cannam@127
|
1 /*
|
cannam@127
|
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
|
cannam@127
|
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
cannam@127
|
4 *
|
cannam@127
|
5 * This program is free software; you can redistribute it and/or modify
|
cannam@127
|
6 * it under the terms of the GNU General Public License as published by
|
cannam@127
|
7 * the Free Software Foundation; either version 2 of the License, or
|
cannam@127
|
8 * (at your option) any later version.
|
cannam@127
|
9 *
|
cannam@127
|
10 * This program is distributed in the hope that it will be useful,
|
cannam@127
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
cannam@127
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
cannam@127
|
13 * GNU General Public License for more details.
|
cannam@127
|
14 *
|
cannam@127
|
15 * You should have received a copy of the GNU General Public License
|
cannam@127
|
16 * along with this program; if not, write to the Free Software
|
cannam@127
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
cannam@127
|
18 *
|
cannam@127
|
19 */
|
cannam@127
|
20
|
cannam@127
|
21
|
cannam@127
|
22 #include "dft.h"
|
cannam@127
|
23 #include "rdft.h"
|
cannam@127
|
24 #include <stddef.h>
|
cannam@127
|
25
|
cannam@127
|
26 static void destroy(problem *ego_)
|
cannam@127
|
27 {
|
cannam@127
|
28 problem_rdft2 *ego = (problem_rdft2 *) ego_;
|
cannam@127
|
29 X(tensor_destroy2)(ego->vecsz, ego->sz);
|
cannam@127
|
30 X(ifree)(ego_);
|
cannam@127
|
31 }
|
cannam@127
|
32
|
cannam@127
|
33 static void hash(const problem *p_, md5 *m)
|
cannam@127
|
34 {
|
cannam@127
|
35 const problem_rdft2 *p = (const problem_rdft2 *) p_;
|
cannam@127
|
36 X(md5puts)(m, "rdft2");
|
cannam@127
|
37 X(md5int)(m, p->r0 == p->cr);
|
cannam@127
|
38 X(md5INT)(m, p->r1 - p->r0);
|
cannam@127
|
39 X(md5INT)(m, p->ci - p->cr);
|
cannam@127
|
40 X(md5int)(m, X(ialignment_of)(p->r0));
|
cannam@127
|
41 X(md5int)(m, X(ialignment_of)(p->r1));
|
cannam@127
|
42 X(md5int)(m, X(ialignment_of)(p->cr));
|
cannam@127
|
43 X(md5int)(m, X(ialignment_of)(p->ci));
|
cannam@127
|
44 X(md5int)(m, p->kind);
|
cannam@127
|
45 X(tensor_md5)(m, p->sz);
|
cannam@127
|
46 X(tensor_md5)(m, p->vecsz);
|
cannam@127
|
47 }
|
cannam@127
|
48
|
cannam@127
|
49 static void print(const problem *ego_, printer *p)
|
cannam@127
|
50 {
|
cannam@127
|
51 const problem_rdft2 *ego = (const problem_rdft2 *) ego_;
|
cannam@127
|
52 p->print(p, "(rdft2 %d %d %T %T)",
|
cannam@127
|
53 (int)(ego->cr == ego->r0),
|
cannam@127
|
54 (int)(ego->kind),
|
cannam@127
|
55 ego->sz,
|
cannam@127
|
56 ego->vecsz);
|
cannam@127
|
57 }
|
cannam@127
|
58
|
cannam@127
|
59 static void recur(const iodim *dims, int rnk, R *I0, R *I1)
|
cannam@127
|
60 {
|
cannam@127
|
61 if (rnk == RNK_MINFTY)
|
cannam@127
|
62 return;
|
cannam@127
|
63 else if (rnk == 0)
|
cannam@127
|
64 I0[0] = K(0.0);
|
cannam@127
|
65 else if (rnk > 0) {
|
cannam@127
|
66 INT i, n = dims[0].n, is = dims[0].is;
|
cannam@127
|
67
|
cannam@127
|
68 if (rnk == 1) {
|
cannam@127
|
69 for (i = 0; i < n - 1; i += 2) {
|
cannam@127
|
70 *I0 = *I1 = K(0.0);
|
cannam@127
|
71 I0 += is; I1 += is;
