cannam@127
|
1 /*
|
cannam@127
|
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
|
cannam@127
|
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
cannam@127
|
4 *
|
cannam@127
|
5 * This program is free software; you can redistribute it and/or modify
|
cannam@127
|
6 * it under the terms of the GNU General Public License as published by
|
cannam@127
|
7 * the Free Software Foundation; either version 2 of the License, or
|
cannam@127
|
8 * (at your option) any later version.
|
cannam@127
|
9 *
|
cannam@127
|
10 * This program is distributed in the hope that it will be useful,
|
cannam@127
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
cannam@127
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
cannam@127
|
13 * GNU General Public License for more details.
|
cannam@127
|
14 *
|
cannam@127
|
15 * You should have received a copy of the GNU General Public License
|
cannam@127
|
16 * along with this program; if not, write to the Free Software
|
cannam@127
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
cannam@127
|
18 *
|
cannam@127
|
19 */
|
cannam@127
|
20
|
cannam@127
|
21 #include "rdft.h"
|
cannam@127
|
22
|
cannam@127
|
23 typedef struct {
|
cannam@127
|
24 solver super;
|
cannam@127
|
25 rdft_kind kind;
|
cannam@127
|
26 } S;
|
cannam@127
|
27
|
cannam@127
|
28 typedef struct {
|
cannam@127
|
29 plan_rdft super;
|
cannam@127
|
30 twid *td;
|
cannam@127
|
31 INT n, is, os;
|
cannam@127
|
32 rdft_kind kind;
|
cannam@127
|
33 } P;
|
cannam@127
|
34
|
cannam@127
|
35 /***************************************************************************/
|
cannam@127
|
36
|
cannam@127
|
37 static void cdot_r2hc(INT n, const E *x, const R *w, R *or0, R *oi1)
|
cannam@127
|
38 {
|
cannam@127
|
39 INT i;
|
cannam@127
|
40
|
cannam@127
|
41 E rr = x[0], ri = 0;
|
cannam@127
|
42 x += 1;
|
cannam@127
|
43 for (i = 1; i + i < n; ++i) {
|
cannam@127
|
44 rr += x[0] * w[0];
|
cannam@127
|
45 ri += x[1] * w[1];
|
cannam@127
|
46 x += 2; w += 2;
|
cannam@127
|
47 }
|
cannam@127
|
48 *or0 = rr;
|
cannam@127
|
49 *oi1 = ri;
|
cannam@127
|
50 }
|
cannam@127
|
51
|
cannam@127
|
52 static void hartley_r2hc(INT n, const R *xr, INT xs, E *o, R *pr)
|
cannam@127
|
53 {
|
cannam@127
|
54 INT i;
|
cannam@127
|
55 E sr;
|
cannam@127
|
56 o[0] = sr = xr[0]; o += 1;
|
cannam@127
|
57 for (i = 1; i + i < n; ++i) {
|
cannam@127
|
58 R a, b;
|
cannam@127
|
59 a = xr[i * xs];
|
cannam@127
|
60 b = xr[(n - i) * xs];
|
cannam@127
|
61 sr += (o[0] = a + b);
|
cannam@127
|
62 #if FFT_SIGN == -1
|
cannam@127
|
63 o[1] = b - a;
|
cannam@127
|
64 #else
|
cannam@127
|
65 o[1] = a - b;
|
cannam@127
|
66 #endif
|
cannam@127
|
67 o += 2;
|
cannam@127
|
68 }
|
cannam@127
|
69 *pr = sr;
|
cannam@127
|
70 }
|
cannam@127
|
71
|
cannam@127
|
72 static void apply_r2hc(const plan *ego_, R *I, R *O)
|
cannam@127
|
73 {
|
cannam@127
|
74 const P *ego = (const P *) ego_;
|
cannam@127
|
75 INT i;
|
cannam@127
|
76 INT n = ego->n, is = ego->is, os = ego->os;
|
cannam@127
|
77 const R *W = ego->td->W;
|
