cannam@127
|
1 /*
|
cannam@127
|
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
|
cannam@127
|
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
cannam@127
|
4 *
|
cannam@127
|
5 * This program is free software; you can redistribute it and/or modify
|
cannam@127
|
6 * it under the terms of the GNU General Public License as published by
|
cannam@127
|
7 * the Free Software Foundation; either version 2 of the License, or
|
cannam@127
|
8 * (at your option) any later version.
|
cannam@127
|
9 *
|
cannam@127
|
10 * This program is distributed in the hope that it will be useful,
|
cannam@127
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
cannam@127
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
cannam@127
|
13 * GNU General Public License for more details.
|
cannam@127
|
14 *
|
cannam@127
|
15 * You should have received a copy of the GNU General Public License
|
cannam@127
|
16 * along with this program; if not, write to the Free Software
|
cannam@127
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
cannam@127
|
18 *
|
cannam@127
|
19 */
|
cannam@127
|
20
|
cannam@127
|
21
|
cannam@127
|
22 #include "rdft.h"
|
cannam@127
|
23 #include <stddef.h>
|
cannam@127
|
24
|
cannam@127
|
25 static void destroy(problem *ego_)
|
cannam@127
|
26 {
|
cannam@127
|
27 problem_rdft *ego = (problem_rdft *) ego_;
|
cannam@127
|
28 #if !defined(STRUCT_HACK_C99) && !defined(STRUCT_HACK_KR)
|
cannam@127
|
29 X(ifree0)(ego->kind);
|
cannam@127
|
30 #endif
|
cannam@127
|
31 X(tensor_destroy2)(ego->vecsz, ego->sz);
|
cannam@127
|
32 X(ifree)(ego_);
|
cannam@127
|
33 }
|
cannam@127
|
34
|
cannam@127
|
35 static void kind_hash(md5 *m, const rdft_kind *kind, int rnk)
|
cannam@127
|
36 {
|
cannam@127
|
37 int i;
|
cannam@127
|
38 for (i = 0; i < rnk; ++i)
|
cannam@127
|
39 X(md5int)(m, kind[i]);
|
cannam@127
|
40 }
|
cannam@127
|
41
|
cannam@127
|
42 static void hash(const problem *p_, md5 *m)
|
cannam@127
|
43 {
|
cannam@127
|
44 const problem_rdft *p = (const problem_rdft *) p_;
|
cannam@127
|
45 X(md5puts)(m, "rdft");
|
cannam@127
|
46 X(md5int)(m, p->I == p->O);
|
cannam@127
|
47 kind_hash(m, p->kind, p->sz->rnk);
|
cannam@127
|
48 X(md5int)(m, X(ialignment_of)(p->I));
|
cannam@127
|
49 X(md5int)(m, X(ialignment_of)(p->O));
|
cannam@127
|
50 X(tensor_md5)(m, p->sz);
|
cannam@127
|
51 X(tensor_md5)(m, p->vecsz);
|
cannam@127
|
52 }
|
cannam@127
|
53
|
cannam@127
|
54 static void recur(const iodim *dims, int rnk, R *I)
|
cannam@127
|
55 {
|
cannam@127
|
56 if (rnk == RNK_MINFTY)
|
cannam@127
|
57 return;
|
cannam@127
|
58 else if (rnk == 0)
|
cannam@127
|
59 I[0] = K(0.0);
|
cannam@127
|
60 else if (rnk > 0) {
|
cannam@127
|
61 INT i, n = dims[0].n, is = dims[0].is;
|
cannam@127
|
62
|
cannam@127
|
63 if (rnk == 1) {
|
cannam@127
|
64 /* this case is redundant but faster */
|
cannam@127
|
65 for (i = 0; i < n; ++i)
|
cannam@127
|
66 I[i * is] = K(0.0);
|
cannam@127
|
67 } else {
|
cannam@127
|
68 for (i = 0; i < n; ++i)
|
cannam@127
|
69 recur(dims + 1, rnk - 1, I + i * is);
|
cannam@127
|
70 }
|
cannam@127
|
71 }
|
cannam@127
|
72 }
|
cannam@127
|
73
|
cannam@127
|
74 void X(rdft_zerotens)(tensor *sz, R *I)
|
cannam@127
|
75 {
|
cannam@127
|
76 recur(sz->dims, sz->rnk, I);
|
cannam@127
|
77 }
|
cannam@127
|
78
|
cannam@127
|
79 #define KSTR_LEN 8
|
cannam@127
|
80
|
cannam@127
|
81 const char *X(rdft_kind_str)(rdft_kind kind)
|
cannam@127
|
82 {
|
cannam@127
|
83 static const char kstr[][KSTR_LEN] = {
