 72 R *I, R *O,
cannam@127 73 cpy2d_func cpy2d)
cannam@127 74 {
cannam@127 75 A(rnk >= 2);
cannam@127 76 if (rnk == 2)
cannam@127 77 cpy2d(I, O, d[0].n, d[0].is, d[0].os, d[1].n, d[1].is, d[1].os, vl);
cannam@127 78 else {
cannam@127 79 INT i;
cannam@127 80 for (i = 0; i < d[0].n; ++i, I += d[0].is, O += d[0].os)
cannam@127 81 copy(d + 1, rnk - 1, vl, I, O, cpy2d);
cannam@127 82 }
cannam@127 83 }
cannam@127 84
cannam@127 85 /* FIXME: should be more general */
cannam@127 86 static int transposep(const P *pln)
cannam@127 87 {
cannam@127 88 int i;
cannam@127 89
cannam@127 90 for (i = 0; i < pln->rnk - 2; ++i)
cannam@127 91 if (pln->d[i].is != pln->d[i].os)
cannam@127 92 return 0;
cannam@127 93
cannam@127 94 return (pln->d[i].n == pln->d[i+1].n &&
cannam@127 95 pln->d[i].is == pln->d[i+1].os &&
cannam@127 96 pln->d[i].os == pln->d[i+1].is);
cannam@127 97 }
cannam@127 98
cannam@127 99 /* generic higher-rank transpose routine, calls transpose2d() to do
cannam@127 100 * the real work */
cannam@127 101 static void transpose(const iodim *d, int rnk, INT vl,
cannam@127 102 R *I,
cannam@127 103 transpose_func transpose2d)
cannam@127 104 {
cannam@127 105 A(rnk >= 2);
cannam@127 106 if (rnk == 2)
cannam@127 107 transpose2d(I, d[0].n, d[0].is, d[0].os, vl);
cannam@127 108 else {
cannam@127 109 INT i;
cannam@127 110 for (i = 0; i < d[0].n; ++i, I += d[0].is)
cannam@127 111 transpose(d + 1, rnk - 1, vl, I, transpose2d);
cannam@127 112 }
cannam@127 113 }
cannam@127 114
cannam@127 115 /**************************************************************/
cannam@127 116 /* rank 0,1,2, out of place, iterative */
cannam@127 117 static void apply_iter(const plan *ego_, R *I, R *O)
cannam@127 118 {
cannam@127 119 const P *ego = (const P *) ego_;
cannam@127 120
cannam@127 121 switch (ego->rnk) {
cannam@127 122 case 0:
cannam@127 123 X(cpy1d)(I, O, ego->vl, 1, 1, 1);
cannam@127 124 break;
cannam@127 125 case 1:
cannam@127 126 X(cpy1d)(I, O,
cannam@127 127 ego->d[0].n, ego->d[0].is, ego->d[0].os,
cannam@127 128 ego->vl);
cannam@127 129 break;
cannam@127 130 default:
cannam@127 131 copy(ego->d, ego->rnk, ego->vl, I, O, X(cpy2d_ci));
cannam@127 132 break;
cannam@127 133 }
cannam@127 134 }
cannam@127 135
cannam@127 136 static int applicable_iter(const P *pln, const problem_rdft *p)
cannam@127 137 {
cannam@127 138 UNUSED(pln);
cannam@127 139 return (p->I != p->O);
cannam@127 140 }
cannam@127 141
cannam@127 142 /**************************************************************/
cannam@127 143 /* out of place, write contiguous output */
cannam@127 144 static void apply_cpy2dco(const plan *ego_, R *I, R *O)
cannam@127 145 {
cannam@127 146 const P *ego = (const P *) ego_;
cannam@127 147 copy(ego->d, ego->rnk, ego->vl, I, O, X(cpy2d_co));
cannam@127 148 }
cannam@127 149
cannam@127 150 static int applicable_cpy2dco(const P *pln, const problem_rdft *p)
cannam@127 151 {
cannam@127 152 int rnk = pln->rnk;
cannam@127 153 return (1
cannam@127 154 && p->I != p->O
cannam@127 155 && rnk >= 2