|
cannam@127
|
72 }
|
cannam@127
|
73 if (i < n)
|
cannam@127
|
74 *I0 = K(0.0);
|
cannam@127
|
75 } else {
|
cannam@127
|
76 for (i = 0; i < n; ++i)
|
cannam@127
|
77 recur(dims + 1, rnk - 1, I0 + i * is, I1 + i * is);
|
cannam@127
|
78 }
|
cannam@127
|
79 }
|
cannam@127
|
80 }
|
cannam@127
|
81
|
cannam@127
|
82 static void vrecur(const iodim *vdims, int vrnk,
|
cannam@127
|
83 const iodim *dims, int rnk, R *I0, R *I1)
|
cannam@127
|
84 {
|
cannam@127
|
85 if (vrnk == RNK_MINFTY)
|
cannam@127
|
86 return;
|
cannam@127
|
87 else if (vrnk == 0)
|
cannam@127
|
88 recur(dims, rnk, I0, I1);
|
cannam@127
|
89 else if (vrnk > 0) {
|
cannam@127
|
90 INT i, n = vdims[0].n, is = vdims[0].is;
|
cannam@127
|
91
|
cannam@127
|
92 for (i = 0; i < n; ++i)
|
cannam@127
|
93 vrecur(vdims + 1, vrnk - 1,
|
cannam@127
|
94 dims, rnk, I0 + i * is, I1 + i * is);
|
cannam@127
|
95 }
|
cannam@127
|
96 }
|
cannam@127
|
97
|
cannam@127
|
98 INT X(rdft2_complex_n)(INT real_n, rdft_kind kind)
|
cannam@127
|
99 {
|
cannam@127
|
100 switch (kind) {
|
cannam@127
|
101 case R2HC:
|
cannam@127
|
102 case HC2R:
|
cannam@127
|
103 return (real_n / 2) + 1;
|
cannam@127
|
104 case R2HCII:
|
cannam@127
|
105 case HC2RIII:
|
cannam@127
|
106 return (real_n + 1) / 2;
|
cannam@127
|
107 default:
|
cannam@127
|
108 /* can't happen */
|
cannam@127
|
109 A(0);
|
cannam@127
|
110 return 0;
|
cannam@127
|
111 }
|
cannam@127
|
112 }
|
cannam@127
|
113
|
cannam@127
|
114 static void zero(const problem *ego_)
|
cannam@127
|
115 {
|
cannam@127
|
116 const problem_rdft2 *ego = (const problem_rdft2 *) ego_;
|
cannam@127
|
117 if (R2HC_KINDP(ego->kind)) {
|
cannam@127
|
118 /* FIXME: can we avoid the double recursion somehow? */
|
cannam@127
|
119 vrecur(ego->vecsz->dims, ego->vecsz->rnk,
|
cannam@127
|
120 ego->sz->dims, ego->sz->rnk,
|
cannam@127
|
121 UNTAINT(ego->r0), UNTAINT(ego->r1));
|
cannam@127
|
122 } else {
|
cannam@127
|
123 tensor *sz;
|
cannam@127
|
124 tensor *sz2 = X(tensor_copy)(ego->sz);
|
cannam@127
|
125 int rnk = sz2->rnk;
|
cannam@127
|
126 if (rnk > 0) /* ~half as many complex outputs */
|
cannam@127
|
127 sz2->dims[rnk-1].n =
|
cannam@127
|
128 X(rdft2_complex_n)(sz2->dims[rnk-1].n, ego->kind);
|
cannam@127
|
129 sz = X(tensor_append)(ego->vecsz, sz2);
|
cannam@127
|
130 X(tensor_destroy)(sz2);
|
cannam@127
|
131 X(dft_zerotens)(sz, UNTAINT(ego->cr), UNTAINT(ego->ci));
|
cannam@127
|
132 X(tensor_destroy)(sz);
|
cannam@127
|
133 }
|
cannam@127
|
134 }
|
cannam@127
|
135
|
cannam@127
|
136 static const problem_adt padt =
|
cannam@127
|
137 {
|
cannam@127
|
138 PROBLEM_RDFT2,
|
cannam@127
|
139 hash,
|
cannam@127
|
140 zero,
|
cannam@127
|
141 print,
|
cannam@127
|
142 destroy
|
cannam@127
|
143 };
|
cannam@127
|
144
|
cannam@127
|
145 problem *X(mkproblem_rdft2)(const tensor *sz, const tensor *vecsz,
|
cannam@127
|
146 R *r0, R *r1, R *cr, R *ci,
|
cannam@127
|
147 rdft_kind kind)
|
cannam@127
|
148 {
|
cannam@127
|
149 problem_rdft2 *ego;
|
cannam@127
|
150
|
cannam@127
|
151 A(kind == R2HC || kind == R2HCII || kind == HC2R || kind == HC2RIII);
|
cannam@127
|
152 A(X(tensor_kosherp)(sz));
|
cannam@127
|
