annotate src/fftw-3.3.5/rdft/problem.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21
cannam@127 22 #include "rdft.h"
cannam@127 23 #include <stddef.h>
cannam@127 24
cannam@127 25 static void destroy(problem *ego_)
cannam@127 26 {
cannam@127 27 problem_rdft *ego = (problem_rdft *) ego_;
cannam@127 28 #if !defined(STRUCT_HACK_C99) && !defined(STRUCT_HACK_KR)
cannam@127 29 X(ifree0)(ego->kind);
cannam@127 30 #endif
cannam@127 31 X(tensor_destroy2)(ego->vecsz, ego->sz);
cannam@127 32 X(ifree)(ego_);
cannam@127 33 }
cannam@127 34
cannam@127 35 static void kind_hash(md5 *m, const rdft_kind *kind, int rnk)
cannam@127 36 {
cannam@127 37 int i;
cannam@127 38 for (i = 0; i < rnk; ++i)
cannam@127 39 X(md5int)(m, kind[i]);
cannam@127 40 }
cannam@127 41
cannam@127 42 static void hash(const problem *p_, md5 *m)
cannam@127 43 {
cannam@127 44 const problem_rdft *p = (const problem_rdft *) p_;
cannam@127 45 X(md5puts)(m, "rdft");
cannam@127 46 X(md5int)(m, p->I == p->O);
cannam@127 47 kind_hash(m, p->kind, p->sz->rnk);
cannam@127 48 X(md5int)(m, X(ialignment_of)(p->I));
cannam@127 49 X(md5int)(m, X(ialignment_of)(p->O));
cannam@127 50 X(tensor_md5)(m, p->sz);
cannam@127 51 X(tensor_md5)(m, p->vecsz);
cannam@127 52 }
cannam@127 53
cannam@127 54 static void recur(const iodim *dims, int rnk, R *I)
cannam@127 55 {
cannam@127 56 if (rnk == RNK_MINFTY)
cannam@127 57 return;
cannam@127 58 else if (rnk == 0)
cannam@127 59 I[0] = K(0.0);
cannam@127 60 else if (rnk > 0) {
cannam@127 61 INT i, n = dims[0].n, is = dims[0].is;
cannam@127 62
cannam@127 63 if (rnk == 1) {
cannam@127 64 /* this case is redundant but faster */
cannam@127 65 for (i = 0; i < n; ++i)
cannam@127 66 I[i * is] = K(0.0);
cannam@127 67 } else {
cannam@127 68 for (i = 0; i < n; ++i)
cannam@127 69 recur(dims + 1, rnk - 1, I + i * is);
cannam@127 70 }
cannam@127 71 }
cannam@127 72 }
cannam@127 73
cannam@127 74 void X(rdft_zerotens)(tensor *sz, R *I)
cannam@127 75 {
cannam@127 76 recur(sz->dims, sz->rnk, I);
cannam@127 77 }
cannam@127 78
cannam@127 79 #define KSTR_LEN 8
cannam@127 80
cannam@127 81 const char *X(rdft_kind_str)(rdft_kind kind)
cannam@127 82 {
cannam@127 83 static const char kstr[][KSTR_LEN] = {
cannam@127 84 "r2hc", "r2hc01", "r2hc10", "r2hc11",
cannam@127 85 "hc2r", "hc2r01", "hc2r10", "hc2r11",
cannam@127 86 "dht",
cannam@127 87 "redft00", "redft01", "redft10", "redft11",
cannam@127 88 "rodft00", "rodft01", "rodft10", "rodft11"
cannam@127 89 };
cannam@127 90 A(kind >= 0 && kind < sizeof(kstr) / KSTR_LEN);
cannam@127 91 return kstr[kind];
cannam@127 92 }
cannam@127 93
cannam@127 94 static void print(const problem *ego_, printer *p)
cannam@127 95 {
cannam@127 96 const problem_rdft *ego = (const problem_rdft *) ego_;
cannam@127 97 int i;
cannam@127 98 p->print(p, "(rdft %d %D %T %T",
cannam@127 99 X(ialignment_of)(ego->I),