cannam@127 156
cannam@127 157 /* must not duplicate apply_iter */
cannam@127 158 && (X(iabs)(pln->d[rnk - 2].is) <= X(iabs)(pln->d[rnk - 1].is)
cannam@127 159 ||
cannam@127 160 X(iabs)(pln->d[rnk - 2].os) <= X(iabs)(pln->d[rnk - 1].os))
cannam@127 161 );
cannam@127 162 }
cannam@127 163
cannam@127 164 /**************************************************************/
cannam@127 165 /* out of place, tiled, no buffering */
cannam@127 166 static void apply_tiled(const plan *ego_, R *I, R *O)
cannam@127 167 {
cannam@127 168 const P *ego = (const P *) ego_;
cannam@127 169 copy(ego->d, ego->rnk, ego->vl, I, O, X(cpy2d_tiled));
cannam@127 170 }
cannam@127 171
cannam@127 172 static int applicable_tiled(const P *pln, const problem_rdft *p)
cannam@127 173 {
cannam@127 174 return (1
cannam@127 175 && p->I != p->O
cannam@127 176 && pln->rnk >= 2
cannam@127 177
cannam@127 178 /* somewhat arbitrary */
cannam@127 179 && X(compute_tilesz)(pln->vl, 1) > 4
cannam@127 180 );
cannam@127 181 }
cannam@127 182
cannam@127 183 /**************************************************************/
cannam@127 184 /* out of place, tiled, with buffer */
cannam@127 185 static void apply_tiledbuf(const plan *ego_, R *I, R *O)
cannam@127 186 {
cannam@127 187 const P *ego = (const P *) ego_;
cannam@127 188 copy(ego->d, ego->rnk, ego->vl, I, O, X(cpy2d_tiledbuf));
cannam@127 189 }
cannam@127 190
cannam@127 191 #define applicable_tiledbuf applicable_tiled
cannam@127 192
cannam@127 193 /**************************************************************/
cannam@127 194 /* rank 0, out of place, using memcpy */
cannam@127 195 static void apply_memcpy(const plan *ego_, R *I, R *O)
cannam@127 196 {
cannam@127 197 const P *ego = (const P *) ego_;
cannam@127 198
cannam@127 199 A(ego->rnk == 0);
cannam@127 200 memcpy(O, I, ego->vl * sizeof(R));
cannam@127 201 }
cannam@127 202
cannam@127 203 static int applicable_memcpy(const P *pln, const problem_rdft *p)
cannam@127 204 {
cannam@127 205 return (1
cannam@127 206 && p->I != p->O
cannam@127 207 && pln->rnk == 0
cannam@127 208 && pln->vl > 2 /* do not bother memcpy-ing complex numbers */
cannam@127 209 );
cannam@127 210 }
cannam@127 211
cannam@127 212 /**************************************************************/
cannam@127 213 /* rank > 0 vecloop, out of place, using memcpy (e.g. out-of-place
cannam@127 214 transposes of vl-tuples ... for large vl it should be more
cannam@127 215 efficient to use memcpy than the tiled stuff). */
cannam@127 216
cannam@127 217 static void memcpy_loop(size_t cpysz, int rnk, const iodim *d, R *I, R *O)
cannam@127 218 {
cannam@127 219 INT i, n = d->n, is = d->is, os = d->os;
cannam@127 220 if (rnk == 1)
cannam@127 221 for (i = 0; i < n; ++i, I += is, O += os)
cannam@127 222 memcpy(O, I, cpysz);
cannam@127 223 else {
cannam@127 224 --rnk; ++d;
cannam@127 225 for (i = 0; i < n; ++i, I += is, O += os)
cannam@127 226 memcpy_loop(cpysz, rnk, d, I, O);
cannam@127 227 }
cannam@127 228 }
cannam@127 229
