annotate src/fftw-3.3.5/rdft/generic.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21 #include "rdft.h"
cannam@127 22
cannam@127 23 typedef struct {
cannam@127 24 solver super;
cannam@127 25 rdft_kind kind;
cannam@127 26 } S;
cannam@127 27
cannam@127 28 typedef struct {
cannam@127 29 plan_rdft super;
cannam@127 30 twid *td;
cannam@127 31 INT n, is, os;
cannam@127 32 rdft_kind kind;
cannam@127 33 } P;
cannam@127 34
cannam@127 35 /***************************************************************************/
cannam@127 36
cannam@127 37 static void cdot_r2hc(INT n, const E *x, const R *w, R *or0, R *oi1)
cannam@127 38 {
cannam@127 39 INT i;
cannam@127 40
cannam@127 41 E rr = x[0], ri = 0;
cannam@127 42 x += 1;
cannam@127 43 for (i = 1; i + i < n; ++i) {
cannam@127 44 rr += x[0] * w[0];
cannam@127 45 ri += x[1] * w[1];
cannam@127 46 x += 2; w += 2;
cannam@127 47 }
cannam@127 48 *or0 = rr;
cannam@127 49 *oi1 = ri;
cannam@127 50 }
cannam@127 51
cannam@127 52 static void hartley_r2hc(INT n, const R *xr, INT xs, E *o, R *pr)
cannam@127 53 {
cannam@127 54 INT i;
cannam@127 55 E sr;
cannam@127 56 o[0] = sr = xr[0]; o += 1;
cannam@127 57 for (i = 1; i + i < n; ++i) {
cannam@127 58 R a, b;
cannam@127 59 a = xr[i * xs];
cannam@127 60 b = xr[(n - i) * xs];
cannam@127 61 sr += (o[0] = a + b);
cannam@127 62 #if FFT_SIGN == -1
cannam@127 63 o[1] = b - a;
cannam@127 64 #else
cannam@127 65 o[1] = a - b;
cannam@127 66 #endif
cannam@127 67 o += 2;
cannam@127 68 }
cannam@127 69 *pr = sr;
cannam@127 70 }
cannam@127 71
cannam@127 72 static void apply_r2hc(const plan *ego_, R *I, R *O)
cannam@127 73 {
cannam@127 74 const P *ego = (const P *) ego_;
cannam@127 75 INT i;
cannam@127 76 INT n = ego->n, is = ego->is, os = ego->os;
cannam@127 77 const R *W = ego->td->W;
cannam@127 78 E *buf;
cannam@127 79 size_t bufsz = n * sizeof(E);
cannam@127 80
cannam@127 81 BUF_ALLOC(E *, buf, bufsz);
cannam@127 82 hartley_r2hc(n, I, is, buf, O);
cannam@127 83
cannam@127 84 for (i = 1; i + i < n; ++i) {
cannam@127 85 cdot_r2hc(n, buf, W, O + i * os, O + (n - i) * os);
cannam@127 86 W += n - 1;
cannam@127 87 }
cannam@127 88
cannam@127 89 BUF_FREE(buf, bufsz);
cannam@127 90 }
cannam@127 91
cannam@127 92
cannam@127 93 static void cdot_hc2r(INT n, const E *x, const R *w, R *or0, R *or1)
cannam@127 94 {
cannam@127 95 INT i;
cannam@127 96
cannam@127 97 E rr = x[0], ii = 0;
cannam@127 98 x += 1;
cannam@127 99 for (i = 1; i + i < n; ++i) {
cannam@127 100 rr += x[0] * w[0];
cannam@127 101 ii += x[1] * w[1];
cannam@127 102 x += 2; w += 2;
cannam@127 103 }
cannam@127 104 #if FFT_SIGN == -1
cannam@127 105 *or0 = rr - ii;
cannam@127 106 *or1 = rr + ii;
cannam@127 107 #else
cannam@127 108 *or0 = rr + ii;
cannam@127 109 *or1 = rr - ii;
cannam@127 110 #endif
cannam@127 111 }
cannam@127 112
cannam@127 113 static void hartley_hc2r(INT n, const R *x, INT xs, E *o, R *pr)
cannam@127 114 {
cannam@127 115 INT i;
cannam@127 116 E sr;
cannam@127 117
cannam@127 118 o[0] = sr = x[0]; o += 1;
cannam@127 119 for (i = 1; i + i < n; ++i) {
cannam@127 120 sr += (o[0] = x[i * xs] + x[i * xs]);
cannam@127 121 o[1] = x[(n - i) * xs] + x[(n - i) * xs];
cannam@127 122 o += 2;
cannam@127 123 }
cannam@127 124 *pr = sr;
cannam@127 125 }
cannam@127 126
cannam@127 127 static void apply_hc2r(const plan *ego_, R *I, R *O)
cannam@127 128 {
cannam@127 129 const P *ego = (const P *) ego_;
cannam@127 130 INT i;
cannam@127 131 INT n = ego->n, is = ego->is, os = ego->os;
cannam@127 132 const R *W = ego->td->W;
cannam@127 133 E *buf;
cannam@127 134 size_t bufsz = n * sizeof(E);
cannam@127 135
cannam@127 136 BUF_ALLOC(E *, buf, bufsz);