cannam@127 100 (INT)(ego->O - ego->I),
cannam@127 101 ego->sz,
cannam@127 102 ego->vecsz);
cannam@127 103 for (i = 0; i < ego->sz->rnk; ++i)
cannam@127 104 p->print(p, " %d", (int)ego->kind[i]);
cannam@127 105 p->print(p, ")");
cannam@127 106 }
cannam@127 107
cannam@127 108 static void zero(const problem *ego_)
cannam@127 109 {
cannam@127 110 const problem_rdft *ego = (const problem_rdft *) ego_;
cannam@127 111 tensor *sz = X(tensor_append)(ego->vecsz, ego->sz);
cannam@127 112 X(rdft_zerotens)(sz, UNTAINT(ego->I));
cannam@127 113 X(tensor_destroy)(sz);
cannam@127 114 }
cannam@127 115
cannam@127 116 static const problem_adt padt =
cannam@127 117 {
cannam@127 118 PROBLEM_RDFT,
cannam@127 119 hash,
cannam@127 120 zero,
cannam@127 121 print,
cannam@127 122 destroy
cannam@127 123 };
cannam@127 124
cannam@127 125 /* Dimensions of size 1 that are not REDFT/RODFT are no-ops and can be
cannam@127 126 eliminated. REDFT/RODFT unit dimensions often have factors of 2.0
cannam@127 127 and suchlike from normalization and phases, although in principle
cannam@127 128 these constant factors from different dimensions could be combined. */
cannam@127 129 static int nontrivial(const iodim *d, rdft_kind kind)
cannam@127 130 {
cannam@127 131 return (d->n > 1 || kind == R2HC11 || kind == HC2R11
cannam@127 132 || (REODFT_KINDP(kind) && kind != REDFT01 && kind != RODFT01));
cannam@127 133 }
cannam@127 134
cannam@127 135 problem *X(mkproblem_rdft)(const tensor *sz, const tensor *vecsz,
cannam@127 136 R *I, R *O, const rdft_kind *kind)
cannam@127 137 {
cannam@127 138 problem_rdft *ego;
cannam@127 139 int rnk = sz->rnk;
cannam@127 140 int i;
cannam@127 141
cannam@127 142 A(X(tensor_kosherp)(sz));
cannam@127 143 A(X(tensor_kosherp)(vecsz));
cannam@127 144 A(FINITE_RNK(sz->rnk));
cannam@127 145
cannam@127 146 if (UNTAINT(I) == UNTAINT(O))
cannam@127 147 I = O = JOIN_TAINT(I, O);
cannam@127 148
cannam@127 149 if (I == O && !X(tensor_inplace_locations)(sz, vecsz))
cannam@127 150 return X(mkproblem_unsolvable)();
cannam@127 151
cannam@127 152 for (i = rnk = 0; i < sz->rnk; ++i) {
cannam@127 153 A(sz->dims[i].n > 0);
cannam@127 154 if (nontrivial(sz->dims + i, kind[i]))
cannam@127 155 ++rnk;
cannam@127 156 }
cannam@127 157
cannam@127 158 #if defined(STRUCT_HACK_KR)
cannam@127 159 ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft)
cannam@127 160 + sizeof(rdft_kind)
cannam@127 161 * (rnk > 0 ? rnk - 1u : 0u), &padt);
cannam@127 162 #elif defined(STRUCT_HACK_C99)
cannam@127 163 ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft)
cannam@127 164 + sizeof(rdft_kind) * (unsigned)rnk, &padt);
cannam@127 165 #else
cannam@127 166 ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft), &padt);
cannam@127 167 ego->kind = (rdft_kind *) MALLOC(sizeof(rdft_kind) * (unsigned)rnk, PROBLEMS);