cannam@127 230 static void apply_memcpy_loop(const plan *ego_, R *I, R *O)
cannam@127 231 {
cannam@127 232 const P *ego = (const P *) ego_;
cannam@127 233 memcpy_loop(ego->vl * sizeof(R), ego->rnk, ego->d, I, O);
cannam@127 234 }
cannam@127 235
cannam@127 236 static int applicable_memcpy_loop(const P *pln, const problem_rdft *p)
cannam@127 237 {
cannam@127 238 return (p->I != p->O
cannam@127 239 && pln->rnk > 0
cannam@127 240 && pln->vl > 2 /* do not bother memcpy-ing complex numbers */);
cannam@127 241 }
cannam@127 242
cannam@127 243 /**************************************************************/
cannam@127 244 /* rank 2, in place, square transpose, iterative */
cannam@127 245 static void apply_ip_sq(const plan *ego_, R *I, R *O)
cannam@127 246 {
cannam@127 247 const P *ego = (const P *) ego_;
cannam@127 248 UNUSED(O);
cannam@127 249 transpose(ego->d, ego->rnk, ego->vl, I, X(transpose));
cannam@127 250 }
cannam@127 251
cannam@127 252
cannam@127 253 static int applicable_ip_sq(const P *pln, const problem_rdft *p)
cannam@127 254 {
cannam@127 255 return (1
cannam@127 256 && p->I == p->O
cannam@127 257 && pln->rnk >= 2
cannam@127 258 && transposep(pln));
cannam@127 259 }
cannam@127 260
cannam@127 261 /**************************************************************/
cannam@127 262 /* rank 2, in place, square transpose, tiled */
cannam@127 263 static void apply_ip_sq_tiled(const plan *ego_, R *I, R *O)
cannam@127 264 {
cannam@127 265 const P *ego = (const P *) ego_;
cannam@127 266 UNUSED(O);
cannam@127 267 transpose(ego->d, ego->rnk, ego->vl, I, X(transpose_tiled));
cannam@127 268 }
cannam@127 269
cannam@127 270 static int applicable_ip_sq_tiled(const P *pln, const problem_rdft *p)
cannam@127 271 {
cannam@127 272 return (1
cannam@127 273 && applicable_ip_sq(pln, p)
cannam@127 274
cannam@127 275 /* somewhat arbitrary */
cannam@127 276 && X(compute_tilesz)(pln->vl, 2) > 4
cannam@127 277 );
cannam@127 278 }
cannam@127 279
cannam@127 280 /**************************************************************/
cannam@127 281 /* rank 2, in place, square transpose, tiled, buffered */
cannam@127 282 static void apply_ip_sq_tiledbuf(const plan *ego_, R *I, R *O)
cannam@127 283 {
cannam@127 284 const P *ego = (const P *) ego_;
cannam@127 285 UNUSED(O);
cannam@127 286 transpose(ego->d, ego->rnk, ego->vl, I, X(transpose_tiledbuf));
cannam@127 287 }
cannam@127 288
cannam@127 289 #define applicable_ip_sq_tiledbuf applicable_ip_sq_tiled
cannam@127 290
cannam@127 291 /**************************************************************/
cannam@127 292 static int applicable(const S *ego, const problem *p_)
cannam@127 293 {
cannam@127 294 const problem_rdft *p = (const problem_rdft *) p_;
cannam@127 295 P pln;
cannam@127 296 return (1
cannam@127 297 && p->sz->rnk == 0
cannam@127 298 && FINITE_RNK(p->vecsz->rnk)
cannam@127 299 && fill_iodim(&pln, p)
cannam@127 300 && ego->applicable(&pln, p)
cannam@127 301 );
cannam@127 302 }
cannam@127 303
cannam@127 304 static void print(const plan *ego_, printer *p)
cannam@127 305 {