cannam@127 137 hartley_hc2r(n, I, is, buf, O);
cannam@127 138
cannam@127 139 for (i = 1; i + i < n; ++i) {
cannam@127 140 cdot_hc2r(n, buf, W, O + i * os, O + (n - i) * os);
cannam@127 141 W += n - 1;
cannam@127 142 }
cannam@127 143
cannam@127 144 BUF_FREE(buf, bufsz);
cannam@127 145 }
cannam@127 146
cannam@127 147
cannam@127 148 /***************************************************************************/
cannam@127 149
cannam@127 150 static void awake(plan *ego_, enum wakefulness wakefulness)
cannam@127 151 {
cannam@127 152 P *ego = (P *) ego_;
cannam@127 153 static const tw_instr half_tw[] = {
cannam@127 154 { TW_HALF, 1, 0 },
cannam@127 155 { TW_NEXT, 1, 0 }
cannam@127 156 };
cannam@127 157
cannam@127 158 X(twiddle_awake)(wakefulness, &ego->td, half_tw, ego->n, ego->n,
cannam@127 159 (ego->n - 1) / 2);
cannam@127 160 }
cannam@127 161
cannam@127 162 static void print(const plan *ego_, printer *p)
cannam@127 163 {
cannam@127 164 const P *ego = (const P *) ego_;
cannam@127 165
cannam@127 166 p->print(p, "(rdft-generic-%s-%D)",
cannam@127 167 ego->kind == R2HC ? "r2hc" : "hc2r",
cannam@127 168 ego->n);
cannam@127 169 }
cannam@127 170
cannam@127 171 static int applicable(const S *ego, const problem *p_,
cannam@127 172 const planner *plnr)
cannam@127 173 {
cannam@127 174 const problem_rdft *p = (const problem_rdft *) p_;
cannam@127 175 return (1
cannam@127 176 && p->sz->rnk == 1
cannam@127 177 && p->vecsz->rnk == 0
cannam@127 178 && (p->sz->dims[0].n % 2) == 1
cannam@127 179 && CIMPLIES(NO_LARGE_GENERICP(plnr), p->sz->dims[0].n < GENERIC_MIN_BAD)
cannam@127 180 && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > GENERIC_MAX_SLOW)
cannam@127 181 && X(is_prime)(p->sz->dims[0].n)
cannam@127 182 && p->kind[0] == ego->kind
cannam@127 183 );
cannam@127 184 }
cannam@127 185
cannam@127 186 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
cannam@127 187 {
cannam@127 188 const S *ego = (const S *)ego_;
cannam@127 189 const problem_rdft *p;
cannam@127 190 P *pln;
cannam@127 191 INT n;
cannam@127 192
cannam@127 193 static const plan_adt padt = {
cannam@127 194 X(rdft_solve), awake, print, X(plan_null_destroy)
cannam@127 195 };
cannam@127 196
cannam@127 197 if (!applicable(ego, p_, plnr))
cannam@127 198 return (plan *)0;
cannam@127 199
cannam@127 200 p = (const problem_rdft *) p_;
cannam@127 201 pln = MKPLAN_RDFT(P, &padt,
cannam@127 202 R2HC_KINDP(p->kind[0]) ? apply_r2hc : apply_hc2r);
cannam@127 203
cannam@127 204 pln->n = n = p->sz->dims[0].n;
cannam@127 205 pln->is = p->sz->dims[0].is;
cannam@127 206 pln->os = p->sz->dims[0].os;
cannam@127 207 pln->td = 0;
cannam@127 208 pln->kind = ego->kind;
cannam@127 209
cannam@127 210 pln->super.super.ops.add = (n-1) * 2.5;
cannam@127 211 pln->super.super.ops.mul = 0;
cannam@127 212 pln->super.super.ops.fma = 0.5 * (n-1) * (n-1) ;
cannam@127 213 #if 0 /* these are nice pipelined sequential loads and should cost nothing */
cannam@127 214 pln->super.super.ops.other = (n-1)*(2 + 1 + (n-1)); /* approximate */
cannam@127 215 #endif
cannam@127 216
cannam@127 217 return &(pln->super.super);
cannam@127 218 }
cannam@127 219
cannam@127 220 static solver *mksolver(rdft_kind kind)
cannam@127 221 {
cannam@127 222 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
cannam@127 223 S *slv = MKSOLVER(S, &sadt);
cannam@127 224 slv->kind = kind;
cannam@127 225 return &(slv->super);
cannam@127 226 }
cannam@127 227
cannam@127 228 void X(rdft_generic_register)(planner *p)
cannam@127 229 {
cannam@127 230 REGISTER_SOLVER(p, mksolver(R2HC));
cannam@127 231 REGISTER_SOLVER(p, mksolver(HC2R));
cannam@127 232 }