cannam@127
|
78 E *buf;
|
cannam@127
|
79 size_t bufsz = n * sizeof(E);
|
cannam@127
|
80
|
cannam@127
|
81 BUF_ALLOC(E *, buf, bufsz);
|
cannam@127
|
82 hartley_r2hc(n, I, is, buf, O);
|
cannam@127
|
83
|
cannam@127
|
84 for (i = 1; i + i < n; ++i) {
|
cannam@127
|
85 cdot_r2hc(n, buf, W, O + i * os, O + (n - i) * os);
|
cannam@127
|
86 W += n - 1;
|
cannam@127
|
87 }
|
cannam@127
|
88
|
cannam@127
|
89 BUF_FREE(buf, bufsz);
|
cannam@127
|
90 }
|
cannam@127
|
91
|
cannam@127
|
92
|
cannam@127
|
93 static void cdot_hc2r(INT n, const E *x, const R *w, R *or0, R *or1)
|
cannam@127
|
94 {
|
cannam@127
|
95 INT i;
|
cannam@127
|
96
|
cannam@127
|
97 E rr = x[0], ii = 0;
|
cannam@127
|
98 x += 1;
|
cannam@127
|
99 for (i = 1; i + i < n; ++i) {
|
cannam@127
|
100 rr += x[0] * w[0];
|
cannam@127
|
101 ii += x[1] * w[1];
|
cannam@127
|
102 x += 2; w += 2;
|
cannam@127
|
103 }
|
cannam@127
|
104 #if FFT_SIGN == -1
|
cannam@127
|
105 *or0 = rr - ii;
|
cannam@127
|
106 *or1 = rr + ii;
|
cannam@127
|
107 #else
|
cannam@127
|
108 *or0 = rr + ii;
|
cannam@127
|
109 *or1 = rr - ii;
|
cannam@127
|
110 #endif
|
cannam@127
|
111 }
|
cannam@127
|
112
|
cannam@127
|
113 static void hartley_hc2r(INT n, const R *x, INT xs, E *o, R *pr)
|
cannam@127
|
114 {
|
cannam@127
|
115 INT i;
|
cannam@127
|
116 E sr;
|
cannam@127
|
117
|
cannam@127
|
118 o[0] = sr = x[0]; o += 1;
|
cannam@127
|
119 for (i = 1; i + i < n; ++i) {
|
cannam@127
|
120 sr += (o[0] = x[i * xs] + x[i * xs]);
|
cannam@127
|
121 o[1] = x[(n - i) * xs] + x[(n - i) * xs];
|
cannam@127
|
122 o += 2;
|
cannam@127
|
123 }
|
cannam@127
|
124 *pr = sr;
|
cannam@127
|
125 }
|
cannam@127
|
126
|
cannam@127
|
127 static void apply_hc2r(const plan *ego_, R *I, R *O)
|
cannam@127
|
128 {
|
cannam@127
|
129 const P *ego = (const P *) ego_;
|
cannam@127
|
130 INT i;
|
cannam@127
|
131 INT n = ego->n, is = ego->is, os = ego->os;
|
cannam@127
|
132 const R *W = ego->td->W;
|
cannam@127
|
133 E *buf;
|
cannam@127
|
134 size_t bufsz = n * sizeof(E);
|
cannam@127
|
135
|
cannam@127
|
136 BUF_ALLOC(E *, buf, bufsz);
|
cannam@127
|
137 hartley_hc2r(n, I, is, buf, O);
|
cannam@127
|
138
|
cannam@127
|
139 for (i = 1; i + i < n; ++i) {
|
cannam@127
|
140 cdot_hc2r(n, buf, W, O + i * os, O + (n - i) * os);
|
cannam@127
|
141 W += n - 1;
|
cannam@127
|
142 }
|
cannam@127
|
143
|
cannam@127
|
144 BUF_FREE(buf, bufsz);
|
cannam@127
|
145 }
|
cannam@127
|
146
|
cannam@127
|
147
|
cannam@127
|
148 /***************************************************************************/
|
cannam@127
|
149
|
cannam@127
|
150 static void awake(plan *ego_, enum wakefulness wakefulness)
|
cannam@127
|
151 {
|
cannam@127
|
152 P *ego = (P *) ego_;
|
cannam@127
|
153 static const tw_instr half_tw[] = {
|
cannam@127
|
154 { TW_HALF, 1, 0 },
|
cannam@127
|
155 { TW_NEXT, 1, 0 }
|
cannam@127
|
156 };
|
cannam@127
|
157
|
cannam@127
|
158 X(twiddle_awake)(wakefulness, &ego->td, half_tw, ego->n, ego->n,
|
cannam@127
|
159 (ego->n - 1) / 2);
|
cannam@127
|
160 }
|
cannam@127
|
161
|