153 A(X(tensor_kosherp)(vecsz));
|
cannam@127
|
154 A(FINITE_RNK(sz->rnk));
|
cannam@127
|
155
|
cannam@127
|
156 /* require in-place problems to use r0 == cr */
|
cannam@127
|
157 if (UNTAINT(r0) == UNTAINT(ci))
|
cannam@127
|
158 return X(mkproblem_unsolvable)();
|
cannam@127
|
159
|
cannam@127
|
160 /* FIXME: should check UNTAINT(r1) == UNTAINT(cr) but
|
cannam@127
|
161 only if odd elements exist, which requires compressing the
|
cannam@127
|
162 tensors first */
|
cannam@127
|
163
|
cannam@127
|
164 if (UNTAINT(r0) == UNTAINT(cr))
|
cannam@127
|
165 r0 = cr = JOIN_TAINT(r0, cr);
|
cannam@127
|
166
|
cannam@127
|
167 ego = (problem_rdft2 *)X(mkproblem)(sizeof(problem_rdft2), &padt);
|
cannam@127
|
168
|
cannam@127
|
169 if (sz->rnk > 1) { /* have to compress rnk-1 dims separately, ugh */
|
cannam@127
|
170 tensor *szc = X(tensor_copy_except)(sz, sz->rnk - 1);
|
cannam@127
|
171 tensor *szr = X(tensor_copy_sub)(sz, sz->rnk - 1, 1);
|
cannam@127
|
172 tensor *szcc = X(tensor_compress)(szc);
|
cannam@127
|
173 if (szcc->rnk > 0)
|
cannam@127
|
174 ego->sz = X(tensor_append)(szcc, szr);
|
cannam@127
|
175 else
|
cannam@127
|
176 ego->sz = X(tensor_compress)(szr);
|
cannam@127
|
177 X(tensor_destroy2)(szc, szr); X(tensor_destroy)(szcc);
|
cannam@127
|
178 } else {
|
cannam@127
|
179 ego->sz = X(tensor_compress)(sz);
|
cannam@127
|
180 }
|
cannam@127
|
181 ego->vecsz = X(tensor_compress_contiguous)(vecsz);
|
cannam@127
|
182 ego->r0 = r0;
|
cannam@127
|
183 ego->r1 = r1;
|
cannam@127
|
184 ego->cr = cr;
|
cannam@127
|
185 ego->ci = ci;
|
cannam@127
|
186 ego->kind = kind;
|
cannam@127
|
187
|
cannam@127
|
188 A(FINITE_RNK(ego->sz->rnk));
|
cannam@127
|
189 return &(ego->super);
|
cannam@127
|
190
|
cannam@127
|
191 }
|
cannam@127
|
192
|
cannam@127
|
193 /* Same as X(mkproblem_rdft2), but also destroy input tensors. */
|
cannam@127
|
194 problem *X(mkproblem_rdft2_d)(tensor *sz, tensor *vecsz,
|
cannam@127
|
195 R *r0, R *r1, R *cr, R *ci, rdft_kind kind)
|
cannam@127
|
196 {
|
cannam@127
|
197 problem *p = X(mkproblem_rdft2)(sz, vecsz, r0, r1, cr, ci, kind);
|
cannam@127
|
198 X(tensor_destroy2)(vecsz, sz);
|
cannam@127
|
199 return p;
|
cannam@127
|
200 }
|
cannam@127
|
201
|
cannam@127
|
202 /* Same as X(mkproblem_rdft2_d), but with only one R pointer.
|
cannam@127
|
203 Used by the API. */
|
cannam@127
|
204 problem *X(mkproblem_rdft2_d_3pointers)(tensor *sz, tensor *vecsz,
|
cannam@127
|
205 R *r0, R *cr, R *ci, rdft_kind kind)
|
cannam@127
|
206 {
|
cannam@127
|
207 problem *p;
|
cannam@127
|
208 int rnk = sz->rnk;
|
cannam@127
|
209 R *r1;
|
cannam@127
|
210
|
cannam@127
|
211 if (rnk == 0)
|
cannam@127
|
212 r1 = r0;
|
cannam@127
|
213 else if (R2HC_KINDP(kind)) {
|
cannam@127
|
214 r1 = r0 + sz->dims[rnk-1].is;
|
cannam@127
|
215 sz->dims[rnk-1].is *= 2;
|
cannam@127
|
216 } else {
|
cannam@127
|
217 r1 = r0 + sz->dims[rnk-1].os;
|
cannam@127
|
218 sz->dims[rnk-1].os *= 2;
|
cannam@127
|
219 }
|
cannam@127
|
220
|
cannam@127
|
221 p = X(mkproblem_rdft2)(sz, vecsz, r0, r1, cr, ci, kind);
|
cannam@127
|
222 X(tensor_destroy2)(vecsz, sz);
|
cannam@127
|
223 return p;
|
cannam@127
|
224 }
|