cannam@127 306 const P *ego = (const P *) ego_;
cannam@127 307 int i;
cannam@127 308 p->print(p, "(%s/%D", ego->nam, ego->vl);
cannam@127 309 for (i = 0; i < ego->rnk; ++i)
cannam@127 310 p->print(p, "%v", ego->d[i].n);
cannam@127 311 p->print(p, ")");
cannam@127 312 }
cannam@127 313
cannam@127 314 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
cannam@127 315 {
cannam@127 316 const problem_rdft *p;
cannam@127 317 const S *ego = (const S *) ego_;
cannam@127 318 P *pln;
cannam@127 319 int retval;
cannam@127 320
cannam@127 321 static const plan_adt padt = {
cannam@127 322 X(rdft_solve), X(null_awake), print, X(plan_null_destroy)
cannam@127 323 };
cannam@127 324
cannam@127 325 UNUSED(plnr);
cannam@127 326
cannam@127 327 if (!applicable(ego, p_))
cannam@127 328 return (plan *) 0;
cannam@127 329
cannam@127 330 p = (const problem_rdft *) p_;
cannam@127 331 pln = MKPLAN_RDFT(P, &padt, ego->apply);
cannam@127 332
cannam@127 333 retval = fill_iodim(pln, p);
cannam@127 334 (void)retval; /* UNUSED unless DEBUG */
cannam@127 335 A(retval);
cannam@127 336 A(pln->vl > 0); /* because FINITE_RNK(p->vecsz->rnk) holds */
cannam@127 337 pln->nam = ego->nam;
cannam@127 338
cannam@127 339 /* X(tensor_sz)(p->vecsz) loads, X(tensor_sz)(p->vecsz) stores */
cannam@127 340 X(ops_other)(2 * X(tensor_sz)(p->vecsz), &pln->super.super.ops);
cannam@127 341 return &(pln->super.super);
cannam@127 342 }
cannam@127 343
cannam@127 344
cannam@127 345 void X(rdft_rank0_register)(planner *p)
cannam@127 346 {
cannam@127 347 unsigned i;
cannam@127 348 static struct {
cannam@127 349 rdftapply apply;
cannam@127 350 int (*applicable)(const P *, const problem_rdft *);
cannam@127 351 const char *nam;
cannam@127 352 } tab[] = {
cannam@127 353 { apply_memcpy, applicable_memcpy, "rdft-rank0-memcpy" },
cannam@127 354 { apply_memcpy_loop, applicable_memcpy_loop,
cannam@127 355 "rdft-rank0-memcpy-loop" },
cannam@127 356 { apply_iter, applicable_iter, "rdft-rank0-iter-ci" },
cannam@127 357 { apply_cpy2dco, applicable_cpy2dco, "rdft-rank0-iter-co" },
cannam@127 358 { apply_tiled, applicable_tiled, "rdft-rank0-tiled" },
cannam@127 359 { apply_tiledbuf, applicable_tiledbuf, "rdft-rank0-tiledbuf" },
cannam@127 360 { apply_ip_sq, applicable_ip_sq, "rdft-rank0-ip-sq" },
cannam@127 361 {
cannam@127 362 apply_ip_sq_tiled,
cannam@127 363 applicable_ip_sq_tiled,
cannam@127 364 "rdft-rank0-ip-sq-tiled"
cannam@127 365 },
cannam@127 366 {
cannam@127 367 apply_ip_sq_tiledbuf,
cannam@127 368 applicable_ip_sq_tiledbuf,
cannam@127 369 "rdft-rank0-ip-sq-tiledbuf"
cannam@127 370 },
cannam@127 371 };
cannam@127 372
cannam@127 373 for (i = 0; i < sizeof(tab) / sizeof(tab[0]); ++i) {
cannam@127 374 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
cannam@127 375 S *slv = MKSOLVER(S, &sadt);
cannam@127 376 slv->apply = tab[i].apply;
cannam@127 377 slv->applicable = tab[i].applicable;
cannam@127 378 slv->nam = tab[i].nam;
cannam@127 379 REGISTER_SOLVER(p, &(slv->super));
cannam@127 380 }
cannam@127 381 }