|
cannam@127
|
84 "r2hc", "r2hc01", "r2hc10", "r2hc11",
|
cannam@127
|
85 "hc2r", "hc2r01", "hc2r10", "hc2r11",
|
cannam@127
|
86 "dht",
|
cannam@127
|
87 "redft00", "redft01", "redft10", "redft11",
|
cannam@127
|
88 "rodft00", "rodft01", "rodft10", "rodft11"
|
cannam@127
|
89 };
|
cannam@127
|
90 A(kind >= 0 && kind < sizeof(kstr) / KSTR_LEN);
|
cannam@127
|
91 return kstr[kind];
|
cannam@127
|
92 }
|
cannam@127
|
93
|
cannam@127
|
94 static void print(const problem *ego_, printer *p)
|
cannam@127
|
95 {
|
cannam@127
|
96 const problem_rdft *ego = (const problem_rdft *) ego_;
|
cannam@127
|
97 int i;
|
cannam@127
|
98 p->print(p, "(rdft %d %D %T %T",
|
cannam@127
|
99 X(ialignment_of)(ego->I),
|
cannam@127
|
100 (INT)(ego->O - ego->I),
|
cannam@127
|
101 ego->sz,
|
cannam@127
|
102 ego->vecsz);
|
cannam@127
|
103 for (i = 0; i < ego->sz->rnk; ++i)
|
cannam@127
|
104 p->print(p, " %d", (int)ego->kind[i]);
|
cannam@127
|
105 p->print(p, ")");
|
cannam@127
|
106 }
|
cannam@127
|
107
|
cannam@127
|
108 static void zero(const problem *ego_)
|
cannam@127
|
109 {
|
cannam@127
|
110 const problem_rdft *ego = (const problem_rdft *) ego_;
|
cannam@127
|
111 tensor *sz = X(tensor_append)(ego->vecsz, ego->sz);
|
cannam@127
|
112 X(rdft_zerotens)(sz, UNTAINT(ego->I));
|
cannam@127
|
113 X(tensor_destroy)(sz);
|
cannam@127
|
114 }
|
cannam@127
|
115
|
cannam@127
|
116 static const problem_adt padt =
|
cannam@127
|
117 {
|
cannam@127
|
118 PROBLEM_RDFT,
|
cannam@127
|
119 hash,
|
cannam@127
|
120 zero,
|
cannam@127
|
121 print,
|
cannam@127
|
122 destroy
|
cannam@127
|
123 };
|
cannam@127
|
124
|
cannam@127
|
125 /* Dimensions of size 1 that are not REDFT/RODFT are no-ops and can be
|
cannam@127
|
126 eliminated. REDFT/RODFT unit dimensions often have factors of 2.0
|
cannam@127
|
127 and suchlike from normalization and phases, although in principle
|
cannam@127
|
128 these constant factors from different dimensions could be combined. */
|
cannam@127
|
129 static int nontrivial(const iodim *d, rdft_kind kind)
|
cannam@127
|
130 {
|
cannam@127
|
131 return (d->n > 1 || kind == R2HC11 || kind == HC2R11
|
cannam@127
|
132 || (REODFT_KINDP(kind) && kind != REDFT01 && kind != RODFT01));
|
cannam@127
|
133 }
|
cannam@127
|
134
|
cannam@127
|
135 problem *X(mkproblem_rdft)(const tensor *sz, const tensor *vecsz,
|
cannam@127
|
136 R *I, R *O, const rdft_kind *kind)
|
cannam@127
|
137 {
|
cannam@127
|
138 problem_rdft *ego;
|
cannam@127
|
139 int rnk = sz->rnk;
|
cannam@127
|
140 int i;
|
cannam@127
|
141
|
cannam@127
|
142 A(X(tensor_kosherp)(sz));
|
cannam@127
|
143 A(X(tensor_kosherp)(vecsz));
|
cannam@127
|
144 A(FINITE_RNK(sz->rnk));
|
cannam@127
|
145
|
cannam@127
|
146 if (UNTAINT(I) == UNTAINT(O))
|
cannam@127
|
147 I = O = JOIN_TAINT(I, O);
|
cannam@127
|
148
|
cannam@127
|
149 if (I == O && !X(tensor_inplace_locations)(sz, vecsz))
|
cannam@127
|
150 return X(mkproblem_unsolvable)();
|
cannam@127
|
151
|
cannam@127
|
152 for (i = rnk = 0; i < sz->rnk; ++i) {
|
cannam@127
|
153 A(sz->dims[i].n > 0);
|
cannam@127
|
154 if (nontrivial(sz->dims + i, kind[i]))
|
cannam@127
|
155 ++rnk;
|
cannam@127
|
156 }
|
cannam@127
|
157
|
cannam@127
|
158 #if defined(STRUCT_HACK_KR)
|
cannam@127
|
159 ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft)
|
cannam@127
|
160 + sizeof(rdft_kind)
|
cannam@127
|
161 * (rnk > 0 ? rnk - 1u : 0u), &padt);
|
cannam@127
|
162 #elif defined(STRUCT_HACK_C99)
|
cannam@127