cannam@127 168 #endif
cannam@127 169
cannam@127 170 /* do compression and sorting as in X(tensor_compress), but take
cannam@127 171 transform kind into account (sigh) */
cannam@127 172 ego->sz = X(mktensor)(rnk);
cannam@127 173 for (i = rnk = 0; i < sz->rnk; ++i) {
cannam@127 174 if (nontrivial(sz->dims + i, kind[i])) {
cannam@127 175 ego->kind[rnk] = kind[i];
cannam@127 176 ego->sz->dims[rnk++] = sz->dims[i];
cannam@127 177 }
cannam@127 178 }
cannam@127 179 for (i = 0; i + 1 < rnk; ++i) {
cannam@127 180 int j;
cannam@127 181 for (j = i + 1; j < rnk; ++j)
cannam@127 182 if (X(dimcmp)(ego->sz->dims + i, ego->sz->dims + j) > 0) {
cannam@127 183 iodim dswap;
cannam@127 184 rdft_kind kswap;
cannam@127 185 dswap = ego->sz->dims[i];
cannam@127 186 ego->sz->dims[i] = ego->sz->dims[j];
cannam@127 187 ego->sz->dims[j] = dswap;
cannam@127 188 kswap = ego->kind[i];
cannam@127 189 ego->kind[i] = ego->kind[j];
cannam@127 190 ego->kind[j] = kswap;
cannam@127 191 }
cannam@127 192 }
cannam@127 193
cannam@127 194 for (i = 0; i < rnk; ++i)
cannam@127 195 if (ego->sz->dims[i].n == 2 && (ego->kind[i] == REDFT00
cannam@127 196 || ego->kind[i] == DHT
cannam@127 197 || ego->kind[i] == HC2R))
cannam@127 198 ego->kind[i] = R2HC; /* size-2 transforms are equivalent */
cannam@127 199
cannam@127 200 ego->vecsz = X(tensor_compress_contiguous)(vecsz);
cannam@127 201 ego->I = I;
cannam@127 202 ego->O = O;
cannam@127 203
cannam@127 204 A(FINITE_RNK(ego->sz->rnk));
cannam@127 205
cannam@127 206 return &(ego->super);
cannam@127 207 }
cannam@127 208
cannam@127 209 /* Same as X(mkproblem_rdft), but also destroy input tensors. */
cannam@127 210 problem *X(mkproblem_rdft_d)(tensor *sz, tensor *vecsz,
cannam@127 211 R *I, R *O, const rdft_kind *kind)
cannam@127 212 {
cannam@127 213 problem *p = X(mkproblem_rdft)(sz, vecsz, I, O, kind);
cannam@127 214 X(tensor_destroy2)(vecsz, sz);
cannam@127 215 return p;
cannam@127 216 }
cannam@127 217
cannam@127 218 /* As above, but for rnk <= 1 only and takes a scalar kind parameter */
cannam@127 219 problem *X(mkproblem_rdft_1)(const tensor *sz, const tensor *vecsz,
cannam@127 220 R *I, R *O, rdft_kind kind)
cannam@127 221 {
cannam@127 222 A(sz->rnk <= 1);
cannam@127 223 return X(mkproblem_rdft)(sz, vecsz, I, O, &kind);
cannam@127 224 }
cannam@127 225
cannam@127 226 problem *X(mkproblem_rdft_1_d)(tensor *sz, tensor *vecsz,
cannam@127 227 R *I, R *O, rdft_kind kind)
cannam@127 228 {
cannam@127 229 A(sz->rnk <= 1);
cannam@127 230 return X(mkproblem_rdft_d)(sz, vecsz, I, O, &kind);
cannam@127 231 }
cannam@127 232
cannam@127 233 /* create a zero-dimensional problem */
cannam@127 234 problem *X(mkproblem_rdft_0_d)(tensor *vecsz, R *I, R *O)
cannam@127 235 {
cannam@127 236 return X(mkproblem_rdft_d)(X(mktensor_0d)(), vecsz, I, O,
cannam@127 237 (const rdft_kind *)0);
cannam@127 238 }