cannam@127
|
162 static void print(const plan *ego_, printer *p)
|
cannam@127
|
163 {
|
cannam@127
|
164 const P *ego = (const P *) ego_;
|
cannam@127
|
165
|
cannam@127
|
166 p->print(p, "(rdft-generic-%s-%D)",
|
cannam@127
|
167 ego->kind == R2HC ? "r2hc" : "hc2r",
|
cannam@127
|
168 ego->n);
|
cannam@127
|
169 }
|
cannam@127
|
170
|
cannam@127
|
171 static int applicable(const S *ego, const problem *p_,
|
cannam@127
|
172 const planner *plnr)
|
cannam@127
|
173 {
|
cannam@127
|
174 const problem_rdft *p = (const problem_rdft *) p_;
|
cannam@127
|
175 return (1
|
cannam@127
|
176 && p->sz->rnk == 1
|
cannam@127
|
177 && p->vecsz->rnk == 0
|
cannam@127
|
178 && (p->sz->dims[0].n % 2) == 1
|
cannam@127
|
179 && CIMPLIES(NO_LARGE_GENERICP(plnr), p->sz->dims[0].n < GENERIC_MIN_BAD)
|
cannam@127
|
180 && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > GENERIC_MAX_SLOW)
|
cannam@127
|
181 && X(is_prime)(p->sz->dims[0].n)
|
cannam@127
|
182 && p->kind[0] == ego->kind
|
cannam@127
|
183 );
|
cannam@127
|
184 }
|
cannam@127
|
185
|
cannam@127
|
186 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
|
cannam@127
|
187 {
|
cannam@127
|
188 const S *ego = (const S *)ego_;
|
cannam@127
|
189 const problem_rdft *p;
|
cannam@127
|
190 P *pln;
|
cannam@127
|
191 INT n;
|
cannam@127
|
192
|
cannam@127
|
193 static const plan_adt padt = {
|
cannam@127
|
194 X(rdft_solve), awake, print, X(plan_null_destroy)
|
cannam@127
|
195 };
|
cannam@127
|
196
|
cannam@127
|
197 if (!applicable(ego, p_, plnr))
|
cannam@127
|
198 return (plan *)0;
|
cannam@127
|
199
|
cannam@127
|
200 p = (const problem_rdft *) p_;
|
cannam@127
|
201 pln = MKPLAN_RDFT(P, &padt,
|
cannam@127
|
202 R2HC_KINDP(p->kind[0]) ? apply_r2hc : apply_hc2r);
|
cannam@127
|
203
|
cannam@127
|
204 pln->n = n = p->sz->dims[0].n;
|
cannam@127
|
205 pln->is = p->sz->dims[0].is;
|
cannam@127
|
206 pln->os = p->sz->dims[0].os;
|
cannam@127
|
207 pln->td = 0;
|
cannam@127
|
208 pln->kind = ego->kind;
|
cannam@127
|
209
|
cannam@127
|
210 pln->super.super.ops.add = (n-1) * 2.5;
|
cannam@127
|
211 pln->super.super.ops.mul = 0;
|
cannam@127
|
212 pln->super.super.ops.fma = 0.5 * (n-1) * (n-1) ;
|
cannam@127
|
213 #if 0 /* these are nice pipelined sequential loads and should cost nothing */
|
cannam@127
|
214 pln->super.super.ops.other = (n-1)*(2 + 1 + (n-1)); /* approximate */
|
cannam@127
|
215 #endif
|
cannam@127
|
216
|
cannam@127
|
217 return &(pln->super.super);
|
cannam@127
|
218 }
|
cannam@127
|
219
|
cannam@127
|
220 static solver *mksolver(rdft_kind kind)
|
cannam@127
|
221 {
|
cannam@127
|
222 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
|
cannam@127
|
223 S *slv = MKSOLVER(S, &sadt);
|
cannam@127
|
224 slv->kind = kind;
|
cannam@127
|
225 return &(slv->super);
|
cannam@127
|
226 }
|
cannam@127
|
227
|
cannam@127
|
228 void X(rdft_generic_register)(planner *p)
|
cannam@127
|
229 {
|
cannam@127
|
230 REGISTER_SOLVER(p, mksolver(R2HC));
|
cannam@127
|
231 REGISTER_SOLVER(p, mksolver(HC2R));
|
cannam@127
|
232 }
|