annotate src/fftw-3.3.5/rdft/direct-r2r.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21
cannam@127 22 /* direct RDFT solver, using r2r codelets */
cannam@127 23
cannam@127 24 #include "rdft.h"
cannam@127 25
cannam@127 26 typedef struct {
cannam@127 27 solver super;
cannam@127 28 const kr2r_desc *desc;
cannam@127 29 kr2r k;
cannam@127 30 } S;
cannam@127 31
cannam@127 32 typedef struct {
cannam@127 33 plan_rdft super;
cannam@127 34
cannam@127 35 INT vl, ivs, ovs;
cannam@127 36 stride is, os;
cannam@127 37 kr2r k;
cannam@127 38 const S *slv;
cannam@127 39 } P;
cannam@127 40
cannam@127 41 static void apply(const plan *ego_, R *I, R *O)
cannam@127 42 {
cannam@127 43 const P *ego = (const P *) ego_;
cannam@127 44 ASSERT_ALIGNED_DOUBLE;
cannam@127 45 ego->k(I, O, ego->is, ego->os, ego->vl, ego->ivs, ego->ovs);
cannam@127 46 }
cannam@127 47
cannam@127 48 static void destroy(plan *ego_)
cannam@127 49 {
cannam@127 50 P *ego = (P *) ego_;
cannam@127 51 X(stride_destroy)(ego->is);
cannam@127 52 X(stride_destroy)(ego->os);
cannam@127 53 }
cannam@127 54
cannam@127 55 static void print(const plan *ego_, printer *p)
cannam@127 56 {
cannam@127 57 const P *ego = (const P *) ego_;
cannam@127 58 const S *s = ego->slv;
cannam@127 59
cannam@127 60 p->print(p, "(rdft-%s-direct-r2r-%D%v \"%s\")",
cannam@127 61 X(rdft_kind_str)(s->desc->kind), s->desc->n,
cannam@127 62 ego->vl, s->desc->nam);
cannam@127 63 }
cannam@127 64
cannam@127 65 static int applicable(const solver *ego_, const problem *p_)
cannam@127 66 {
cannam@127 67 const S *ego = (const S *) ego_;
cannam@127 68 const problem_rdft *p = (const problem_rdft *) p_;
cannam@127 69 INT vl;
cannam@127 70 INT ivs, ovs;
cannam@127 71
cannam@127 72 return (
cannam@127 73 1
cannam@127 74 && p->sz->rnk == 1
cannam@127 75 && p->vecsz->rnk <= 1
cannam@127 76 && p->sz->dims[0].n == ego->desc->n
cannam@127 77 && p->kind[0] == ego->desc->kind
cannam@127 78
cannam@127 79 /* check strides etc */
cannam@127 80 && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs)
cannam@127 81
cannam@127 82 && (0
cannam@127 83 /* can operate out-of-place */
cannam@127 84 || p->I != p->O
cannam@127 85
cannam@127 86 /* computing one transform */
cannam@127 87 || vl == 1
cannam@127 88
cannam@127 89 /* can operate in-place as long as strides are the same */
cannam@127 90 || X(tensor_inplace_strides2)(p->sz, p->vecsz)
cannam@127 91 )
cannam@127 92 );
cannam@127 93 }
cannam@127 94
cannam@127 95 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
cannam@127 96 {
cannam@127 97 const S *ego = (const S *) ego_;
cannam@127 98 P *pln;
cannam@127 99 const problem_rdft *p;
cannam@127 100 iodim *d;
cannam@127 101
cannam@127 102 static const plan_adt padt = {
cannam@127 103 X(rdft_solve), X(null_awake), print, destroy
cannam@127 104 };
cannam@127 105
cannam@127 106 UNUSED(plnr);
cannam@127 107
cannam@127 108 if (!applicable(ego_, p_))
cannam@127 109 return (plan *)0;
cannam@127 110
cannam@127 111 p = (const problem_rdft *) p_;
cannam@127 112
cannam@127 113
cannam@127 114 pln = MKPLAN_RDFT(P, &padt, apply);
cannam@127 115
cannam@127 116 d = p->sz->dims;
cannam@127 117
cannam@127 118 pln->k = ego->k;
cannam@127 119
cannam@127 120 pln->is = X(mkstride)(d->n, d->is);
cannam@127 121 pln->os = X(mkstride)(d->n, d->os);
cannam@127 122
cannam@127 123 X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
cannam@127 124
cannam@127 125 pln->slv = ego;
cannam@127 126 X(ops_zero)(&pln->super.super.ops);
cannam@127 127 X(ops_madd2)(pln->vl / ego->desc->genus->vl,
cannam@127 128 &ego->desc->ops,
cannam@127 129 &pln->super.super.ops);
cannam@127 130
cannam@127 131 pln->super.super.could_prune_now_p = 1;
cannam@127 132
cannam@127 133 return &(pln->super.super);
cannam@127 134 }
cannam@127 135
cannam@127 136 /* constructor */
cannam@127 137 solver *X(mksolver_rdft_r2r_direct)(kr2r k, const kr2r_desc *desc)
cannam@127 138 {
cannam@127 139 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
cannam@127 140 S *slv = MKSOLVER(S, &sadt);
cannam@127 141 slv->k = k;
cannam@127 142 slv->desc = desc;
cannam@127 143 return &(slv->super);
cannam@127 144 }
cannam@127 145