|
163 ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft)
|
cannam@127
|
164 + sizeof(rdft_kind) * (unsigned)rnk, &padt);
|
cannam@127
|
165 #else
|
cannam@127
|
166 ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft), &padt);
|
cannam@127
|
167 ego->kind = (rdft_kind *) MALLOC(sizeof(rdft_kind) * (unsigned)rnk, PROBLEMS);
|
cannam@127
|
168 #endif
|
cannam@127
|
169
|
cannam@127
|
170 /* do compression and sorting as in X(tensor_compress), but take
|
cannam@127
|
171 transform kind into account (sigh) */
|
cannam@127
|
172 ego->sz = X(mktensor)(rnk);
|
cannam@127
|
173 for (i = rnk = 0; i < sz->rnk; ++i) {
|
cannam@127
|
174 if (nontrivial(sz->dims + i, kind[i])) {
|
cannam@127
|
175 ego->kind[rnk] = kind[i];
|
cannam@127
|
176 ego->sz->dims[rnk++] = sz->dims[i];
|
cannam@127
|
177 }
|
cannam@127
|
178 }
|
cannam@127
|
179 for (i = 0; i + 1 < rnk; ++i) {
|
cannam@127
|
180 int j;
|
cannam@127
|
181 for (j = i + 1; j < rnk; ++j)
|
cannam@127
|
182 if (X(dimcmp)(ego->sz->dims + i, ego->sz->dims + j) > 0) {
|
cannam@127
|
183 iodim dswap;
|
cannam@127
|
184 rdft_kind kswap;
|
cannam@127
|
185 dswap = ego->sz->dims[i];
|
cannam@127
|
186 ego->sz->dims[i] = ego->sz->dims[j];
|
cannam@127
|
187 ego->sz->dims[j] = dswap;
|
cannam@127
|
188 kswap = ego->kind[i];
|
cannam@127
|
189 ego->kind[i] = ego->kind[j];
|
cannam@127
|
190 ego->kind[j] = kswap;
|
cannam@127
|
191 }
|
cannam@127
|
192 }
|
cannam@127
|
193
|
cannam@127
|
194 for (i = 0; i < rnk; ++i)
|
cannam@127
|
195 if (ego->sz->dims[i].n == 2 && (ego->kind[i] == REDFT00
|
cannam@127
|
196 || ego->kind[i] == DHT
|
cannam@127
|
197 || ego->kind[i] == HC2R))
|
cannam@127
|
198 ego->kind[i] = R2HC; /* size-2 transforms are equivalent */
|
cannam@127
|
199
|
cannam@127
|
200 ego->vecsz = X(tensor_compress_contiguous)(vecsz);
|
cannam@127
|
201 ego->I = I;
|
cannam@127
|
202 ego->O = O;
|
cannam@127
|
203
|
cannam@127
|
204 A(FINITE_RNK(ego->sz->rnk));
|
cannam@127
|
205
|
cannam@127
|
206 return &(ego->super);
|
cannam@127
|
207 }
|
cannam@127
|
208
|
cannam@127
|
209 /* Same as X(mkproblem_rdft), but also destroy input tensors. */
|
cannam@127
|
210 problem *X(mkproblem_rdft_d)(tensor *sz, tensor *vecsz,
|
cannam@127
|
211 R *I, R *O, const rdft_kind *kind)
|
cannam@127
|
212 {
|
cannam@127
|
213 problem *p = X(mkproblem_rdft)(sz, vecsz, I, O, kind);
|
cannam@127
|
214 X(tensor_destroy2)(vecsz, sz);
|
cannam@127
|
215 return p;
|
cannam@127
|
216 }
|
cannam@127
|
217
|
cannam@127
|
218 /* As above, but for rnk <= 1 only and takes a scalar kind parameter */
|
cannam@127
|
219 problem *X(mkproblem_rdft_1)(const tensor *sz, const tensor *vecsz,
|
cannam@127
|
220 R *I, R *O, rdft_kind kind)
|
cannam@127
|
221 {
|
cannam@127
|
222 A(sz->rnk <= 1);
|
cannam@127
|
223 return X(mkproblem_rdft)(sz, vecsz, I, O, &kind);
|
cannam@127
|
224 }
|
cannam@127
|
225
|
cannam@127
|
226 problem *X(mkproblem_rdft_1_d)(tensor *sz, tensor *vecsz,
|
cannam@127
|
227 R *I, R *O, rdft_kind kind)
|
cannam@127
|
228 {
|
cannam@127
|
229 A(sz->rnk <= 1);
|
cannam@127
|
230 return X(mkproblem_rdft_d)(sz, vecsz, I, O, &kind);
|
cannam@127
|
231 }
|
cannam@127
|
232
|
cannam@127
|
233 /* create a zero-dimensional problem */
|
cannam@127
|
234 problem *X(mkproblem_rdft_0_d)(tensor *vecsz, R *I, R *O)
|
cannam@127
|
235 {
|
cannam@127
|
236 return X(mkproblem_rdft_d)(X(mktensor_0d)(), vecsz, I, O,
|
cannam@127
|
237 (const rdft_kind *)0);
|
cannam@127
|
238 }
|